51
|
Katamura K, Tai G, Tachibana T, Yamabe H, Ohmori K, Mayumi M, Matsuda S, Koyasu S, Furusho K. Existence of activated and memory CD4+ T cells in peripheral blood and their skin infiltration in CD8 deficiency. Clin Exp Immunol 1999; 115:124-30. [PMID: 9933431 PMCID: PMC1905204 DOI: 10.1046/j.1365-2249.1999.00759.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8 deficiency is a rare primary immunodeficiency caused by the defect of a tyrosine kinase, ZAP-70, which transduces signals from the T cell receptor. We report here a case of CD8 deficiency, having CD4+ T cells with a unique phenotype. The patient's T cells did not respond to anti-CD3 stimulation in vitro, suggesting that they were naive. However, many CD4+ T cells with activated and memory phenotypes, which expressed CD45RO+, HLA-DR+ and CD25+, were present in the peripheral blood, and these cells accumulated in the perivascular area of his infiltrative erythematous skin lesions. The patient's T cells could be activated by a high concentration of phytohaemagglutinin (PHA), indicating the presence of an alternate signalling pathway which bypasses ZAP-70 and activates CD4+ T cells in vivo. The origin and role of activated CD4+ T cells in the pathogenesis involved in the skin lesions are discussed.
Collapse
Affiliation(s)
- K Katamura
- Department of Paediatrics, Graduate School of Medicine, Kyoto University, Sakyoku Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Engagement of the TCR may result in proliferation and cytokine release or programmed cell death. These two outcomes may be the consequence of distinct T cell receptor-coupled signal transduction pathways or may reflect quantitative differences in signaling strength via a single pathway. Here we show that genetic inhibition of MAP kinase kinase (MEK) by a dominant negative mutant or through chemical inhibition by PD98059 inhibits IL-2 secretion but not programmed cell death after TCR ligation by superantigen. This supports the hypothesis that T cell cytokine release and apoptosis result from signaling through distinct pathways and implies that the molecular signaling mechanisms regulating apoptosis of mature T cells and negative selection of thymocytes may be similar.
Collapse
Affiliation(s)
- B Adler
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
53
|
Abstract
Studies of the biology of the IL-2 receptor have played a major part in establishing several of the fundamental principles that govern our current understanding of immunology. Chief among these is the contribution made by lymphokines to regulation of the interactions among vast numbers of lymphocytes, comprising a number of functionally distinct lineages. These soluble mediators likely act locally, within the context of the microanatomic organization of the primary and secondary lymphoid organs, where, in combination with signals generated by direct membrane-membrane interactions, a wide spectrum of cell fate decisions is influenced. The properties of IL-2 as a T-cell growth factor spawned the view that IL-2 worked in vivo to promote clonal T-cell expansion during immune responses. Over time, this singular view has suffered from increasing appreciation that the biologic effects of IL-2R signals are much more complex than simply mediating T-cell growth: depending on the set of conditions, IL-2R signals may also promote cell survival, effector function, and apoptosis. These sometimes contradictory effects underscore the fact that a diversity of intracellular signaling pathways are potentially activated by IL-2R. Furthermore, cell fate decisions are based on the integration of multiple signals received by a lymphocyte from the environment; IL-2R signals can thus be regarded as one input to this integration process. In part because IL-2 was first identified as a T-cell growth factor, the major focus of investigation in IL-R2 signaling has been on the mechanism of mitogenic effects in cultured cell lines. Three critical events have been identified in the generation of the IL-2R signal for cell cycle progression, including heterodimerization of the cytoplasmic domains of the IL-2R beta and gamma(c) chains, activation of the tyrosine kinase Jak3, and phosphorylation of tyrosine residues on the IL-2R beta chain. These proximal events led to the creation of an activated receptor complex, to which various cytoplasmic signaling molecules are recruited and become substrates for regulatory enzymes (especially tyrosine kinases) that are associated with the receptor. One intriguing outcome of the IL-2R signaling studies performed in cell lines is the apparent functional redundancy of the A and H regions of IL-2R beta, and their corresponding downstream pathways, with respect to the proliferative response. Why should the receptor complex induce cell proliferation through more than one mechanism or pathway? One possibility is that this redundancy is an unusual property of cultured cell lines and that primary lymphocytes require signals from both the A and the H regions of IL-2R beta for optimal proliferative responses in vivo. An alternative possibility is that the A and H regions of IL-2R beta are only redundant with respect to proliferation and that each region plays a unique and essential role in regulating other aspects of lymphocyte physiology. As examples, the A or H region could prove to be important for regulating the sensitivity of lymphocytes to AICD or for promoting the development of NK cells. These issues may be resolved by reconstituting IL-2R beta-/-mice with A-and H-deleted forms of the receptor chain and analyzing the effect on lymphocyte development and function in vivo. In addition to the redundant nature of the A and H regions, there remains a large number of biochemical activities mediated by the IL-2R for which no clear physiological role has been identified. Therefore, the circumstances are ripe for discovering new connections between molecular signaling events activated by the IL-2R and the regulation of immune physiology. Translating biochemical studies of Il-2R function into an understanding of how these signals regulate the immune system has been facilitated by the identification of natural mutations in IL-2R components in humans with immunodeficiency and by the generation of mice with targeted mutations in these gen
Collapse
Affiliation(s)
- B H Nelson
- Virginia Mason Research Center, Seattle, Washington 98101, USA
| | | |
Collapse
|
54
|
Schmedt C, Saijo K, Niidome T, Kühn R, Aizawa S, Tarakhovsky A. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 1998; 394:901-4. [PMID: 9732874 DOI: 10.1038/29802] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The development and function of alphabetaT lymphocytes depend on signals derived from pre-T and alphabetaT cell receptors (preTCR and alphabetaTCR) (reviewed in refs 1, 2). The engagement of these receptors leads to the activation of Lck and Fyn, which are protein tyrosine kinases (PTKs) of the Src family. It remains unclear to what extent the activation of Src-family PTKs can direct the differentiation steps triggered by preTCR and alphabetaTCR. Here we show that the inactivation of the negative regulator of Src-family PTKs, carboxy-terminal Src kinase (Csk), in immature thymocytes abrogates the requirement for preTCR, alphabetaTCR and major histocompatibility complex (MHC) class II for the development of CD4+ 8+ double-positive and CD4+ single-positive thymocytes as well as peripheral CD4 alphabetaT-lineage cells. These data show that Csk and its substrates are required to establish preTCR/alphabetaTCR-mediated control over the development of alphabetaT cells.
Collapse
Affiliation(s)
- C Schmedt
- Laboratory for Lymphocyte Signalling, University of Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
55
|
Candotti F, O'Shea JJ, Villa A. Severe combined immune deficiencies due to defects of the common gamma chain-JAK3 signaling pathway. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 19:401-15. [PMID: 9618765 DOI: 10.1007/bf00792599] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- F Candotti
- Department of Pediatrics, University of Brescia, Spedali Civili, Italy
| | | | | |
Collapse
|
56
|
Abstract
Cytokines and interferons are molecules that play central roles in the regulation of a wide array of cellular functions in the lympho-hematopoietic system. These factors stimulate proliferation, differentiation, and survival signals, as well as specialized functions in host resistance to pathogens. Although cytokines are known to activate multiple signaling pathways that together mediate these important functions, one of these pathways, the Jak-STAT pathway, is the focus of this chapter. This pathway is triggered by both cytokines and interferons, and it very rapidly allows the transduction of an extracellular signal into the nucleus. The pathway uses a novel mechanism in which cytosolic latent transcription factors, known as signal transducers and activators of transcription (STATs), are tyrosine phosphorylated by Janus family tyrosine kinases (Jaks), allowing STAT protein dimerization and nuclear translocation. STATs then can modulate the expression of target genes. The basic biology of this system, including the range of known Jaks and STATs, is discussed, as are the defects in animals and humans lacking some of these signaling molecules.
Collapse
Affiliation(s)
- W J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA. ;
| | | |
Collapse
|
57
|
Development of Autologous, Oligoclonal, Poorly Functioning T Lymphocytes in a Patient With Autosomal Recessive Severe Combined Immunodeficiency Caused by Defects of the Jak3 Tyrosine Kinase. Blood 1998. [DOI: 10.1182/blood.v91.3.949.949_949_955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defects of the common gamma chain subunit of the cytokine receptors (γc) or of Jak3, a tyrosine kinase required for γc signal transduction, result in T−B+ severe combined immunodeficiency (SCID). However, atypical cases, characterized by progressive development of T lymphocytes, have been also reported. We describe a child with SCID caused by Jak3 gene defects, which strongly but not completely affect Jak3 protein expression and function, who developed a substantial number (>3,000/μL) of autologous CD3+CD4+ T cells. These cells showed a primed/activated phenotype (CD45R0+ Fas+HLA-DR+ CD62Llo), defective secretion of T-helper 1 and T-helper 2 cytokines, reduced proliferation to mitogens, and a high in vitro susceptibility to spontaneous (caused by downregulation of bcl-2 expression) as well as activation-induced cell death. A restricted T-cell receptor repertoire was observed, with oligoclonal expansion within each of the dominant segments. These features resemble those observed in γc-/y and in Jak3−/−mice, in which a population of activated, anergic T cells (predominantly CD4+) also develops with age. These results suggest that residual Jak3 expression and function or other Jak3-independent signals may also permit the generation of CD4+ T cells that undergo in vivo clonal expansion in humans; however, these mechanisms do not allow development of CD8+ T cells, nor do they fully restore the functional properties of CD4+ T lymphocytes.
Collapse
|
58
|
Development of Autologous, Oligoclonal, Poorly Functioning T Lymphocytes in a Patient With Autosomal Recessive Severe Combined Immunodeficiency Caused by Defects of the Jak3 Tyrosine Kinase. Blood 1998. [DOI: 10.1182/blood.v91.3.949] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Defects of the common gamma chain subunit of the cytokine receptors (γc) or of Jak3, a tyrosine kinase required for γc signal transduction, result in T−B+ severe combined immunodeficiency (SCID). However, atypical cases, characterized by progressive development of T lymphocytes, have been also reported. We describe a child with SCID caused by Jak3 gene defects, which strongly but not completely affect Jak3 protein expression and function, who developed a substantial number (>3,000/μL) of autologous CD3+CD4+ T cells. These cells showed a primed/activated phenotype (CD45R0+ Fas+HLA-DR+ CD62Llo), defective secretion of T-helper 1 and T-helper 2 cytokines, reduced proliferation to mitogens, and a high in vitro susceptibility to spontaneous (caused by downregulation of bcl-2 expression) as well as activation-induced cell death. A restricted T-cell receptor repertoire was observed, with oligoclonal expansion within each of the dominant segments. These features resemble those observed in γc-/y and in Jak3−/−mice, in which a population of activated, anergic T cells (predominantly CD4+) also develops with age. These results suggest that residual Jak3 expression and function or other Jak3-independent signals may also permit the generation of CD4+ T cells that undergo in vivo clonal expansion in humans; however, these mechanisms do not allow development of CD8+ T cells, nor do they fully restore the functional properties of CD4+ T lymphocytes.
Collapse
|
59
|
O'Shea JJ, Notarangelo LD, Johnston JA, Candotti F. Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency. J Clin Immunol 1997; 17:431-47. [PMID: 9418183 DOI: 10.1023/a:1027388508570] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are of great importance in the growth and differentiation of hematopoietic and other cells. Moreover, they are also crucial in immunoregulation and in host defense. Although our understanding of the molecular basis of cytokine action is far from complete, recent advances have substantially improved our knowledge of cytokine-dependent signal transduction. The delineation of the structure of cytokine receptors and the signaling pathways they utilize has provided clues as to how the strikingly specific effects of cytokines are achieved. Additionally, the basis of some of the pleiotropic and redundant effects of cytokines has also become clear. The discovery of the Janus family of protein tyrosine kinases (Jaks) and the STATs (signal transducers and activators of transcription) has also provided key insights into the mechanism by which intracellular signals are transduced. The following paradigm has emerged: cytokines induce dimerization of receptor subunits that are constitutively associated with Jaks. This activates the Jaks, which then phosphorylate the receptors. The phosphorylated receptors are bound by SH2-containing proteins, one class of which is the STATs. Activated STATs, then, translocate to the nucleus to effect gene transcription. Though the Jaks do not explain much in terms of specificity in signaling, the function of the STATs does. The discovery of patients with autosomal recessive severe combined immunodeficiency due to mutations of a particular Jak, Jak3, and the phenotype of knockout mice lacking Jak3 and various STATs demonstrate the specific and critical roles of these molecules in the development and function of the immune system.
Collapse
Affiliation(s)
- J J O'Shea
- Lymphocyte Cell Biology Section, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
60
|
Turner M, Mee PJ, Walters AE, Quinn ME, Mellor AL, Zamoyska R, Tybulewicz VL. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 1997; 7:451-60. [PMID: 9354466 DOI: 10.1016/s1074-7613(00)80367-2] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The T cell repertoire is shaped by positive and negative selection of thymocytes that express low levels of T cell receptor (TCR) and both CD4 and CD8. TCR-mediated signals that determine these selection processes are only partly understood. Vav, a GDP-GTP exchange factor for Rho-family proteins, is tyrosine phosphorylated following TCR stimulation, suggesting that it may transduce TCR signals. We now demonstrate that mice lacking Vav are viable and display a profound defect in the positive selection of both class I- and class II-restricted T cells. In contrast, Vav is not essential for negative selection, though in its absence negative selection is much less effective. Vav may influence the efficiency of TCR-induced selection events by regulating the intracellular calcium flux of thymocytes.
Collapse
Affiliation(s)
- M Turner
- National Institute for Medical Research, The Ridgeway, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Mutations in a number of lymphoid signaling molecules lead to immunodeficiencies in mice and humans. Among these, one very pleiotropic syndrome results from deficiencies in an array of cytokine signaling pathways utilizing a cytokine receptor common gamma chain, gammac, and the tyrosine kinase Jak3. Recent advances in our understanding of the role of gammac and Jak3 in lymphocyte development and function highlight the importance of cytokine receptor signaling pathways in regulating lymphoid homeostasis and responsiveness.
Collapse
Affiliation(s)
- D C Thomis
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
62
|
Affiliation(s)
- J J O'Shea
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-1820, USA
| |
Collapse
|