51
|
MicroRNA’s impact on neurotransmitter and neuropeptide systems: small but mighty mediators of anxiety. Pflugers Arch 2016; 468:1061-9. [DOI: 10.1007/s00424-016-1814-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/26/2022]
|
52
|
Danka Mohammed CP, Rhee H, Phee B, Kim K, Kim H, Lee H, Park JH, Jung JH, Kim JY, Kim H, Park SK, Nam HG, Kim K. miR-204 downregulates EphB2 in aging mouse hippocampal neurons. Aging Cell 2016; 15:380-8. [PMID: 26799631 PMCID: PMC4783348 DOI: 10.1111/acel.12444] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 11/28/2022] Open
Abstract
Hippocampal synaptic function and plasticity deteriorate with age, often resulting in learning and memory deficits. As MicroRNAs (miRNAs) are important regulators of neuronal protein expression, we examined whether miRNAs may contribute to this age‐associated decline in hippocampal function. We first compared the small RNA transcriptome of hippocampal tissues from young and old mice. Among 269 hippocampal miRNAs, 80 were differentially expressed (≥ twofold) among the age groups. We focused on 36 miRNAs upregulated in the old mice compared with those in the young mice. The potential targets of these 36 miRNAs included 11 critical Eph/Ephrin synaptic signaling components. The expression levels of several genes in the Eph/Ephrin pathway, including EphB2, were significantly downregulated in the aged hippocampus. EphB2 is a known regulator of synaptic plasticity in hippocampal neurons, in part by regulating the surface expression of the NMDA receptor NR1 subunit. We found that EphB2 is a direct target of miR‐204 among miRNAs that were upregulated with age. The transfection of primary hippocampal neurons with a miR‐204 mimic suppressed both EphB2 mRNA and protein expression and reduced the surface expression of NR1. Transfection of miR‐204 also decreased the total expression of NR1. miR‐204 induces senescence‐like phenotype in fully matured neurons as evidenced by an increase in p16‐positive cells. We suggest that aging is accompanied by the upregulation of miR‐204 in the hippocampus, which downregulates EphB2 and results in reduced surface and total NR1 expression. This mechanism may contribute to age‐associated decline in hippocampal synaptic plasticity and the related cognitive functions.
Collapse
Affiliation(s)
- Chand Parvez Danka Mohammed
- Center for Plant Aging Research Institute for Basic Science (IBS) Daegu 711‐873 Korea
- Department of New Biology DGIST Daegu 711‐873 Korea
- Department of Life Sciences POSTECH Pohang 790‐784 Korea
| | | | - Bong‐Kwan Phee
- Center for Plant Aging Research Institute for Basic Science (IBS) Daegu 711‐873 Korea
| | - Kunhyung Kim
- Department of New Biology DGIST Daegu 711‐873 Korea
| | - Hee‐Jin Kim
- Center for Plant Aging Research Institute for Basic Science (IBS) Daegu 711‐873 Korea
| | - Hyehyeon Lee
- Department of New Biology DGIST Daegu 711‐873 Korea
| | | | | | - Jeong Yeon Kim
- Center for Plant Aging Research Institute for Basic Science (IBS) Daegu 711‐873 Korea
| | - Hyoung‐Chin Kim
- Korea Research Institute of Bioscience and Biotechnology Ochang 363‐883 Korea
| | - Sang Ki Park
- Department of Life Sciences POSTECH Pohang 790‐784 Korea
| | - Hong Gil Nam
- Center for Plant Aging Research Institute for Basic Science (IBS) Daegu 711‐873 Korea
- Department of New Biology DGIST Daegu 711‐873 Korea
| | - Keetae Kim
- Department of New Biology DGIST Daegu 711‐873 Korea
| |
Collapse
|
53
|
The Ins and Outs of miRNA-Mediated Gene Silencing during Neuronal Synaptic Plasticity. Noncoding RNA 2016; 2:ncrna2010001. [PMID: 29657259 PMCID: PMC5831896 DOI: 10.3390/ncrna2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022] Open
Abstract
Neuronal connections through specialized junctions, known as synapses, create circuits that underlie brain function. Synaptic plasticity, i.e., structural and functional changes to synapses, occurs in response to neuronal activity and is a critical regulator of various nervous system functions, including long-term memory formation. The discovery of mRNAs, miRNAs, ncRNAs, ribosomes, translational repressors, and other RNA binding proteins in dendritic spines allows individual synapses to alter their synaptic strength rapidly through regulation of local protein synthesis in response to different physiological stimuli. In this review, we discuss our understanding of a number of miRNAs, ncRNAs, and RNA binding proteins that are emerging as important regulators of synaptic plasticity, which play a critical role in memory, learning, and diseases that arise when neuronal circuits are impaired.
Collapse
|
54
|
Fadó R, Soto D, Miñano-Molina AJ, Pozo M, Carrasco P, Yefimenko N, Rodríguez-Álvarez J, Casals N. Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus. J Biol Chem 2015; 290:25548-60. [PMID: 26338711 DOI: 10.1074/jbc.m115.681064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 01/04/2023] Open
Abstract
The regulation of AMPA-type receptor (AMPAR) abundance in the postsynaptic membrane is an important mechanism involved in learning and memory formation. Recent data suggest that one of the constituents of the AMPAR complex is carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform located in the endoplasmic reticulum of neurons. Previous results had demonstrated that CPT1C deficiency disrupted spine maturation in hippocampal neurons and impaired spatial learning, but the role of CPT1C in AMPAR physiology had remained mostly unknown. In the present study, we show that CPT1C binds GluA1 and GluA2 and that the three proteins have the same expression profile during neuronal maturation. Moreover, in hippocampal neurons of CPT1C KO mice, AMPAR-mediated miniature excitatory postsynaptic currents and synaptic levels of AMPAR subunits GluA1 and GluA2 are significantly reduced. We show that AMPAR expression is dependent on CPT1C levels because total protein levels of GluA1 and GluA2 are decreased in CPT1C KO neurons and are increased in CPT1C-overexpressing neurons, whereas other synaptic proteins remain unaltered. Notably, mRNA levels of AMPARs remained unchanged in those cultures, indicating that CPT1C is post-transcriptionally involved. We demonstrate that CPT1C is directly involved in the de novo synthesis of GluA1 and not in protein degradation. Moreover, in CPT1C KO cultured neurons, GluA1 synthesis after chemical long term depression was clearly diminished, and brain-derived neurotrophic factor treatment was unable to phosphorylate the mammalian target of rapamycin (mTOR) and stimulate GluA1 protein synthesis. These data newly identify CPT1C as a regulator of AMPAR translation efficiency and therefore also synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Rut Fadó
- From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain
| | - David Soto
- the Laboratori de Neurobiologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Feixa Llarga s/n 08907, L'Hospitalet de Llobregat 08907, Spain, the Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat 08907, Spain
| | - Alfredo J Miñano-Molina
- the Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain, and
| | - Macarena Pozo
- From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain
| | - Patricia Carrasco
- From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain, the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), 15706 Santiago de Compostela, Spain
| | - Natalia Yefimenko
- the Laboratori de Neurobiologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Feixa Llarga s/n 08907, L'Hospitalet de Llobregat 08907, Spain, the Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona, Feixa Llarga s/n 08907, L'Hospitalet de Llobregat 08907, Spain
| | - José Rodríguez-Álvarez
- the Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain, the Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain, and
| | - Núria Casals
- From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain, the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), 15706 Santiago de Compostela, Spain
| |
Collapse
|
55
|
Hu Z, Zhao J, Hu T, Luo Y, Zhu J, Li Z. miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. J Gen Physiol 2015. [DOI: 10.1085/jgp.1454oia12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|