51
|
Hikita T, Uehara R, Itoh RE, Mitani F, Miyata M, Yoshida T, Yamaguchi R, Oneyama C. MEK/ERK-mediated oncogenic signals promote secretion of extracellular vesicles by controlling lysosome function. Cancer Sci 2022; 113:1264-1276. [PMID: 35108425 PMCID: PMC8990735 DOI: 10.1111/cas.15288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/29/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer cells secrete large amounts of extracellular vesicles (EVs) originating from multivesicular bodies (MVBs). Mature MVBs fuse either with the plasma membrane for release as EVs often referred as to exosomes or with lysosomes for degradation. However, the mechanisms regulating MVB fate remain unknown. Here, we investigated the regulators of MVB fate by analyzing the effects of signaling inhibitors on EV secretion from cancer cells engineered to secrete luciferase-labeled EVs. Inhibition of the oncogenic MEK/ERK pathway suppressed EV release and activated lysosome formation. MEK/ERK-mediated lysosomal inactivation impaired MVB degradation, resulting in increased EV secretion from cancer cells. Moreover, MEK/ERK inhibition prevented c-MYC expression and induced the nuclear translocation of MiT/TFE transcription factors, thereby promoting the activation of lysosome-related genes, including the gene encoding a subunit of vacuolar-type H+ -ATPase, which is responsible for lysosomal acidification and function. Furthermore, c-MYC upregulation was associated with lysosomal genes downregulation in MEK/ERK-activated renal cancer cells/tissues. These findings suggest that the MEK/ERK/c-MYC pathway controls MVB fate and promotes EV production in human cancers by inactivating lysosomal function.
Collapse
Affiliation(s)
- Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ryo Uehara
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Reina E Itoh
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Fumie Mitani
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Oncology, Nagoya City University, Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Mamiko Miyata
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Informatics, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Oncology, Nagoya City University, Graduate School of Pharmaceutical Sciences, Nagoya, Japan.,Department of Target and Drug Discovery, Nagoya University, Graduate School of Medicine, Nagoya, Japan.,Japan Science and Technology Agency, PRESTO, Nagoya, Japan
| |
Collapse
|
52
|
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) and their activating partners, D-type cyclins, link the extracellular environment with the core cell cycle machinery. Constitutive activation of cyclin D–CDK4/6 represents the driving force of tumorigenesis in several cancer types. Small-molecule inhibitors of CDK4/6 have been used with great success in the treatment of hormone receptor–positive breast cancers and are in clinical trials for many other tumor types. Unexpectedly, recent work indicates that inhibition of CDK4/6 affects a wide range of cellular functions such as tumor cell metabolism and antitumor immunity. We discuss how recent advances in understanding CDK4/6 biology are opening new avenues for the future use of cyclin D–CDK4/6 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
53
|
Ziegler DV, Huber K, Fajas L. The Intricate Interplay between Cell Cycle Regulators and Autophagy in Cancer. Cancers (Basel) 2021; 14:cancers14010153. [PMID: 35008317 PMCID: PMC8750274 DOI: 10.3390/cancers14010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Autophagy is an intracellular catabolic program regulated by multiple external and internal cues. A large amount of evidence unraveled that cell-cycle regulators are crucial in its control. This review highlights the interplay between cell-cycle regulators, including cyclin-dependent kinase inhibitors, cyclin-dependent kinases, and E2F factors, in the control of autophagy all along the cell cycle. Beyond the intimate link between cell cycle and autophagy, this review opens therapeutic perspectives in modulating together these two aspects to block cancer progression. Abstract In the past decade, cell cycle regulators have extended their canonical role in cell cycle progression to the regulation of various cellular processes, including cellular metabolism. The regulation of metabolism is intimately connected with the function of autophagy, a catabolic process that promotes the efficient recycling of endogenous components from both extrinsic stress, e.g., nutrient deprivation, and intrinsic sub-lethal damage. Mediating cellular homeostasis and cytoprotection, autophagy is found to be dysregulated in numerous pathophysiological contexts, such as cancer. As an adaptative advantage, the upregulation of autophagy allows tumor cells to integrate stress signals, escaping multiple cell death mechanisms. Nevertheless, the precise role of autophagy during tumor development and progression remains highly context-dependent. Recently, multiple articles has suggested the importance of various cell cycle regulators in the modulation of autophagic processes. Here, we review the current clues indicating that cell-cycle regulators, including cyclin-dependent kinase inhibitors (CKIs), cyclin-dependent kinases (CDKs), and E2F transcription factors, are intrinsically linked to the regulation of autophagy. As an increasing number of studies highlight the importance of autophagy in cancer progression, we finally evoke new perspectives in therapeutic avenues that may include both cell cycle inhibitors and autophagy modulators to synergize antitumor efficacy.
Collapse
|
54
|
He X, Xie Y, Zheng Q, Zhang Z, Ma S, Li J, Li M, Huang Q. TFE3-Mediated Autophagy is Involved in Dopaminergic Neurodegeneration in Parkinson's Disease. Front Cell Dev Biol 2021; 9:761773. [PMID: 34912803 PMCID: PMC8667775 DOI: 10.3389/fcell.2021.761773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Impairment of autophagy has been strongly implicated in the progressive loss of nigral dopaminergic neurons in Parkinson’s disease (PD). Transcription factor E3 (TFE3), an MiTF/TFE family transcription factor, has been identified as a master regulator of the genes that are associated with lysosomal biogenesis and autophagy. However, whether TFE3 is involved in parkinsonian neurodegeneration remains to be determined. In this study, we found decreased TFE3 expression in the nuclei of the dopaminergic neurons of postmortem human PD brains. Next, we demonstrated that TFE3 knockdown led to autophagy dysfunction and neurodegeneration of dopaminergic neurons in mice, implying that reduction of nuclear TFE3 may contribute to autophagy dysfunction-mediated cell death in PD. Further, we showed that enhancement of autophagy by TFE3 overexpression dramatically reversed autophagy downregulation and dopaminergic neurons loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Taken together, these findings demonstrate that TFE3 plays an essential role in maintaining autophagy and the survival of dopaminergic neurons, suggesting TFE3 activation may serve as a promising strategy for PD therapy.
Collapse
Affiliation(s)
- Xin He
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yue Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiongping Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA, Bhutia SK. The lysosome as an imperative regulator of autophagy and cell death. Cell Mol Life Sci 2021; 78:7435-7449. [PMID: 34716768 PMCID: PMC11071813 DOI: 10.1007/s00018-021-03988-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Lysosomes are single membrane-bound organelles containing acid hydrolases responsible for the degradation of cellular cargo and maintenance of cellular homeostasis. Lysosomes could originate from pre-existing endolysosomes or autolysosomes, acting as a critical juncture between autophagy and endocytosis. Stress that triggers lysosomal membrane permeabilization can be altered by ESCRT complexes; however, irreparable damage to the membrane results in the induction of a selective lysosomal degradation pathway, specifically lysophagy. Lysosomes play an indispensable role in different types of autophagy, including microautophagy, macroautophagy, and chaperone-mediated autophagy, and various cell death pathways such as lysosomal cell death, apoptotic cell death, and autophagic cell death. In this review, we discuss lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.
Collapse
Affiliation(s)
- Kewal Kumar Mahapatra
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Soumya Ranjan Mishra
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bishnu Prasad Behera
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, USA
| | - Sujit Kumar Bhutia
- Department of Life Science, Cancer and Cell Death Laboratory, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
56
|
Lisowski C, Dias J, Costa S, Silva RJ, Mano M, Eulalio A. Dysregulated endolysosomal trafficking in cells arrested in the G 1 phase of the host cell cycle impairs Salmonella vacuolar replication. Autophagy 2021; 18:1785-1800. [PMID: 34781820 DOI: 10.1080/15548627.2021.1999561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Modulation of the host cell cycle has emerged as a common theme among the pathways regulated by bacterial pathogens, arguably to promote host cell colonization. However, in most cases the exact benefit ensuing from such interference to the infection process remains unclear. Previously, we have shown that Salmonella actively induces G2/M arrest of host cells, and that infection is severely inhibited in cells arrested in G1. In this study, we demonstrate that Salmonella vacuolar replication is inhibited in host cells blocked in G1, whereas the cytosolic replication of the closely related pathogen Shigella is not affected. Mechanistically, we show that cells arrested in G1, but not cells arrested in G2, present dysregulated endolysosomal trafficking, displaying an abnormal accumulation of vesicles positive for late endosomal and lysosomal markers. In addition, the macroautophagic/autophagic flux and degradative lysosomal function are strongly impaired. This endolysosomal trafficking dysregulation results in sustained activation of the SPI-1 type III secretion system and lack of vacuole repair by the autophagy pathway, ultimately compromising the maturation and integrity of the Salmonella-containing vacuole. As such, Salmonella is released in the host cytosol. Collectively, our findings demonstrate that the modulation of the host cell cycle occurring during Salmonella infection is related to a disparity in the permissivity of cells arrested in G1 and G2/M, due to their intrinsic characteristics.
Collapse
Affiliation(s)
- Clivia Lisowski
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jane Dias
- RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana Costa
- RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ricardo Jorge Silva
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,RNA & Infection Laboratory, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
57
|
Translation Inhibitors Activate Autophagy Master Regulators TFEB and TFE3. Int J Mol Sci 2021; 22:ijms222112083. [PMID: 34769510 PMCID: PMC8584619 DOI: 10.3390/ijms222112083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
The autophagy-lysosome pathway is a major protein degradation pathway stimulated by multiple cellular stresses, including nutrient or growth factor deprivation, hypoxia, misfolded proteins, damaged organelles, and intracellular pathogens. Recent studies have revealed that transcription factor EB (TFEB) and transcription factor E3 (TFE3) play a pivotal role in the biogenesis and functions of autophagosome and lysosome. Here we report that three translation inhibitors (cycloheximide, lactimidomycin, and rocaglamide A) can facilitate the nuclear translocation of TFEB/TFE3 via dephosphorylation and 14-3-3 dissociation. In addition, the inhibitor-mediated TFEB/TFE3 nuclear translocation significantly increases the transcriptional expression of their downstream genes involved in the biogenesis and function of autophagosome and lysosome. Furthermore, we demonstrated that translation inhibition increased autophagosome biogenesis but impaired the degradative autolysosome formation because of lysosomal dysfunction. These results highlight the previously unrecognized function of the translation inhibitors as activators of TFEB/TFE3, suggesting a novel biological role of translation inhibition in autophagy regulation.
Collapse
|
58
|
Mofatteh M, Echegaray-Iturra F, Alamban A, Dalla Ricca F, Bakshi A, Aydogan MG. Autonomous clocks that regulate organelle biogenesis, cytoskeletal organization, and intracellular dynamics. eLife 2021; 10:e72104. [PMID: 34586070 PMCID: PMC8480978 DOI: 10.7554/elife.72104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
How do cells perceive time? Do cells use temporal information to regulate the production/degradation of their enzymes, membranes, and organelles? Does controlling biological time influence cytoskeletal organization and cellular architecture in ways that confer evolutionary and physiological advantages? Potential answers to these fundamental questions of cell biology have historically revolved around the discussion of 'master' temporal programs, such as the principal cyclin-dependent kinase/cyclin cell division oscillator and the circadian clock. In this review, we provide an overview of the recent evidence supporting an emerging concept of 'autonomous clocks,' which under normal conditions can be entrained by the cell cycle and/or the circadian clock to run at their pace, but can also run independently to serve their functions if/when these major temporal programs are halted/abrupted. We begin the discussion by introducing recent developments in the study of such clocks and their roles at different scales and complexities. We then use current advances to elucidate the logic and molecular architecture of temporal networks that comprise autonomous clocks, providing important clues as to how these clocks may have evolved to run independently and, sometimes at the cost of redundancy, have strongly coupled to run under the full command of the cell cycle and/or the circadian clock. Next, we review a list of important recent findings that have shed new light onto potential hallmarks of autonomous clocks, suggestive of prospective theoretical and experimental approaches to further accelerate their discovery. Finally, we discuss their roles in health and disease, as well as possible therapeutic opportunities that targeting the autonomous clocks may offer.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Fabio Echegaray-Iturra
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Francesco Dalla Ricca
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Anand Bakshi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
59
|
Shen J, Yang J, Sang L, Sun R, Bai W, Wang C, Sun Y, Sun J. PYK2 mediates the BRAF inhibitor (vermurafenib)-induced invadopodia formation and metastasis in melanomas. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0294. [PMID: 34570440 PMCID: PMC9425182 DOI: 10.20892/j.issn.2095-3941.2020.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objective: The BRAF inhibitor, vemurafenib, has been widely used in the treatment of patients with melanoma-bearing BRAFV600E mutations. While the initial response to vemurafenib is usually excellent, the majority of patients eventually develop resistance and metastatic disease. However, the underlying molecular mechanism remains elusive. The objective of this study was therefore to identify additional molecular targets responsible for vemurafenib resistance. Methods: Western blots and immunohistochemistry analyses were used to evaluate expressions of PYK2 and p-PYK2 in cultured cells and melanoma tissue microarrays. The relationships of p-PYK2 with clinicopathological parameters were statistically analyzed. Invadopodia cell invasion, and a Ca2+ assay were used to determine the effect of vemurafenib resistance-induced p-PYK2 on melanoma progression. A mouse model was used to assess the effects of PYK2 on melanoma metastasis. Results: Elevated p-PYK2 levels were detected in vemurafenib-resistant melanoma cells, and PYK2 was shown to regulate invadopodia formation in melanoma cells. Vemurafenib triggered invadopodia formation by activation of PYK2. Inhibition of PYK2 with either shRNA or the small molecule inhibitor, PF562711, dramatically reduced vemurafenib-induced invadopodia formation. Furthermore, knockdown of PYK2 significantly reduced melanoma lung metastasis in vivo. Increased expressions of p-PYK2 in melanoma patients were positively correlated with advanced stage (P = 0.002), metastasis (P < 0.001), and Clark grade (P < 0.001), and were also associated with short overall survival [hazard ratio (HR) = 3.304, P = 0.007] and progression-free survival (HR = 2.930, P = 0.001). Conclusions: PYK2 mediated vemurafenib-induced melanoma cell migration and invasion. Inhibition of PYK2 resensitized melanoma cells to vemurafenib. Phospho-PYK2 was a prognostic biomarker in melanoma patients.
Collapse
Affiliation(s)
- Junling Shen
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Jilong Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Sang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Rui Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Weiyu Bai
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Chao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianwei Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
60
|
Sun H, Wei X, Zeng C. Autophagy in Xp11 translocation renal cell carcinoma: from bench to bedside. Mol Cell Biochem 2021; 476:4231-4244. [PMID: 34345999 DOI: 10.1007/s11010-021-04235-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) characterized by the rearrangement of the TFE3 is recently identified as a unique subtype of RCC that urgently requires effective prevention and treatment strategies. Therefore, determining suitable therapeutic targets and fully understanding the biological significance of tRCC is essential. The importance of autophagy is increasingly acknowledged because it shows carcinogenic activity or suppressor effect. Autophagy is a physiological cellular process critical to maintaining cell homeostasis, which is involved in the lysosomal degradation of cytoplasmic organelles and macromolecules via the lysosomal pathway, suggesting that targeting autophagy is a potential therapeutic approach for cancer therapies. However, the underlying mechanism of autophagy in tRCC is still ambiguous. In this review, we summarize the autophagy-related signaling pathways associated with tRCC. Moreover, we examine the roles of autophagy and the immune response in tumorigenesis and investigate how these factors interact to facilitate or prevent tumorigenesis. Besides, we review the findings regarding the treatment of tRCC via induction or inhibition of autophagy. Hopefully, this study will shed some light on the functions and implications of autophagy and emphasize its role as a potential molecular target for therapeutic intervention in tRCC.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Xing Wei
- Department of Nephrology and Rheumatology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
61
|
TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 2021; 28:1838-1850.e10. [PMID: 34343492 DOI: 10.1016/j.stem.2021.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
It is critical to understand how human quiescent long-term hematopoietic stem cells (LT-HSCs) sense demand from daily and stress-mediated cues and then transition into bioenergetically active progeny to differentiate and meet these cellular needs. However, the demand-adapted regulatory circuits of these early steps of hematopoiesis are largely unknown. Here we show that lysosomes, sophisticated nutrient-sensing and signaling centers, are regulated dichotomously by transcription factor EB (TFEB) and MYC to balance catabolic and anabolic processes required for activating LT-HSCs and guiding their lineage fate. TFEB-mediated induction of the endolysosomal pathway causes membrane receptor degradation, limiting LT-HSC metabolic and mitogenic activation, promoting quiescence and self-renewal, and governing erythroid-myeloid commitment. In contrast, MYC engages biosynthetic processes while repressing lysosomal catabolism, driving LT-HSC activation. Our study identifies TFEB-mediated control of lysosomal activity as a central regulatory hub for proper and coordinated stem cell fate determination.
Collapse
|
62
|
Kim S, Song HS, Yu J, Kim YM. MiT Family Transcriptional Factors in Immune Cell Functions. Mol Cells 2021; 44:342-355. [PMID: 33972476 PMCID: PMC8175148 DOI: 10.14348/molcells.2021.0067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022] Open
Abstract
The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.
Collapse
Affiliation(s)
- Seongryong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyun-Sup Song
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jihyun Yu
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST, Daejeon 34141, Korea
| |
Collapse
|
63
|
Yang C, Wang X. Lysosome biogenesis: Regulation and functions. J Cell Biol 2021; 220:212053. [PMID: 33950241 PMCID: PMC8105738 DOI: 10.1083/jcb.202102001] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are degradation centers and signaling hubs in cells and play important roles in cellular homeostasis, development, and aging. Changes in lysosome function are essential to support cellular adaptation to multiple signals and stimuli. Therefore, lysosome biogenesis and activity are regulated by a wide variety of intra- and extracellular cues. Here, we summarize current knowledge of the regulatory mechanisms of lysosome biogenesis, including synthesis of lysosomal proteins and their delivery via the endosome-lysosome pathway, reformation of lysosomes from degradative vesicles, and transcriptional regulation of lysosomal genes. We survey the regulation of lysosome biogenesis in response to nutrient and nonnutrient signals, the cell cycle, stem cell quiescence, and cell fate determination. Finally, we discuss lysosome biogenesis and functions in the context of organismal development and aging.
Collapse
Affiliation(s)
- Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
64
|
Fang R, Wang X, Xia Q, Zhao M, Zhang H, Wang X, Ye S, Cheng K, Liang Y, Cheng Y, Gu Y, Rao Q. Nuclear translocation of ASPL-TFE3 fusion protein creates favorable metabolism by mediating autophagy in translocation renal cell carcinoma. Oncogene 2021; 40:3303-3317. [PMID: 33846569 DOI: 10.1038/s41388-021-01776-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/01/2023]
Abstract
The ASPL-TFE3 fusion gene, resulting from t(X;17)(p11.2;q25.3), is one of the most commonly identified fusion genes in Xp11 translocation renal cell carcinoma (tRCC). However, its roles and underlying mechanism in RCC development are not yet clear. Here, we identified ASPL-TFE3 fusion as the most common tRCC subtype in a Chinese population (29/126, 23.03%). This fusion protein translocated into the nucleus and promoted RCC cell proliferation both in vitro and in vivo. Mechanistically, the fusion protein transcriptionally activated the lysosome-autophagy pathway by binding to the promoters of lysosome-related genes. Autophagy, activated by ASPL-TFE3, enabled RCC cells to escape energy stress by promoting the utilization of proteins and lipids. Moreover, we found that the ASPL-TFE3 fusion escaped regulation by the classic mTOR-TFE3 signal and instead activated phospho-mTOR and its downstream targets. Finally, targeting both autophagy and the mTOR axis resulted in a greater antiproliferative effect than single pathway inhibition. In summary, these results confirmed the ASPL-TFE3 fusion as a master regulator of metabolic adaptation mediated by autophagy in tRCC. The simultaneous manipulation of autophagy and the mTOR axis may represent a novel treatment strategy for ASPL-TFE3 fusion RCC.
Collapse
Affiliation(s)
- Ru Fang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xiaotong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Qiuyuan Xia
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Ming Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Shengbing Ye
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Kai Cheng
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Liang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yang Cheng
- Health Management Center, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
65
|
Doronzo G, Astanina E, Bussolino F. The Oncogene Transcription Factor EB Regulates Vascular Functions. Front Physiol 2021; 12:640061. [PMID: 33912071 PMCID: PMC8072379 DOI: 10.3389/fphys.2021.640061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription factor EB (TFEB) represents an emerging player in vascular biology. It belongs to the bHLH-leucine zipper transcription factor microphthalmia family, which includes microphthalmia-associated transcription factor, transcription factor E3 and transcription factor EC, and is known to be deregulated in cancer. The canonical transcriptional pathway orchestrated by TFEB adapts cells to stress in all kinds of tissues by supporting lysosomal and autophagosome biogenesis. However, emerging findings highlight that TFEB activates other genetic programs involved in cell proliferation, metabolism, inflammation and immunity. Here, we first summarize the general principles and mechanisms by which TFEB activates its transcriptional program. Then, we analyze the current knowledge of TFEB in the vascular system, placing particular emphasis on its regulatory role in angiogenesis and on the involvement of the vascular unit in inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
66
|
La Spina M, Contreras PS, Rissone A, Meena NK, Jeong E, Martina JA. MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front Cell Dev Biol 2021; 8:609683. [PMID: 33490073 PMCID: PMC7815692 DOI: 10.3389/fcell.2020.609683] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Response and adaptation to stress are critical for the survival of all living organisms. The regulation of the transcriptional machinery is an important aspect of these complex processes. The members of the microphthalmia (MiT/TFE) family of transcription factors, apart from their involvement in melanocyte biology, are emerging as key players in a wide range of cellular functions in response to a plethora of internal and external stresses. The MiT/TFE proteins are structurally related and conserved through evolution. Their tissue expression and activities are highly regulated by alternative splicing, promoter usage, and posttranslational modifications. Here, we summarize the functions of MiT/TFE proteins as master transcriptional regulators across evolution and discuss the contribution of animal models to our understanding of the various roles of these transcription factors. We also highlight the importance of deciphering transcriptional regulatory mechanisms in the quest for potential therapeutic targets for human diseases, such as lysosomal storage disorders, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Martina La Spina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alberto Rissone
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
67
|
Theodosakis N, Pagan AD, Fisher DE. The role of MiT/TFE family members in autophagy regulation. CURRENT TOPICS IN BIOCHEMICAL RESEARCH 2021; 22:151-159. [PMID: 35663368 PMCID: PMC9165699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The MiT/TFE family of proteins are important regulators of a number of metabolic processes. One of their most important roles is activating the autophagy pathway in the setting of nutrient deprivation or buildup of toxic metabolites. Their proper and improper functioning in this role has been linked to several types of disease, including cancer and multiple forms of neurodegeneration. In this review we will briefly outline what is known about individual family members' roles in regulating autophagy across a variety of contexts.
Collapse
Affiliation(s)
| | - Angel D Pagan
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Ponce Health Sciences University School of Medicine, Ponce, Puerto Rico, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
68
|
Astanina E, Bussolino F, Doronzo G. Multifaceted activities of transcription factor EB in cancer onset and progression. Mol Oncol 2020; 15:327-346. [PMID: 33252196 PMCID: PMC7858119 DOI: 10.1002/1878-0261.12867] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Transcription factor EB (TFEB) represents an emerging player in cancer biology. Together with microphthalmia‐associated transcription factor, transcription factor E3 and transcription factor EC, TFEB belongs to the microphthalmia family of bHLH‐leucine zipper transcription factors that may be implicated in human melanomas, renal and pancreatic cancers. TFEB was originally described as being translocated in a juvenile subset of pediatric renal cell carcinoma; however, whole‐genome sequencing reported that somatic mutations were sporadically found in many different cancers. Besides its oncogenic activity, TFEB controls the autophagy‐lysosomal pathway by recognizing a recurrent motif present in the promoter regions of a set of genes that participate in lysosome biogenesis; furthermore, its dysregulation was found to have a crucial pathogenic role in different tumors by modulating the autophagy process. Other than regulating cancer cell‐autonomous responses, recent findings indicate that TFEB participates in the regulation of cellular functions of the tumor microenvironment. Here, we review the emerging role of TFEB in regulating cancer cell behavior and choreographing tumor–microenvironment interaction. Recognizing TFEB as a hub of network of signals exchanged within the tumor between cancer and stroma cells provides a fresh perspective on the molecular principles of tumor self‐organization, promising to reveal numerous new and potentially druggable vulnerabilities.
Collapse
Affiliation(s)
- Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
69
|
Cocco S, Leone A, Piezzo M, Caputo R, Di Lauro V, Di Rella F, Fusco G, Capozzi M, Gioia GD, Budillon A, De Laurentiis M. Targeting Autophagy in Breast Cancer. Int J Mol Sci 2020; 21:E7836. [PMID: 33105796 PMCID: PMC7660056 DOI: 10.3390/ijms21217836] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease consisting of different biological subtypes, with differences in terms of incidence, response to diverse treatments, risk of disease progression, and sites of metastases. In the last years, several molecular targets have emerged and new drugs, targeting PI3K/Akt/mTOR and cyclinD/CDK/pRb pathways and tumor microenvironment have been integrated into clinical practice. However, it is clear now that breast cancer is able to develop resistance to these drugs and the identification of the underlying molecular mechanisms is paramount to drive further drug development. Autophagy is a highly conserved homeostatic process that can be activated in response to antineoplastic agents as a cytoprotective mechanism. Inhibition of autophagy could enhance tumor cell death by diverse anti-cancer therapies, representing an attractive approach to control mechanisms of drug resistance. In this manuscript, we present a review of autophagy focusing on its interplay with targeted drugs used for breast cancer treatment.
Collapse
Affiliation(s)
- Stefania Cocco
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (A.L.); (A.B.)
| | - Michela Piezzo
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Roberta Caputo
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Vincenzo Di Lauro
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Francesca Di Rella
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Giuseppina Fusco
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Monica Capozzi
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Germira di Gioia
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (A.L.); (A.B.)
| | - Michelino De Laurentiis
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| |
Collapse
|