51
|
Lesellier S, Boschiroli ML, Barrat J, Wanke C, Salguero FJ, Garcia-Jimenez WL, Nunez A, Godinho A, Spiropoulos J, Palmer S, Dave D, Anderson P, Boucher JM, de Cruz K, Henault S, Michelet L, Gowtage S, Williams GA, Nadian AK, Monchâtre-Leroy E, Boué F, Chambers MA, Richomme C. Detection of live M. bovis BCG in tissues and IFN-γ responses in European badgers (Meles meles) vaccinated by oropharyngeal instillation or directly in the ileum. BMC Vet Res 2019; 15:445. [PMID: 31810466 PMCID: PMC6898942 DOI: 10.1186/s12917-019-2166-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background Oral vaccination with Mycobacterium bovis Bacille of Calmette and Guerin (BCG) has provided protection against M. bovis to badgers both experimentally and in the field. There is also evidence suggesting that the persistence of live BCG within the host is important for maintaining protection against TB. Here we investigated the capacity of badger inductive mucosal sites to absorb and maintain live BCG. The targeted mucosae were the oropharyngeal cavity (tonsils and sublingual area) and the small intestine (ileum). Results We showed that significant quantities of live BCG persisted within badger in tissues of vaccinated badgers for at least 8 weeks following oral vaccination with only very mild pathological features and induced the circulation of IFNγ-producing mononuclear cells. The uptake of live BCG by tonsils and drainage to retro-pharyngeal lymph nodes was repeatable in the animal group vaccinated by oropharyngeal instillation whereas those vaccinated directly in the ileum displayed a lower frequency of BCG detection in the enteric wall or draining mesenteric lymph nodes. No faecal excretion of live BCG was observed, including when BCG was delivered directly in the ileum. Conclusions The apparent local loss of BCG viability suggests an unfavorable gastro-enteric environment for BCG in badgers, which should be taken in consideration when developing an oral vaccine for use in this species.
Collapse
Affiliation(s)
- Sandrine Lesellier
- Animal and Plant Health Agency, New Haw, UK. .,Anses, Nancy laboratory for rabies and wildlife, Malzéville, France. .,Public Health England, Porton Down, UK.
| | - Maria-Laura Boschiroli
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, Anses, Maisons-Alfort, France
| | - Jacques Barrat
- Anses, Nancy laboratory for rabies and wildlife, Malzéville, France
| | - Christoph Wanke
- Medimetrics Personalized Drug Delivery B.V., High Tech Campus 10, 5656 AE, Eindhoven, The Netherlands
| | - Francisco J Salguero
- Animal and Plant Health Agency, New Haw, UK.,Public Health England, Porton Down, UK
| | | | - Alex Nunez
- Animal and Plant Health Agency, New Haw, UK
| | | | | | | | | | | | | | - Krystel de Cruz
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, Anses, Maisons-Alfort, France
| | - Sylvie Henault
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, Anses, Maisons-Alfort, France
| | - Lorraine Michelet
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, Anses, Maisons-Alfort, France
| | | | | | | | | | - Frank Boué
- Anses, Nancy laboratory for rabies and wildlife, Malzéville, France
| | - Mark A Chambers
- Animal and Plant Health Agency, New Haw, UK.,University of Surrey, Guildford, UK
| | - Céline Richomme
- Anses, Nancy laboratory for rabies and wildlife, Malzéville, France
| |
Collapse
|
52
|
Modification of Immunological Parameters, Oxidative Stress Markers, Mood Symptoms, and Well-Being Status in CFS Patients after Probiotic Intake: Observations from a Pilot Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1684198. [PMID: 31871540 PMCID: PMC6906814 DOI: 10.1155/2019/1684198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
The present study discusses about the effects of a combination of probiotics able to stimulate the immune system of patients affected by Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). To this purpose, patients diagnosed according to Fukuda's criteria and treated with probiotics were analyzed by means of clinical and laboratory evaluations, before and after probiotic administrations. Probiotics were selected considering the possible pathogenic mechanisms of ME/CFS syndrome, which has been associated with an impaired immune response, dysregulation of Th1/Th2 ratio, and high oxidative stress with exhaustion of antioxidant reserve due to severe mitochondrial dysfunction. Immune and oxidative dysfunction could be related with the gastrointestinal (GI) chronic low-grade inflammation in the lamina propria and intestinal mucosal surface associated with dysbiosis, leaky gut, bacterial translocation, and immune and oxidative dysfunction. Literature data demonstrate that bacterial species are able to modulate the functions of the immune and oxidative systems and that the administration of some probiotics can improve mucosal barrier function, modulating the release of proinflammatory cytokines, in CFS/ME patients. This study represents a preliminary investigation to verifying the safety and efficacy of a certain combination of probiotics in CFS/ME patients. The results suggest that probiotics can modify the well-being status as well as inflammatory and oxidative indexes in CFS/ME patients. No adverse effects were observed except for one patient, which displayed a flare-up of symptoms, although all inflammatory parameters (i.e., cytokines, fecal calprotectin, ESR, and immunoglobulins) were reduced after probiotic intake. The reactivation of fatigue symptoms in this patient, whose clinical history reported the onset of CFS/ME following mononucleosis, could be related to an abnormal stimulation of the immune system as suggested by a recent study describing an exaggerated immune activation associated with chronic fatigue.
Collapse
|
53
|
Wang Z, Hua W, Li C, Chang H, Liu R, Ni Y, Sun H, Li Y, Wang X, Hou M, Liu Y, Xu Z, Ji M. Protective Role of Fecal Microbiota Transplantation on Colitis and Colitis-Associated Colon Cancer in Mice Is Associated With Treg Cells. Front Microbiol 2019; 10:2498. [PMID: 31798539 PMCID: PMC6861520 DOI: 10.3389/fmicb.2019.02498] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Colitis-associated cancer (CAC) is the most serious outcome of inflammatory bowel disease, which has an alteration of commensal intestinal microbiota. However, the role of intestinal microbiota on CAC progression is not well-understood. Fecal microbiota transplantation (FMT) was used for treating murine azoxymethane–dextran sodium sulfate (AOM-DSS) model of CAC. Composition of gut microbiota during FMT treatment was analyzed. RT-PCR and ELISA were used to detect the inflammatory factors, and immunofluorescence was applied to examine the phospho-nuclear factor (NF)-κB p65/p100 and Ki67-positive cells in the colons. In addition, flow cytometry was performed to analyze the immune cell after FMT treatment. Rehabilitation of the intestinal microbiota by FMT restored both the ratio and diversity of microbiota during CAC progression. Remarkably, a favorable morphometric outcome characterized by decreased tumor load and size was observed in CAC mice with FMT treatment. In addition, an anti-inflammatory function of FMT was demonstrated by decreasing pro-inflammatory factors but increasing anti-inflammatory factors through inhibiting canonical NF-κB activity and cellular proliferation in colons of CAC mice. The expression of CD4+CD25+Foxp3+ regulatory T cells (Tregs) was significantly increased after FMT treatment in CAC mice, but not T helper (Th)1/2/17 cells. Our study aids in the understanding of CAC pathogenesis and reveals a previously unrecognized role for FMT in the treatment of CAC through restoring the intestinal microbiota and inducing regulatory T cells.
Collapse
Affiliation(s)
- Zitao Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Wenjie Hua
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Chen Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hao Chang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Ran Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yangyue Ni
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hongzhi Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yangyang Li
- Department of Endocrinology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Endocrinology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.,Department of Endocrinology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
54
|
Abstract
Many options now exist for constructing oral vaccines which, in experimental systems, have shown themselves to be able to generate highly effective immunity against infectious diseases. Their suitability for implementation in clinical practice, however, for prevention of outbreaks, particularly in low- and middle-income countries (LMIC), is not always guaranteed, because of factors such as cost, logistics and cultural and environmental conditions. This brief overview provides a summary of the various approaches which can be adopted, and evaluates them from a pharmaceutical point, taking into account potential regulatory issues, expense, manufacturing complexity, etc., all of which can determine whether a vaccine approach will be successful in the late stages of development. Attention is also drawn to problems arising from inadequate diet, which impacts upon success in stimulating effective immunity, and identifies the use of lipid-based carriers as a way to counteract the problem of nutritional deficiencies in vaccination campaigns.
Collapse
Affiliation(s)
- R. R. C. New
- Middlesex UniversityHendon, LondonUK
- Vaxcine (UK) Limited, London Bioscience Innovation CentreLondonUK
| |
Collapse
|
55
|
Collins FL, Rios-Arce ND, Schepper JD, Jones AD, Schaefer L, Britton RA, McCabe LR, Parameswaran N. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci Rep 2019; 9:14708. [PMID: 31605025 PMCID: PMC6789011 DOI: 10.1038/s41598-019-51293-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
Oral treatment with probiotic bacteria has been shown to prevent bone loss in multiple models of osteoporosis. In previous studies we demonstrated that oral administration of Lactobacillus reuteri in healthy male mice increases bone density. The host and bacterial mechanisms of these effects however are not well understood. The objective of this study was to understand the role of lymphocytes in mediating the beneficial effects of L. reuteri on bone health in male mice. We administered L. reuteri in drinking water for 4 weeks to wild type or Rag knockout (lack mature T and B lymphocytes) male mice. While L. reuteri treatment increased bone density in wild type, no significant increases were seen in Rag knockout mice, suggesting that lymphocytes are critical for mediating the beneficial effects of L. reuteri on bone density. To understand the effect of L. reuteri on lymphocytes in the intestinal tissues, we isolated mesenteric lymph node (MLN) from naïve wild type mice. In ex vivo studies using whole mesenteric lymph node (MLN) as well as CD3+ T-cells, we demonstrate that live L. reuteri and its secreted factors have concentration-dependent effects on the expression of cytokines, including anti-inflammatory cytokine IL-10. Fractionation studies identified that the active component of L. reuteri is likely water soluble and small in size (<3 kDa) and its effects on lymphocytes are negatively regulated by a RIP2 inhibitor, suggesting a role for NOD signaling. Finally, we show that T-cells from MLNs treated with L. reuteri supernatants, secrete factors that enhance osterix (transcription factor involved in osteoblast differentiation) expression in MC3T3-E1 osteoblasts. Together, these data suggest that L. reuteri secreted factors regulate T-lymphocytes which play an important role in mediating the beneficial effects of L. reuteri on bone density.
Collapse
Affiliation(s)
- Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, USA
| | - Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, USA
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, USA
| | | | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
- Department of Chemistry, Michigan State University, East Lansing, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, USA
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, USA.
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, USA.
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
56
|
Intragastric delivery of recombinant Lactococcus lactis displaying ectodomain of influenza matrix protein 2 (M2e) and neuraminidase (NA) induced focused mucosal and systemic immune responses in chickens. Mol Immunol 2019; 114:497-512. [PMID: 31518854 DOI: 10.1016/j.molimm.2019.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Compounding with the problem of frequent antigenic shift and occasional drift of the segmented genome of Avian Influenza Virus (AIV), vaccines based on major surface glycoproteins such as haemagglutinin (HA) to counter heterosubtypic AIV infection in chickens remain unsuccessful. In contrast, neuraminidase (NA), the second most abundant surface glycoprotein present in viral capsid is less mutable and, in some instances, successful in eliciting inter-species cross-reactive antibody responses. However, without selective activation of B-cells and T-cells, the ability of NA to induce strong cell mediated immune responses is limited, thus NA based vaccines cannot singularly address the risk of virus escape from host defence. To this end, the highly conserved ectodomain of influenza matrix protein-2 (M2e) has emerged as an attractive cross-protective vaccine target. The present study describes the potential of recombinant Lactococcus lactis (rL. lactis) in expressing functional influenza NA or M2e proteins and conferring effective mucosal and systemic immune responses in the intestine as well as in the upper respiratory airways (trachea) of chickens. In addition, lavages collected from trachea and intestine of birds administered with rL. lactis expressing influenza NA or M2e protein were found to protect MDCK cells against avian influenza type A/PR/8/34 (H1N1) virus challenge. Although minor, the differences in the expression of pro-inflammatory cytokines gene transcripts targeted in this study among the birds administered with either empty or rL. lactis could be attributed to the activation of innate response by L. lactis.
Collapse
|
57
|
Sarfarazi A, Lee G, Mirjalili SA, Phillips ARJ, Windsor JA, Trevaskis NL. Therapeutic delivery to the peritoneal lymphatics: Current understanding, potential treatment benefits and future prospects. Int J Pharm 2019; 567:118456. [PMID: 31238102 DOI: 10.1016/j.ijpharm.2019.118456] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
The interest in approaches to deliver therapeutics to the lymphatic system has increased in recent years as the lymphatics have been discovered to play an important role in a range of disease states such as cancer metastases, inflammatory and metabolic disease, and acute and critical illness. Therapeutic delivery to lymph has the potential to enhance treatment of these conditions. Currently much of the existing data explores therapeutic delivery to the lymphatic vessels and nodes that drain peripheral tissues and the intestine. Relatively little focus has been given to understanding the anatomy, function and therapeutic delivery to the peritoneal lymphatics. Gaining a better understanding of peritoneal lymphatic structure and function would contribute to the understanding of disease processes involving these lymphatics and facilitate the development of delivery systems to target therapeutics to the peritoneal lymphatics. This review explores the basic anatomy and ultrastructure of the peritoneal lymphatics system, the lymphatic drainage pathways from the peritoneum, and therapeutic and delivery system characteristics (size, lipophilicity and surface properties) that favour lymph uptake and retention after intraperitoneal delivery. Finally, techniques that can be used to quantify uptake into peritoneal lymph are outlined, providing a platform for future studies.
Collapse
Affiliation(s)
- Ali Sarfarazi
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Given Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - S Ali Mirjalili
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand; HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
58
|
Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. NATURE REVIEWS. MATERIALS 2019; 4:415-428. [PMID: 32523780 PMCID: PMC7286627 DOI: 10.1038/s41578-019-0110-7] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A significant fraction of the total immune cells in the body are located in several hundred lymph nodes, in which lymphocyte accumulation, activation and proliferation are organized. Therefore, targeting lymph nodes provides the possibility to directly deliver drugs to lymphocytes and lymph node-resident cells and thus to modify the adaptive immune response. However, owing to the structure and anatomy of lymph nodes, as well as the distinct localization and migration of the different cell types within the lymph node, it is difficult to access specific cell populations by delivering free drugs. Materials can be used as instructive delivery vehicles to achieve accumulation of drugs in the lymph nodes and to target specific lymph node-resident cell subtypes. In this Review, we describe the compartmental architecture of lymph nodes and the cell and fluid transport mechanisms to and from lymph nodes. We discuss the different entry routes into lymph nodes and how they can be explored for drug delivery, including the lymphatics, blood capillaries, high endothelial venules, cell-mediated pathways, homing of circulating lymphocytes and direct lymph node injection. We examine different nanoscale and microscale materials for the targeting of specific immune cells and highlight their potential for the treatment of immune dysfunction and for cancer immunotherapy. Finally, we give an outlook to the field, exploring how lymph node targeting can be improved by the use of materials.
Collapse
Affiliation(s)
- Alex Schudel
- School of Materials Science and Engineering, Georgia institute of Technology, Atlanta, GA, USA
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Alex Schudel, David M. Francis
| | - David M Francis
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Alex Schudel, David M. Francis
| | - Susan N Thomas
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia institute of Technology and Emory University, Atlanta, GA, USA
- Winship Cancer institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
59
|
Immunogenicity and protective efficacy of mucosal delivery of recombinant hcp of Campylobacter jejuni Type VI secretion system (T6SS) in chickens. Mol Immunol 2019; 111:182-197. [PMID: 31078054 DOI: 10.1016/j.molimm.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
The type VI secretion system (T6SS) has recently emerged as a new pattern of protein secretions in Campylobacter jejuni (C. jejuni). Within the T6SS cluster, hemolysin co-regulated protein (hcp) is considered as a hallmark of functional T6SS and holds key role in bacterial virulence. As poultry is the primary reservoir of C. jejuni and the major sources for human infection, we evaluated the capacity of recombinant hcp (rhcp) immunization in blocking C. jejuni colonization in chickens with an aim to control bacterial transmission to humans via poultry food chain. Considering the mucosal route is the primary portal for C. jejuni entry and gut mucosa offers the apposite site for C. jejuni adherence, we investigated the immune-protective potential of intra-gastric administration of rhcp using chitosan-based nanoparticles. To achieve this goal, full length coding sequence of hcp gene from C. jejuni was cloned and expressed in E. coli. Purified rhcp was entrapped in chitosan-Sodium tripolyphosphate nanoparticles (CS-TPP NPs) and orally gavaged in chickens. Our results suggest that intra-gastric immunization of CS-TPP-rhcp induces consistent and steady increase in intestinal (sIgA) and systemic antibody (IgY) response against rhcp with significant reduction in cecal load of C. jejuni. The protection afforded by rhcp associated cellular responses with Th1 and Th17 profile in terms of increased expression of NFkB, IL-1β, IL-8, IL-6, IFN-γ and IL-17 A genes. Though systemic immunization of rhcp with IFA resulting in a robust systemic (IgY) and local (sIgA) antibody response, mucosal administration of rhcp loaded CS-TPP NPs was found to be superior in terms of bacterial clearance. Altogether, present study suggests that chitosan based intra-gastric delivery of rhcp have several advantages over the injectable composition and could be a promising vaccine approach to effectively control C. jejuni colonization in chickens.
Collapse
|
60
|
Zwirzitz B, Pinior B, Metzler-Zebeli B, Handler M, Gense K, Knecht C, Ladinig A, Dzieciol M, Wetzels SU, Wagner M, Schmitz-Esser S, Mann E. Microbiota of the Gut-Lymph Node Axis: Depletion of Mucosa-Associated Segmented Filamentous Bacteria and Enrichment of Methanobrevibacter by Colistin Sulfate and Linco-Spectin in Pigs. Front Microbiol 2019; 10:599. [PMID: 31031713 PMCID: PMC6470194 DOI: 10.3389/fmicb.2019.00599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Microorganisms are translocated from the gut to lymphatic tissues via immune cells, thereby challenging and training the mammalian immune system. Antibiotics alter the gut microbiome and consecutively might also affect the corresponding translocation processes, resulting in an imbalanced state between the intestinal microbiota and the host. Hence, understanding the variant effects of antibiotics on the microbiome of gut-associated tissues is of vital importance for maintaining metabolic homeostasis and animal health. In the present study, we analyzed the microbiome of (i) pig feces, ileum, and ileocecal lymph nodes under the influence of antibiotics (Linco-Spectin and Colistin sulfate) using 16S rRNA gene sequencing for high-resolution community profiling and (ii) ileocecal lymph nodes in more detail with two additional methodological approaches, i.e., cultivation of ileocecal lymph node samples and (iii) metatranscriptome sequencing of a single lymph node sample. Supplementation of medicated feed showed a local effect on feces and ileal mucosa-associated microbiomes. Pigs that received antibiotics harbored significantly reduced amounts of segmented filamentous bacteria (SFB) along the ileal mucosa (p = 0.048; 199.17-fold change) and increased amounts of Methanobrevibacter, a methanogenic Euryarchaeote in fecal samples (p = 0.005; 20.17-fold change) compared to the control group. Analysis of the porcine ileocecal lymph node microbiome exposed large differences between the viable and the dead fraction of microorganisms and the microbiome was altered to a lesser extent by antibiotics compared with feces and ileum. The core microbiome of lymph nodes was constituted mainly of Proteobacteria. RNA-sequencing of a single lymph node sample unveiled transcripts responsible for amino acid and carbohydrate metabolism as well as protein turnover, DNA replication and signal transduction. The study presented here is the first comparative study of microbial communities in feces, ileum, and its associated ileocecal lymph nodes. In each analyzed site, we identified specific phylotypes susceptible to antibiotic treatment that can have profound impacts on the host physiological and immunological state, or even on global biogeochemical cycles. Our results indicate that pathogenic bacteria, e.g., enteropathogenic Escherichia coli, could escape antibiotic treatment by translocating to lymph nodes. In general ileocecal lymph nodes harbor a more diverse and active community of microorganisms than previously assumed.
Collapse
Affiliation(s)
- Benjamin Zwirzitz
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Beate Pinior
- Institute for Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Metzler-Zebeli
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria.,Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Monika Handler
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Kristina Gense
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine, Vienna, Austria
| | - Monika Dzieciol
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | - Stefanie U Wetzels
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | - Martin Wagner
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| | | | - Evelyne Mann
- Institute of Milk Hygiene, University of Veterinary Medicine, Vienna, Austria.,Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
| |
Collapse
|
61
|
Ramendra R, Isnard S, Mehraj V, Chen J, Zhang Y, Finkelman M, Routy JP. Circulating LPS and (1→3)-β-D-Glucan: A Folie à Deux Contributing to HIV-Associated Immune Activation. Front Immunol 2019; 10:465. [PMID: 30967860 PMCID: PMC6430738 DOI: 10.3389/fimmu.2019.00465] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the driving force behind the occurrence of AIDS and non-AIDS events, and is only partially reduced by antiretroviral therapy (ART). Soon after HIV infection, intestinal CD4+ T cells are depleted leading to epithelial gut damage and subsequent translocation of microbes and/or their products into systemic circulation. Bacteria and fungi are the two most abundant populations of the gut microbiome. Circulating lipopolysaccharide (LPS) and (1→3)-β-D-Glucan (βDG), major components of bacterial and fungal cell walls respectively, are measured as markers of microbial translocation in the context of compromised gut barriers. While LPS is a well-known inducer of innate immune activation, βDG is emerging as a significant source of monocyte and NK cell activation that contributes to immune dysfunction. Herein, we critically evaluated recent literature to untangle the respective roles of LPS and βDG in HIV-associated immune dysfunction. Furthermore, we appraised the relevance of LPS and βDG as biomarkers of disease progression and immune activation on ART. Understanding the consequences of elevated LPS and βDG on immune activation will provide insight into novel therapeutic strategies against the occurrence of AIDS and non-AIDS events.
Collapse
Affiliation(s)
- Rayoun Ramendra
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Vikram Mehraj
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Jun Chen
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Yonglong Zhang
- Associates of Cape Cod Inc., Falmouth, MA, United States
| | | | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
62
|
Sakai Y, Sato M, Funami Y, Ishiyama A, Hokari R, Iwatsuki M, Nagai T, Otoguro K, Yamada H, Ōmura S, Kiyohara H. Peyer's patch-immunomodulating glucans from sugar cane enhance protective immunity through stimulation of the hemopoietic system. Int J Biol Macromol 2019; 124:505-514. [DOI: 10.1016/j.ijbiomac.2018.11.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/02/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
|
63
|
Siddiqui S, Perez S, Gao Y, Doyle-Meyers L, Foley BT, Li Q, Ling B. Persistent Viral Reservoirs in Lymphoid Tissues in SIV-Infected Rhesus Macaques of Chinese-Origin on Suppressive Antiretroviral Therapy. Viruses 2019; 11:v11020105. [PMID: 30691203 PMCID: PMC6410399 DOI: 10.3390/v11020105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Understanding HIV latent reservoirs in tissues is essential for the development of new strategies targeting these sites for eradication. Here, we assessed the size of latent reservoirs and the source of residual viruses in multiple lymphoid tissues of SIV-infected and fully suppressed rhesus macaques of Chinese-origin (cRMs). Eight cRMs were infected with SIVmac251 and treated with tenofovir and emtricitabine daily for 24 weeks initiated 4 weeks post-infection. Four of the eight animals reached sustained full viral suppression with undetectable viremia. The levels of cell-associated SIV DNA varied in peripheral blood mononuclear cells (PBMCs) and multiple lymphoid tissues, but with higher levels in the mesenteric lymph nodes (MesLNs). The levels of cell-associated SIV RNA also varied in different tissues. The higher frequency of viral RNA detection in the MesLNs was also observed by in situ hybridization. Consistently, the infection unit per million cells (IUPM) in the MesLNs was higher than in PBMCs and other tested lymphoid tissues by quantitative viral outgrowth assay (QVOA). Furthermore, env gp120 from tissue SIV RNA was amplified by single genome amplification. Phylogenetic analysis revealed diverse variants from tissues parallel to the viral inoculum in all viral suppressed animals. These results demonstrate that the latency and viral reservoirs in the lymphoid tissues still exist in aviremic macaques under full suppressive therapy. Moreover, the size of viral latent reservoirs differs in various lymphoid tissues with a relatively larger size in the MesLNs.
Collapse
Affiliation(s)
- Summer Siddiqui
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA.
| | - Stefanie Perez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA.
| | - Yong Gao
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Lara Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA.
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Brian T Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Binhua Ling
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA.
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA.
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
64
|
Dawod B, Marshall JS. Cytokines and Soluble Receptors in Breast Milk as Enhancers of Oral Tolerance Development. Front Immunol 2019; 10:16. [PMID: 30723472 PMCID: PMC6349727 DOI: 10.3389/fimmu.2019.00016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
The postpartum period is an important window during which environmental factors can shape the life-long health of the infant. This time period often coincides with substantial milk consumption either in the form of breast milk or from cow's milk sources, such as infant formulas. Although breast milk is the most beneficial source of nutrients for infants during the first 6 months after birth, its role in regulating food allergy development, through regulation of oral tolerance, is still controversial. Breast milk contains several factors that can impact mucosal immune function, including immune cells, antibodies, microbiota, oligosaccharides, cytokines, and soluble receptors. However, there is considerable variation in the assessed levels of cytokines and soluble receptors between studies and across the lactation period. Most of these cytokines and soluble receptors are absent, or only found in limited quantities, in commercial baby formulas. Differences in content of these pluripotent factors, which impact on both the mother and the neonate, could contribute to the controversy surrounding the role of breast milk regulating oral tolerance. This review highlights current knowledge about the importance of cytokines and soluble receptors in breast milk on the development of oral tolerance and tolerance-relateddisorders. Understanding the mechanisms by which such milk components might promote oral tolerance could aid in the development of improved strategies for allergy prevention.
Collapse
Affiliation(s)
- Bassel Dawod
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
65
|
Mucosal T follicular helper cells in SIV-infected rhesus macaques: contributing role of IL-27. Mucosal Immunol 2019; 12:1038-1054. [PMID: 31114010 PMCID: PMC7746526 DOI: 10.1038/s41385-019-0174-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 02/04/2023]
Abstract
Mesenteric lymph nodes (MLNs), that drain the large and small intestine, are critical sites for the induction of oral tolerance. Although depletion of CD4 T cells in the intestinal lamina propria is a hallmark of HIV infection, CD4 T cell dynamics in MLNs is less known due to the lack of accessibility to these LNs. We demonstrate the early loss of memory CD4 T cells, including T follicular helper cells (Tfh) and a remodeling of MLN architecture in SIV-infected rhesus macaques (RMs). Along with the loss of Tfh cells, we observe the loss of memory B cells and of germinal center B cells. Tfh cells display a Th1 profile with increased levels of the transcription factors that negatively impact on Tfh differentiation and of Stat5 phosphorylation. MLNs of SIV-infected RMs display lower mRNA transcripts encoding for IL-12, IL-23, and IL-35, whereas those coding for IL-27 are not impaired in MLNs. In vitro, IL-27 negatively impacts on Tfh cells and recapitulates the profile observed in SIV-infected RMs. Therefore, early defects of memory CD4 T cells, as well of Tfh cells in MLNs, which play a central role in regulating the mucosal immune response, may have major implications for Aids.
Collapse
|
66
|
Santiago A, Sanchez E, Clark A, Pozuelo M, Calvo M, Yañez F, Sarrabayrouse G, Perea L, Vidal S, Gallardo A, Guarner C, Soriano G, Manichanh C. Sequential Changes in the Mesenteric Lymph Node Microbiome and Immune Response during Cirrhosis Induction in Rats. mSystems 2019; 4:e00278-18. [PMID: 30801032 PMCID: PMC6381228 DOI: 10.1128/msystems.00278-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Whether the interaction between the gut microbiota and the immune response influences the evolution of cirrhosis is poorly understood. We aimed to investigate modifications of the microbiome and the immune response during the progression of cirrhosis. Rats were treated with carbon tetrachloride (CCl4) to induce cirrhosis. We then assessed microbiome load and composition in stool, ileocecal contents (ICCs), mesenteric lymph nodes (MLNs), blood, and ascitic fluids (AFs) at 6, 8, and 10 weeks or ascites production and measured cytokine production in MLNs and blood. The microbiome of MLN, blood, and AF showed a distinct composition compared to that of stool and ICCs. Betaproteobacteria (Sutterella) were found associated with the appearance of a decompensated state of cirrhosis. Microbial load increased and showed a positive correlation with the relative abundance of pathobionts in the MLN of decompensated rats. Among several genera, Escherichia and "Candidatus Arthromitus" positively correlated with elevated levels of systemic proinflammatory cytokines. "Candidatus Arthromitus," a segmented filamentous bacteria, was detected in ICC, MLN, and AF samples, suggesting a possible translocation from the gut to the AF through the lymphatic system, whereas Escherichia was detected in ICC, MLN, AF, and blood, suggesting a possible translocation from the gut to the AF through the bloodstream. In the present study, we demonstrate that microbiome changes in distinct intestinal sites are associated with microbial shifts in the MLNs as well as an increase in cytokine production, providing further evidence of the role the gut-liver-immunity axis plays in the progression of cirrhosis. IMPORTANCE Cirrhosis severity in patients was previously shown to be associated with progressive changes in the fecal microbiome in a longitudinal setting. Recent evidence shows that bacterial translocation from the gut to the extraintestinal sites could play a major role in poor disease outcome and patient survival. However, the underlying mechanisms involving the microbiota in the disease progression are not well understood. Here, using an animal model of cirrhosis in a longitudinal and multibody sites setting, we showed the presence of a distinct composition of the microbiome in mesenteric lymph nodes, blood, and ascitic fluid compared to that in feces and ileocecal content, suggesting compartmentalization of the gut microbiome. We also demonstrate that microbiome changes in intestinal sites are associated with shifts in specific microbial groups in the mesenteric lymph nodes as well as an increase in systemic cytokine production, linking inflammation to decompensated cirrhosis in the gut-liver-immunity axis.
Collapse
Affiliation(s)
- Alba Santiago
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Elisabet Sanchez
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Allison Clark
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Marta Pozuelo
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Calvo
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Francisca Yañez
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Lidia Perea
- Department of Immunology, IIB-Sant Pau Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Vidal
- Department of Immunology, IIB-Sant Pau Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Guarner
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - German Soriano
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Chaysavanh Manichanh
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
67
|
Everds NE, Reindel J, Werner J, Craven WA. Variability of Spleen and Mesenteric Lymph Node in Control Cynomolgus Monkeys ( Macaca fascicularis) from Nonclinical Safety Studies: A Retrospective Assessment. Toxicol Pathol 2018; 47:53-72. [PMID: 30563426 DOI: 10.1177/0192623318809073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We assessed the variability of spleen and mesenteric lymph node (MLN) microscopic observations and the correlations of these observations with other study data from 478 control cynomolgus monkeys from 53 routine nonclinical safety studies. Spleen weight parameters (absolute and relative to body or brain weights) were highly variable both within a control group on an individual study (up to 5.11-fold) and among animals with the same light microscopic observation. Grades for microscopic observations were also highly variable. The most frequent microscopic observations for spleen were changes in the size and number of germinal centers (58%), acidophilic (hyaline) material in lymphoid follicles (52%), and compound lymphoid follicles (20%). The most frequent microscopic observations in the MLN were eosinophil infiltrates (90%), changes in size and number of germinal centers (42%), and brown pigment (21%). The only meaningful relationships ( r2 > 0.3) were positive correlations between reticuloendothelial hyperplasia and malarial pigment in the spleen and between each of these observations and spleen weight parameters. We conclude that determination of test article-related effects on the immune system in routine monkey toxicology studies requires careful consideration and a weight-of-evidence approach due to the low numbers of animals/group, the inherent variability in spleen and MLN parameters, and the infrequent correlation among immune system-related end points.
Collapse
Affiliation(s)
- Nancy E Everds
- 1 Amgen Inc., South San Francisco, California, USA.,2 Seattle Genetics, Bothell, Washington, USA
| | - James Reindel
- 3 Amgen, Inc., Seattle, Washington, USA.,4 MPI Research, Mattawan, Michigan, USA
| | | | - W A Craven
- 1 Amgen Inc., South San Francisco, California, USA
| |
Collapse
|
68
|
Bouziat R, Biering SB, Kouame E, Sangani KA, Kang S, Ernest JD, Varma M, Brown JJ, Urbanek K, Dermody TS, Ng A, Hinterleitner R, Hwang S, Jabri B. Murine Norovirus Infection Induces T H1 Inflammatory Responses to Dietary Antigens. Cell Host Microbe 2018; 24:677-688.e5. [PMID: 30392830 PMCID: PMC6326098 DOI: 10.1016/j.chom.2018.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Intestinal reovirus infection can trigger T helper 1 (TH1) immunity to dietary antigen, raising the question of whether other viruses can have a similar impact. Here we show that the acute CW3 strain of murine norovirus, but not the persistent CR6 strain, induces TH1 immunity to dietary antigen. This property of CW3 is dependent on its major capsid protein, a virulence determinant. Transcriptional profiling of mesenteric lymph nodes following infection reveals an immunopathological signature that does not segregate with protective immunity but with loss of oral tolerance, in which interferon regulatory factor 1 is critical. These data show that viral capacity to trigger specific inflammatory pathways at sites where T cell responses to dietary antigens take place interferes with the development of tolerance to an oral antigen. Collectively, these data provide a foundation for the development of therapeutic strategies to prevent TH1-mediated complex immune disorders triggered by viral infections.
Collapse
Affiliation(s)
- Romain Bouziat
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Scott B Biering
- Committee on Microbiology, University of Chicago, Chicago, IL, USA
| | - Elaine Kouame
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Kishan A Sangani
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Soowon Kang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jordan D Ernest
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Mukund Varma
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Judy J Brown
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Urbanek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aylwin Ng
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Reinhard Hinterleitner
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Seungmin Hwang
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Committee on Microbiology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA.
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
69
|
Kulas J, Mirkov I, Tucovic D, Zolotarevski L, Glamoclija J, Veljovic K, Tolinacki M, Golic N, Kataranovski M. Pulmonary Aspergillus fumigatus infection in rats affects gastrointestinal homeostasis. Immunobiology 2018; 224:116-123. [PMID: 30348457 DOI: 10.1016/j.imbio.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Microbiota inhabiting mucosal tissues is involved in maintenance of their immune homeostasis. Growing body of evidence indicate that dysbiosis in gut influence immune responses at distal sites including lungs. There are also reports concerning gut involvement with pulmonary injury/inflammation in settings of respiratory viral and bacterial infections. The impact of infections with other microorganisms on gut homeostasis is not explored. In this study, the rat model of sublethal pulmonary infection with Aspergillus fumigatus was used to investigate the effect of fungal respiratory infection on gut immune-mediated homeostasis. Signs of intestinal damage, intestinal and gut-draining lymphoid tissue cytokine responses and gut bacterial microbiota diversity were examined. Intestinal injury, inflammatory cell infiltration, as well as increased levels of intestinal interferon-γ (IFN-γ) and interleukin-17 (IL-17) (as opposed to unchanged levels of anti-inflammatory cytokine IL-10) during the two-week period depict intestinal inflammation in rats with pulmonary A. fumigatus infection. It could not be ascribed to the fungus as it was not detected in the intestine of infected rats. Increased production of pro-inflammatory cytokines by major gut-draining mesenteric lymph nodes point to these lymphoid organs as places of generation of cytokine-producing cells. No changes in spleen or systemic cytokine responses was observed, showing lack of the effects of pulmonary A. fumigatus infection outside mucosal immune system. Drop of intestinal bacterial microbiota diversity (disappearance of several bacterial bands) was noted early in infection with normalization starting from day seven. From day three, appearance of new bacterial bands (unique to infected individuals, not present in controls) was seen, and some of them are pathogens. Alterations in intestinal bacterial community might have affected intestinal immune tolerance contributing to inflammation. Disruption of gut homeostasis during pulmonary infection might render gastrointestinal tract more susceptible to variety of physiological and pathological stimuli. Data which showed for the first time gut involvement with pulmonary infection with A. fumigatus provide the baseline for future studies of the impact of fungal lung infections to gut homeostasis, particularly in individuals susceptible to these infections.
Collapse
Affiliation(s)
- Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Lidija Zolotarevski
- Medical College of Applied Sciences, Cara Dusana 254, 11080, Belgrade, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Katarina Veljovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Maja Tolinacki
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Nataša Golic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
70
|
Jia L, Lu J, Zhou Y, Tao Y, Xu H, Zheng W, Zhao J, Liang G, Xu L. Tolerogenic dendritic cells induced the enrichment of CD4 +Foxp3 + regulatory T cells via TGF-β in mesenteric lymph nodes of murine LPS-induced tolerance model. Clin Immunol 2018; 197:118-129. [PMID: 30248398 DOI: 10.1016/j.clim.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/09/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Endotoxin tolerance is an important state for the prevention of lethal infection and inflammatory response, which is closely associated with the participation of innate immune cells. Moreover, mesenteric lymph nodes (MLNs)-resident immune cells, such as CD4+Foxp3+ regulatory T (Treg) cells and dendritic cells, play important roles in the maintenance of peripheral immune tolerance. However, the potential roles of these cells in MLNs in the development of endotoxin tolerance remain largely unknown. Recent research work showed that CD4+Foxp3+ Treg cells contributed to the development of endotoxin tolerance. Here, we further analyzed the possible change on CD4+Foxp3+Tregs population in MLNs in murine LPS-induced endotoxin tolerance model. Our data showed that the proportion and absolute number of CD4+Foxp3+Tregs, expressing altered levels of CTLA4 and GITR, significantly increased in MLNs of murine LPS-induced tolerance model. Moreover, the expression level of TGF-β in MLNs also increased obviously. Furthermore, TGF-β blockade could obviously reduce the proportion and absolute number of CD4+Foxp3+Tregs in MLNs and subsequently impair the protection effect against LPS rechallenge. Of note, we found that tolerogenic dendritic cell (Tol-DC), expressing lower levels of MHC-II and CD86 molecules, dominantly secreted TGF-β in MLNs in murine LPS-induced tolerance model. In all, our data provided an unknown phenomenon that the total cell number of CD4+Foxp3+Tregs significantly increased in MLNs in endotoxin tolerance, which was related to MLN-resident TGF-β secreting CD11c+DCs, providing a new fundamental basis for the understanding on the potential roles of MLN-resident immune cells in the development of endotoxin tolerance.
Collapse
Affiliation(s)
- Li Jia
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Jia Lu
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Ya Zhou
- Department of Medical physics, Zunyi Medical University, Guizhou Zunyi 56000, PR China
| | - Yijing Tao
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Hualin Xu
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Wen Zheng
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China
| | - Guiyou Liang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou 563003, PR China.
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Guizhou Zunyi 563000, PR China.
| |
Collapse
|
71
|
Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Modulation of the gut microbiota to improve innate resistance. Curr Opin Immunol 2018; 54:137-144. [PMID: 30205357 DOI: 10.1016/j.coi.2018.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
One major benefit from the association of hosts with the complex microbial communities that establish at body surfaces is the resistance to pathogen infection. This protective role of symbiotic microbes is becoming ever more relevant, given the alarming rise of multidrug-resistant pathogens and severe infections in patients following extensive antibiotic treatment. Herein, we highlight some recent mechanistic studies that have provided insights into how the highly dynamic dialogue amongst intestinal bacteria and between intestinal bacteria and their host can contribute to protect the host against pathogens in and outside the gut. We then discuss how delineating the rules of this dialogue can help design strategies to modulate the microbiota and improve host resistance to infections.
Collapse
Affiliation(s)
- Pamela Schnupf
- INSERM UMR 1163, Institut Imagine, Laboratory of Intestinal Immunity, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France
| | - Valérie Gaboriau-Routhiau
- INSERM UMR 1163, Institut Imagine, Laboratory of Intestinal Immunity, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France; INRA Micalis Institut, UMR1319, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nadine Cerf-Bensussan
- INSERM UMR 1163, Institut Imagine, Laboratory of Intestinal Immunity, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
72
|
Kiewiet MBG, Faas MM, de Vos P. Immunomodulatory Protein Hydrolysates and Their Application. Nutrients 2018; 10:E904. [PMID: 30011891 PMCID: PMC6073538 DOI: 10.3390/nu10070904] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Immunomodulatory protein hydrolysate consumption may delay or prevent western immune-related diseases. In order to purposively develop protein hydrolysates with an optimal and reproducible immunomodulatory effect, knowledge is needed on which components in protein hydrolysates are responsible for the immune effects. Important advances have been made on this aspect. Also, knowledge on mechanisms underlying the immune modulating effects is indispensable. In this review, we discuss the most promising application possibilities for immunomodulatory protein hydrolysates. In order to do so, an overview is provided on reported in vivo immune effects of protein hydrolysates in both local intestinal and systemic organs, and the current insights in the underlying mechanisms of these effects. Furthermore, we discuss current knowledge and physicochemical approaches to identify the immune active protein sequence(s). We conclude that multiple hydrolysate compositions show specific immune effects. This knowledge can improve the efficacy of existing hydrolysate-containing products such as sports nutrition, clinical nutrition, and infant formula. We also provide arguments for why immunomodulatory protein hydrolysates could be applied to manage the immune response in the increasing number of individuals with a higher risk of immune dysfunction due to, for example, increasing age or stress.
Collapse
Affiliation(s)
- Mensiena B G Kiewiet
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
73
|
Elderman M, Hugenholtz F, Belzer C, Boekschoten M, van Beek A, de Haan B, Savelkoul H, de Vos P, Faas M. Sex and strain dependent differences in mucosal immunology and microbiota composition in mice. Biol Sex Differ 2018; 9:26. [PMID: 29914546 PMCID: PMC6006852 DOI: 10.1186/s13293-018-0186-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background A dysbiosis in the intestinal microbiome plays a role in the pathogenesis of several immunological diseases. These diseases often show a sex bias, suggesting sex differences in immune responses and in the intestinal microbiome. We hypothesized that sex differences in immune responses are associated with sex differences in microbiota composition. Methods Fecal microbiota composition (MITchip), mRNA expression in intestinal tissue (microarray), and immune cell populations in mesenteric lymph nodes (MLNs) were studied in male and female mice of two mouse strains (C57B1/6OlaHsd and Balb/cOlaHsd). Transcriptomics and microbiota data were combined to identify bacterial species which may potentially be related to sex-specific differences in intestinal immune related genes. Results We found clear sex differences in intestinal microbiota species, diversity, and richness in healthy mice. However, the nature of the sex effects appeared to be determined by the mouse strain as different bacterial species were enriched in males and females of the two strains. For example, Lactobacillus plantarum and Bacteroides distasonis were enriched in B6 females as compared to B6 males, while Bifidobacterium was enriched BALB/c females as compared to BALB/c males. The strain-dependent sex effects were also observed in the expression of immunological genes in the colon. We found that the abundance of various bacteria (e.g., Clostridium leptum et rel.) which were enriched in B6 females positively correlated with the expression of several genes (e.g., Il-2rb, Ccr3, and Cd80) which could be related to immunological functions, such as inflammatory responses and migration of leukocytes. The abundance of several bacteria (e.g., Faecalibacterium prausnitzii et rel. and Coprobacillus et rel.- Clostridium ramosum et rel.) which were enriched in BALB/c males positively correlated to the expression of several genes (e.g., Apoe, Il-1b, and Stat4) related to several immunological functions, such as proliferation and quantity of lymphocytes. The net result was the same, since both mouse strains showed similar sex induced differences in immune cell populations in the MLNs. Conclusions Our data suggests a correlation between microbiota and intestinal immune populations in a sex and strain-specific way. These findings may contribute to the development of more sex and genetic specific treatments for intestinal-related disorders. Electronic supplementary material The online version of this article (10.1186/s13293-018-0186-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marlies Elderman
- Top Institute Food and Nutrition, Wageningen, the Netherlands. .,Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, 9713, GZ, Groningen, the Netherlands.
| | - Floor Hugenholtz
- Top Institute Food and Nutrition, Wageningen, the Netherlands.,Laboratory of Microbiology, Wageningen University and Research, 6703, WE, Wageningen, the Netherlands
| | - Clara Belzer
- Top Institute Food and Nutrition, Wageningen, the Netherlands.,Laboratory of Microbiology, Wageningen University and Research, 6703, WE, Wageningen, the Netherlands
| | - Mark Boekschoten
- Top Institute Food and Nutrition, Wageningen, the Netherlands.,Division of Human Nutrition, Wageningen University and Research, 6703, WE, Wageningen, the Netherlands
| | - Adriaan van Beek
- Top Institute Food and Nutrition, Wageningen, the Netherlands.,Cell Biology and Immunology, Wageningen University and Research, 6708 WD, Wageningen, the Netherlands
| | - Bart de Haan
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, 9713, GZ, Groningen, the Netherlands
| | - Huub Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, 6708 WD, Wageningen, the Netherlands
| | - Paul de Vos
- Top Institute Food and Nutrition, Wageningen, the Netherlands.,Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, 9713, GZ, Groningen, the Netherlands
| | - Marijke Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, 9713, GZ, Groningen, the Netherlands.,Department of Obstetrics and Gynecology, University of Groningen and University Medical Centre Groningen, 9713, GZ, Groningen, the Netherlands
| |
Collapse
|
74
|
Elderman M, de Vos P, Faas M. Role of Microbiota in Sexually Dimorphic Immunity. Front Immunol 2018; 9:1018. [PMID: 29910797 PMCID: PMC5992421 DOI: 10.3389/fimmu.2018.01018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/28/2022] Open
Abstract
Sex differences in peripheral immune responses are well recognized. This is associated with sex differences in many immunological diseases. As the intestinal microbiota is known to influence the immune system, such sex differences in immune responses may be a consequence of sex-specific microbiota. Therefore, this mini-review discusses sex differences in intestinal microbiota and the possible role of microbiota in shaping sexually dimorphic immunity. Sex differences in microbiota composition are clearly found in mice studies and also in human studies. However, the lack of standardization in human studies may mask the sexual dimorphism in microbiota composition in human studies, since many factors such as age, genetic background, BMI, diet, and sex hormones appear to interfere with the sexual dimorphism in microbiota composition. Only a few mice studies found that differences in gut microbiota composition are causative for some aspects of sexually dimorphic immunity. Therefore, future studies should focus on a causal relationship between sexually dimorphic immunity and microbiota, considering the abovementioned interfering confounding factors. This would benefit the development of more sex-specific effective treatment options for immunological diseases.
Collapse
Affiliation(s)
- Marlies Elderman
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Paul de Vos
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Marijke Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands.,Department of Obstetrics and Gynecology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|
75
|
McKenzie C, Tan J, Macia L, Mackay CR. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol Rev 2018; 278:277-295. [PMID: 28658542 DOI: 10.1111/imr.12556] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Dietary and bacterial metabolites influence immune responses. This raises the question whether the increased incidence of allergies, asthma, some autoimmune diseases, cardiovascular disease, and others might relate to intake of unhealthy foods, and the decreased intake of dietary fiber. In recent years, new knowledge on the molecular mechanisms underpinning a 'diet-gut microbiota-physiology axis' has emerged to substantiate this idea. Fiber is fermented to short chain fatty acids (SCFAs), particularly acetate, butyrate, and propionate. These metabolites bind 'metabolite-sensing' G-protein-coupled receptors such as GPR43, GPR41, and GPR109A. These receptors play fundamental roles in the promotion of gut homeostasis and the regulation of inflammatory responses. For instance, these receptors and their metabolites influence Treg biology, epithelial integrity, gut homeostasis, DC biology, and IgA antibody responses. The SCFAs also influence gene transcription in many cells and tissues, through their inhibition of histone deacetylase expression or function. Contained in this mix is the gut microbiome, as commensal bacteria in the gut have the necessary enzymes to digest dietary fiber to SCFAs, and dysbiosis in the gut may affect the production of SCFAs and their distribution to tissues throughout the body. SCFAs can epigenetically modify DNA, and so may be one mechanism to account for diseases with a 'developmental origin', whereby in utero or post-natal exposure to environmental factors (such as nutrition of the mother) may account for disease later in life. If the nutrition-gut microbiome-physiology axis does underpin at least some of the Western lifestyle influence on asthma and allergies, then there is tremendous scope to correct this with healthy foodstuffs, probiotics, and prebiotics.
Collapse
Affiliation(s)
- Craig McKenzie
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Jian Tan
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Laurence Macia
- Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
76
|
Magnuson AM, Fouts JK, Regan DP, Booth AD, Dow SW, Foster MT. Adipose tissue extrinsic factor: Obesity-induced inflammation and the role of the visceral lymph node. Physiol Behav 2018; 190:71-81. [PMID: 29501838 DOI: 10.1016/j.physbeh.2018.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/24/2017] [Accepted: 02/22/2018] [Indexed: 12/17/2022]
Abstract
Obesity-related adverse health consequences occur predominately in individuals with upper body fat distribution commonly associated with increased central adiposity. Visceral adipose tissue accumulation is described to be the greatest driver of obesity-induced inflammation, however evidence also supports that the intestines fundamentally contribute to the development of obesity-induced metabolic disease. The visceral adipose depot shares the same vasculature and lymph drainage as the small intestine. We hypothesize that the visceral lymph node, which drains adipose tissue and the gastrointestinal tract, is central to the exacerbation of systemic pro-inflammation. Male C57BL/6 mice were fed CHOW or high fat diet (HFD) for 7 weeks. At termination the mesenteric depot, visceral lymph node and ileum, jejunum and Peyer's patches were collected. Cytokine concentration was determined in adipose tissue whereas immune cell populations where investigated in the visceral lymph node and intestinal segments by flow cytometry. Visceral adipose tissue and the gastrointestinal tract mutually influence immune cells enclosed within the visceral lymph node. HFD increased visceral lymph node immune cell number. This likely resulted from 1.) an increase in immune cells migration from the small intestines likely from activated dendritic cells that travel to the lymph node and 2.) cytokine effluent from visceral adipose tissue that promoted expansion, survival and retention of pro-inflammatory immune cells. Overall, the visceral lymph node, the immune nexus of visceral adipose tissue and the small intestines, likely plays a fundamental role in exacerbation of systemic pro-inflammation by HFD-induced obesity. The research of Tim Bartness greatly enhanced the understanding of adipose tissue regulation. Studies from his laboratory significantly contributed to our awareness of extrinsic factors that influence body fatness levels. Specifically, the work he produced eloquently demonstrated that adipose tissue was more complex than an insulating storage center; it was connected to our brains via the sympathetic and sensory nervous system. Mapping studies demonstrated that adipose tissue both receives and sends information to the brain. Further, his lab demonstrated that nervous system connections contributed to lipolysis, thermogenesis and adipocyte proliferation and growth. The work of Tim Bartness will continue to influence adipose tissue research. As such, Tim Bartness directly inspired the following research. Adipose tissue extrinsic factors are not limited to the peripheral nervous system. The lymphatic system is an additional extrinsic factor that cross talks with adipose tissue, however its role in this context is under emphasized. Here we begin to elucidate how the lymphatic system may contribute to the comorbidities associated with visceral adipose tissue accumulation.
Collapse
Affiliation(s)
| | | | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steve W Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
77
|
Schmitz-Winnenthal FH, Hohmann N, Schmidt T, Podola L, Friedrich T, Lubenau H, Springer M, Wieckowski S, Breiner KM, Mikus G, Büchler MW, Keller AV, Koc R, Springfeld C, Knebel P, Bucur M, Grenacher L, Haefeli WE, Beckhove P. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. Oncoimmunology 2018; 7:e1303584. [PMID: 29632710 DOI: 10.1080/2162402x.2017.1303584] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Abstract
VXM01 is a first-in-kind orally applied tumor vaccine based on live attenuated Salmonella typhi carrying an expression plasmid encoding VEGFR2, an antigen expressed on tumor vasculature and a stable and accessible target for anti-angiogenic intervention. A recent randomized, placebo-controlled, phase I dose-escalation trial in advanced pancreatic cancer patients demonstrated safety, immunogenicity and transient, T-cell response-related anti-angiogenic activity of four priming vaccinations applied within one week. We here evaluated whether monthly boost vaccinations are safe and can sustain increased frequencies of vaccine-specific T cells. Patients with advanced pancreatic cancer were randomly assigned at a ratio of 2:1 to priming with VXM01 followed by up to six monthly boost vaccinations, or placebo treatment. Vaccinations were applied orally at two alternative doses of either 106 colony-forming units (CFU) or 107 CFU, and concomitant treatment with standard-of-care gemcitabine during the priming phase, and any treatment thereafter, was allowed in the study. Immunomonitoring involved interferon-gamma (IFNγ) ELIspot analysis with long overlapping peptides spanning the entire VEGFR2 sequence. A total of 26 patients were treated. Treatment-related adverse events preferentially associated with VXM01 were decreases in lymphocyte numbers in the blood, increased frequencies of neutrophils and diarrhea. Eight out of 16 patients who received at least one boosting vaccination responded with pronounced, i.e. at least 3-fold, increase in VEGFR2-specific T cell response over baseline levels. In the VXM01 vaccination group, VEGFR2-specific T cells peaked preferentially during the boosting phase with an average 4-fold increase over baseline levels. In conclusion, prime/boost vaccination with VXM01 was safe and immunogenic and increased vaccine specific T cell responses compared with placebo treatment.
Collapse
Affiliation(s)
| | - Nicolas Hohmann
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Abdominal and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lilli Podola
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany.,Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Tobias Friedrich
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | - Gerd Mikus
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Abdominal and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ruhan Koc
- Department of General, Abdominal and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Phillip Knebel
- Department of General, Abdominal and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mariana Bucur
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany
| | - Lars Grenacher
- Diagnostic Munich, Diagnostic Prevention and Imaging Center, Munich, Germany
| | - Walter E Haefeli
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI), University Hospital Regensburg, Regensburg, Germany.,Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| |
Collapse
|
78
|
Kaneko K, McDowell A, Ishii Y, Hook S. Characterization and evaluation of stabilized particulate formulations as therapeutic oral vaccines for allergy. J Liposome Res 2017; 28:296-304. [DOI: 10.1080/08982104.2017.1370472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kan Kaneko
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Yasuyuki Ishii
- Laboratory for Vaccine Design, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
79
|
Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol 2017; 17:761-773. [PMID: 28869253 DOI: 10.1038/nri.2017.100] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune privilege is a complex process that protects organs from immune-mediated attack and damage. It is accomplished by a series of cellular barriers that both control immune cell entry and promote the development of tolerogenic immune cells. In this Review, we describe the vascular endothelial and epithelial barriers in organs that are commonly considered to be immune privileged, such as the brain and the eye. We compare these classical barriers with barriers in the intestine, which share features with barriers of immune-privileged organs, such as the capacity to induce tolerance and to protect from external insults. We suggest that when intestinal barriers break down, disruption of other barriers at distant sites can ensue, and this may underlie the development of various neurological, metabolic and intestinal disorders.
Collapse
Affiliation(s)
- Ilaria Spadoni
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Giulia Fornasa
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
80
|
Magnuson AM, Regan DP, Fouts JK, Booth AD, Dow SW, Foster MT. Diet-induced obesity causes visceral, but not subcutaneous, lymph node hyperplasia via increases in specific immune cell populations. Cell Prolif 2017; 50. [PMID: 28762561 DOI: 10.1111/cpr.12365] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES The spatial proximity of adipose depots to secondary lymph nodes allows a unique relation between the two systems. Obesity, predominately visceral adiposity, links to numerous diseases; hence, we postulate that secondary lymphatics within this region contributes to disease risk. MATERIAL AND METHODS Male C57BL/6 mice were fed standard CHOW (18% kcal fat) or Western diet (45% kcal fat) for 7 weeks. Visceral and subcutaneous lymph nodes and associated adipose depots they occupy were excised. Lymph node morphology and resident immune cell populations were characterized via histopathology, immunofluorescence and flow cytometry. Adipose tissue immune cell populations were also characterized. RESULTS Obesity caused lymph node expansion, increased viable cell number and deviations in immune cell populations. These alterations were exclusive to visceral lymph nodes. Notably, pro-inflammatory antigen presenting cells and regulatory T cells increased in number in the visceral lymph node. Obesity, however, reduced T regulatory cells in visceral lymph nodes. The visceral adipose depot also had greater reactivity towards HFD than subcutaneous, with a greater percent of macrophages, dendritic and CD8+ T cells. Immune cell number, in both the visceral and subcutaneous, however decreased as adipose depots enlarged. CONCLUSION Overall, HFD has a greater influence on visceral cavity than the subcutaneous. In the visceral lymph node, but not subcutaneous, HFD-induced obesity decreased cell populations that suppressed immune function while increasing those that regulate/activate immune response.
Collapse
Affiliation(s)
- A M Magnuson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, 80523, USA
| | - D P Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - J K Fouts
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, 80523, USA
| | - A D Booth
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, 80523, USA
| | - S W Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - M T Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
81
|
Abstract
Colorectal cancer, the fourth leading cause of cancer-related death worldwide, is a multifactorial disease involving genetic, environmental and lifestyle risk factors. In addition, increased evidence has established a role for the intestinal microbiota in the development of colorectal cancer. Indeed, changes in the intestinal microbiota composition in colorectal cancer patients compared to control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. This review will summarize the current knowledge about the potential links between the intestinal microbiota and colorectal cancer, with a focus on the pro-carcinogenic properties of bacterial microbiota such as induction of inflammation, the biosynthesis of genotoxins that interfere with cell cycle regulation and the production of toxic metabolites. Finally, we will describe the potential therapeutic strategies based on intestinal microbiota manipulation for colorectal cancer treatment.
Collapse
Affiliation(s)
- Cécily Lucas
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| | - Hang Thi Thu Nguyen
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| |
Collapse
|
82
|
Shi T, He Y, Sun W, Wu Y, Li L, Jie Z, Su X. Respiratory Syncytial virus infection compromises asthma tolerance by recruiting interleukin-17A-producing cells via CCR6-CCL20 signaling. Mol Immunol 2017; 88:45-57. [PMID: 28599122 DOI: 10.1016/j.molimm.2017.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
Asthma tolerance can be induced by breast-feeding or oral feeding with ovalbumin (OVA). Anergy or deletion of specific T cells and generation of T regulatory cells might contribute to this process. However, whether respiratory syncytial virus (RSV) infection would affect asthma tolerance is not very clear. Here, we first established asthma and oral tolerance mouse models and then analyzed airway hypersensitivity and asthma-related genes in the lung, CCR6-expressing IL-17A+ cells in the lungs, hilar or mesenteric lymph nodes (HLN or MLN) among control, asthmatic, tolerized, RSV infection, and RSV-infected asthmatic and tolerized groups. We also administrated CCL20 or IL-17A neutralizing antibody to RSV-infected tolerized mice to test whether RSV infection would mobilize CCR6-expressing IL-17A+ cells from MLN to the infected lungs. We found that tolerized mice infected with RSV developed asthma-like responses manifested by increasing airway hypersensitivity, exacerbating peribronchial inflammation, elevating lung asthma-related genes (Il17a, Mu5ac, and Gob5), accumulating CCR6-expressing IL-17A+ cells in the lungs and HLN with a reduction of this cell population in MLN. CCL20-CCR6 co-expression in RSV-infected tolerized MLN was reduced. Neutralization of CCL20 reduced CD3+CD4+CCR6+ cells in the RSV-infected tolerized HLN. Neutralization of IL-17A mitigated the compromising effects of RSV infection on asthma tolerance. Taken together, RSV infection impairs asthma tolerance by recruiting IL-17A-producing cells via CCR6-CCL20 signaling. The findings provide novel insight into exacerbation and therapeutic strategy of asthma under RSV infection.
Collapse
Affiliation(s)
- Tianyun Shi
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Yanchao He
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Wei Sun
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Yi Wu
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ling Li
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, University of Chinese Academy of Sciences, China
| | - Zhijun Jie
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| | - Xiao Su
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, University of Chinese Academy of Sciences, China.
| |
Collapse
|
83
|
Zevin AS, Moats C, May D, Wangari S, Miller C, Ahrens J, Iwayama N, Brown M, Bratt D, Klatt NR, Smedley J. Laparoscopic Technique for Serial Collection of Liver and Mesenteric Lymph Nodes in Macaques. J Vis Exp 2017. [PMID: 28518089 PMCID: PMC5565146 DOI: 10.3791/55617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mesenteric lymph nodes (MLN) and the liver are exposed to microbes and microbial products from the gastrointestinal (GI) tract, making them immunologically unique. The GI tract and associated MLN are sites of early viral replication in human immunodeficiency virus (HIV) infection and the MLN are likely important reservoir sites that harbor latently-infected cells even after prolonged antiretroviral therapy (ART). The liver has been shown to play a significant role in immune responses to lentiviruses and appears to play a significant role in clearance of virus from circulation. Nonhuman primate (NHP) models for HIV and Acquired Immunodeficiency Syndrome (AIDS) closely mimic these aspects of HIV infection and serial longitudinal sampling of primary sites of viral replication and the associated immune responses in this model will help to elucidate critical events in infection, pathogenesis, and the impact of various intervention strategies on these events. Current published techniques to sample liver and MLN together involve major surgery and/or necropsy, which limits the ability to investigate these important sites in a serial fashion in the same animal. We have previously described a laparoscopic technique for collection of MLN. Here, we describe a minimally invasive laparoscopic technique for serial longitudinal sampling of liver and MLN through the same two port locations required for the collection of MLN. The use of the same two ports minimizes the impact to the animals as no additional incisions are required. This technique can be used with increased sampling frequency compared to major abdominal surgery and reduces the potential for surgical complications and associated local and systemic inflammatory responses that could complicate interpretation of results. This procedure has potential to facilitate studies involving NHP models while improving animal welfare.
Collapse
Affiliation(s)
- Alexander S Zevin
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington
| | - Cassie Moats
- Division of Primate Resources, Washington National Primate Research Center, University of Washington
| | - Drew May
- Division of Primate Resources, Washington National Primate Research Center, University of Washington
| | - Solomon Wangari
- Division of Primate Resources, Washington National Primate Research Center, University of Washington
| | - Charlene Miller
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington
| | - Joel Ahrens
- Division of Primate Resources, Washington National Primate Research Center, University of Washington
| | - Naoto Iwayama
- Division of Primate Resources, Washington National Primate Research Center, University of Washington
| | - Megan Brown
- Division of Primate Resources, Washington National Primate Research Center, University of Washington
| | - Debbie Bratt
- Division of Primate Resources, Washington National Primate Research Center, University of Washington
| | - Nichole R Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington
| | - Jeremy Smedley
- Division of Primate Resources, Washington National Primate Research Center, University of Washington;
| |
Collapse
|
84
|
Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, Mayassi T, Meisel M, Kim SM, Discepolo V, Pruijssers AJ, Ernest JD, Iskarpatyoti JA, Costes LMM, Lawrence I, Palanski BA, Varma M, Zurenski MA, Khomandiak S, McAllister N, Aravamudhan P, Boehme KW, Hu F, Samsom JN, Reinecker HC, Kupfer SS, Guandalini S, Semrad CE, Abadie V, Khosla C, Barreiro LB, Xavier RJ, Ng A, Dermody TS, Jabri B. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 2017; 356:44-50. [PMID: 28386004 PMCID: PMC5506690 DOI: 10.1126/science.aah5298] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.
Collapse
Affiliation(s)
- Romain Bouziat
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Reinhard Hinterleitner
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Judy J Brown
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer E Stencel-Baerenwald
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mine Ikizler
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Toufic Mayassi
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Marlies Meisel
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Sangman M Kim
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Valentina Discepolo
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, and CeInGe-Biotecnologie Avanzate, Naples, Italy
| | - Andrea J Pruijssers
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan D Ernest
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Jason A Iskarpatyoti
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Léa M M Costes
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Ian Lawrence
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Brad A Palanski
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Mukund Varma
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matthew A Zurenski
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Solomiia Khomandiak
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicole McAllister
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pavithra Aravamudhan
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karl W Boehme
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fengling Hu
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hans-Christian Reinecker
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
| | - Stefano Guandalini
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Carol E Semrad
- Department of Medicine, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
| | - Valérie Abadie
- Department of Microbiology, Infectiology, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, California, USA
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Ramnik J Xavier
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aylwin Ng
- Division of Gastroenterology, Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Terence S Dermody
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- University of Chicago Celiac Disease Center, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
85
|
de Oliveira SRP, Nomizo A, Frantz FG, Faccioli LH, de Matos APK, Carrilho E, Afonso A, de Freitas Anibal F. Participation of Leukotrienes in the Immune Modulation of Oral Tolerance. Front Microbiol 2017; 8:242. [PMID: 28270799 PMCID: PMC5318402 DOI: 10.3389/fmicb.2017.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 02/03/2017] [Indexed: 11/24/2022] Open
Abstract
Oral tolerance (OT) is characterized as a peripheral immune tolerance form, in which, mature lymphocytes in lymphoid tissues associated with mucosa, become non-functional or hypo responsive due to prior oral administration of antigen. OT is an important immunological phenomenon due to its therapeutic potential in inflammatory processes and others diseases. Here we evaluated leukotriene role in the induction of OT, as well as, the production of cytokines IL-5 and IFN-γ in leukotriene deficient animals (knock-out). Our results suggested that even in the presence of OT and leukotrienes absence, cytokine IFN-γ remains being secreted, which gives us an indication of immune system specificity and also that IFN-γ participates in various immune processes.
Collapse
Affiliation(s)
- Sandra R P de Oliveira
- Laboratory of Parasitology, Department of Morphology and Pathology, Universidade Federal de São Carlos São Carlos, Brazil
| | - Auro Nomizo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - University of São Paulo Ribeirão Preto, Brazil
| | - Fabiani G Frantz
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - University of São Paulo Ribeirão Preto, Brazil
| | - Lúcia H Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto - University of São Paulo Ribeirão Preto, Brazil
| | - Ana Paula Keller de Matos
- Laboratory of Parasitology, Department of Morphology and Pathology, Universidade Federal de São CarlosSão Carlos, Brazil; Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Ribeirão PretoBrazil
| | - Emanuel Carrilho
- Bioanalytical, Microfabrication, and Separations Group, Instituto de Química de São Carlos, Universidade de São Paulo São Carlos, Brazil
| | - Ana Afonso
- Laboratory of Parasitology, Department of Morphology and Pathology, Universidade Federal de São CarlosSão Carlos, Brazil; Bioanalytical, Microfabrication, and Separations Group, Instituto de Química de São Carlos, Universidade de São PauloSão Carlos, Brazil; Medical Parasitology Unit, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisbon, Portugal
| | - Fernanda de Freitas Anibal
- Laboratory of Parasitology, Department of Morphology and Pathology, Universidade Federal de São Carlos São Carlos, Brazil
| |
Collapse
|
86
|
Jia H, Hanate M, Aw W, Itoh H, Saito K, Kobayashi S, Hachimura S, Fukuda S, Tomita M, Hasebe Y, Kato H. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. Sci Rep 2017; 7:43993. [PMID: 28272447 PMCID: PMC5341015 DOI: 10.1038/srep43993] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota is an essential factor in the shaping of intestinal immune system development and driving inflammation in inflammatory bowel disease (IBD). We report the effects and microbe-host interactions underlying an intervention using fine powder of eggshell membrane (ESM) against IBD. ESM attenuated lipopolysaccharide-induced inflammatory cytokine production and promoted the Caco-2 cell proliferation by up-regulating growth factors in vitro. In a murine model of dextran sodium sulphate-induced colitis, ESM significantly suppressed the disease activity index and colon shortening. These effects were associated with significant ameliorations of gene expressions of inflammatory mediators, intestinal epithelial cell proliferation, restitution-related factors and antimicrobial peptides. Multifaceted integrated omics analyses revealed improved levels of energy metabolism-related genes, proteins and metabolites. Concomitantly, cecal metagenomic information established an essential role of ESM in improving dysbiosis characterized by increasing the diversity of bacteria and decreasing absolute numbers of pathogenic bacteria such as Enterobacteriaceae and E. coli, as well as in the regulation of the expansion of Th17 cells by suppressing the overgrowth of segmented filamentous bacteria. Such modulations have functional effects on the host; i.e., repairing the epithelium, regulating energy requirements and eventually alleviating mucosal inflammation. These findings are first insights into ESM’s modulation of microbiota and IBD suppression, providing new perspectives on the prevention/treatment of IBD.
Collapse
Affiliation(s)
- Huijuan Jia
- Corporate Sponsored Research Program "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Manaka Hanate
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wanping Aw
- Corporate Sponsored Research Program "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Japan
| | - Kenji Saito
- Corporate Sponsored Research Program "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety and Department of Applied Biological Chemistry, Graduate School of Agricultural and Life sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | | | - Hisanori Kato
- Corporate Sponsored Research Program "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
87
|
Camps-Bossacoma M, Pérez-Cano FJ, Franch À, Untersmayr E, Castell M. Effect of a cocoa diet on the small intestine and gut-associated lymphoid tissue composition in an oral sensitization model in rats. J Nutr Biochem 2017; 42:182-193. [PMID: 28189917 DOI: 10.1016/j.jnutbio.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/14/2017] [Indexed: 01/10/2023]
Abstract
Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer's patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+cells as well. In cocoa-fed animals, we identified a five-time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L- cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain; Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| | - Francisco J Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
88
|
Collins FL, Schepper JD, Rios-Arce ND, Steury MD, Kang HJ, Mallin H, Schoenherr D, Camfield G, Chishti S, McCabe LR, Parameswaran N. Immunology of Gut-Bone Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:59-94. [PMID: 29101652 PMCID: PMC5749247 DOI: 10.1007/978-3-319-66653-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years a link between the gastrointestinal tract and bone health has started to gain significant attention. Dysbiosis of the intestinal microbiota has been linked to the pathology of a number of diseases which are associated with bone loss. In addition modulation of the intestinal microbiota with probiotic bacteria has revealed to have both beneficial local and systemic effects. In the present chapter, we discuss the intestinal and bone immune systems, explore how intestinal disease affects the immune system, and examine how these pathologic changes could adversely impact bone health.
Collapse
Affiliation(s)
- Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA
| | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Heather Mallin
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Daniel Schoenherr
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Glen Camfield
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Saima Chishti
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Laura R McCabe
- Department of Physiology and Department of Radiology, Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, USA.
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA.
| |
Collapse
|
89
|
Gaboriau-Routhiau V, Cerf-Bensussan N. [Gut microbiota and development of the immune system]. Med Sci (Paris) 2016; 32:961-967. [PMID: 28008836 DOI: 10.1051/medsci/20163211011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During their long co-evolution, bacteria and their animal host have developed mutualistic interactions that are regulated by the immune system of the host. A dialogue between bacteria and the host immune system is initiated at birth during microbial colonization. This colonization induces the recruitment of multiple immune cell types that cooperate with the intestinal epithelium to construct a barrier capable of confining the microbes within the intestinal lumen. Regulatory mechanisms avoid deleterious inflammatory reactions that would harm both the host and its microbiota. In mouse, homeostatic activation of the intestinal immune system is recapitulated by a small number of bacteria, and more particularly by the segmented filamentous bacteria.
Collapse
Affiliation(s)
- Valérie Gaboriau-Routhiau
- Inserm, U1163, Laboratoire d'immunité intestinale, Paris, France - Université Paris Descartes-Sorbonne Paris Cité, et Institut IMAGINE, 24, boulevard du Montparnasse, 75015 Paris, France - Institut MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nadine Cerf-Bensussan
- Inserm, U1163, Laboratoire d'immunité intestinale, Paris, France - Université Paris Descartes-Sorbonne Paris Cité, et Institut IMAGINE, 24, boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
90
|
Abstract
ABSTRACT
The aim of this review is to provide a coherent framework for understanding dendritic cells (DCs). It has seven sections. The introduction provides an overview of the immune system and essential concepts, particularly for the nonspecialist reader. Next, the “History” section outlines the early evolution of ideas about DCs and highlights some sources of confusion that still exist today. The “Lineages” section then focuses on five different populations of DCs: two subsets of “classical” DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. It highlights some cellular and molecular specializations of each, and also notes other DC subsets that have been proposed. The following “Tissues” section discusses the distribution and behavior of different DC subsets within nonlymphoid and secondary lymphoid tissues that are connected by DC migration pathways between them. In the “Tolerance” section, the role of DCs in central and peripheral tolerance is considered, including their ability to drive the differentiation of different populations of regulatory T cells. In contrast, the “Immunity” section considers the roles of DCs in sensing of infection and tissue damage, the initiation of primary responses, the T-cell effector phase, and the induction of immunological memory. The concluding section provides some speculative ideas about the evolution of DCs. It also revisits earlier concepts of generation of diversity and clonal selection in terms of DCs driving the evolution of T-cell responses. Throughout, this review highlights certain areas of uncertainty and suggests some avenues for future investigation.
Collapse
|
91
|
Mirkov I, Popov Aleksandrov A, Ninkov M, Mileusnic D, Demenesku J, Zolotarevski L, Subota V, Stefik D, Kataranovski D, Kataranovski M. Strain differences in intestinal toxicity of warfarin in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:175-182. [PMID: 27816002 DOI: 10.1016/j.etap.2016.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Intestinal hemorrhage characterizes effectiveness of warfarin (WF) as rodenticide and is among adverse effects of therapy in humans. Having in mind genetic variations in the effectiveness of WF in wild rats and in the doses required for therapeutic effect, strain differences in the intestinal toxicity of oral warfarin in rats were examined in this study. High WF dose (3.5mg/l) led to mortality in Albino Oxford (AO) rats, with no lethality in Dark Agouti (DA) rats. Higher values of prothrombin time were noted at low WF dose (0.35mg/l) in the former strain. Leukocyte infiltration in intestine noted at this dose in both strains was associated with oxidative injury and more pronounced anti-oxidative response in AO rats. Suppression of mesenteric lymph node cell proliferation and IFN-γ and IL-10 production in AO rats and lack of these effects in DA rats, represent different strategies to protect vulnerable intestine from harmful immune responses.
Collapse
Affiliation(s)
- Ivana Mirkov
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Marina Ninkov
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Dina Mileusnic
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Jelena Demenesku
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Lidija Zolotarevski
- Institute for Pathology, Military Medical Academy, 17 Crnotravska, 11000 Belgrade, Serbia
| | - Vesna Subota
- Institute for Medical Biochemistry, Military Medical Academy, 17 Crnotravska, 11000 Belgrade, Serbia
| | - Debora Stefik
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Dragan Kataranovski
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia; Institute of Zoology, Faculty of Biology, University of Belgrade,16 Studentski trg, 11000 Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia.
| |
Collapse
|
92
|
van Bergenhenegouwen J, Kraneveld AD, Rutten L, Garssen J, Vos AP, Hartog A. Lipoproteins attenuate TLR2 and TLR4 activation by bacteria and bacterial ligands with differences in affinity and kinetics. BMC Immunol 2016; 17:42. [PMID: 27793087 PMCID: PMC5086051 DOI: 10.1186/s12865-016-0180-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/19/2016] [Indexed: 12/28/2022] Open
Abstract
Background The small intestine is a specialized compartment were close interactions take place between host, microbes, food antigens and dietary fatty acids. Dietary fats get absorbed by epithelial cells and processed into a range of lipoprotein particles after which they are basolaterally secreted and collected in the lymphatics. In contrast to the colon, the small intestine is covered only by a thin mucus coat that allows for intimate interactions between host-cells and microbes. Lipoproteins have long been recognized as protective factors in infectious diseases via the neutralization of bacterial toxins like lipopolysaccharides. Much less attention has been given to the potential role of lipoproteins as factors contributing to the maintenance of small intestinal immune homeostasis via modulating bacteria-induced immune responses. Results Lipoproteins VLDL, LDL and HDL were found to neutralize TLR responses towards specific TLR-ligands or a selection of gram-negative and gram-positive bacteria. Attenuation of TLR2 activity was acute and only slightly improved by longer pre-incubation times of ligands and lipoproteins with no differences between bacterial-lipopeptides or bacteria. In contrast, attenuation of TLR4 responses was only observed after extensive preincubation of lipoproteins and LPS. Preincubation of bacteria and lipoproteins led only to a modest attenuation of TLR4 activity. Moreover, compared to TLR2, TLR4 activity could only be attenuated by lipoproteins over a small ligand dose range. Conclusions These results demonstrate the ability of lipoproteins VLDL, LDL and HDL to inhibit TLR responses towards bacterial-ligands and bacteria. Presence of lipoproteins was found to modulate the MAMP-induced cytokine release by primary human monocytes measured as changes in the release of IL-6, TNFα, GM-CSF and IFNγ. Using TLR2 and TLR4-reporter cells, lipoproteins were found to inhibit TLR responses with differences in affinity and kinetics. These data establish a role for lipoproteins as immunoregulatory molecules, attenuating TLR-responses and thereby positively contributing to mucosal homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0180-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeroen van Bergenhenegouwen
- Nutricia Research, Utrecht, The Netherlands. .,Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Aletta D Kraneveld
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Johan Garssen
- Nutricia Research, Utrecht, The Netherlands.,Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Anita Hartog
- Nutricia Research, Utrecht, The Netherlands.,Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
93
|
Kigerl KA, Hall JCE, Wang L, Mo X, Yu Z, Popovich PG. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med 2016; 213:2603-2620. [PMID: 27810921 PMCID: PMC5110012 DOI: 10.1084/jem.20151345] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Kigerl et al. show that spinal cord injury causes profound changes in gut microbiota and that these changes in gut ecology are associated with activation of GALT immune cells. They show that feeding mice probiotics after SCI confers neuroprotection and improves functional recovery. The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid–producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| | - Jodie C E Hall
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| | - Lingling Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
94
|
Spadoni I, Pietrelli A, Pesole G, Rescigno M. Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes 2016; 7:540-548. [PMID: 27723418 PMCID: PMC5153614 DOI: 10.1080/19490976.2016.1239681] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It has been widely demonstrated that tolerance against gut microbiota is compartmentalized to mucosal sites where microbes mostly reside. How the commensal bacteria are excluded from the entrance into the blood stream via intestinal capillaries that are located beneath the gut epithelium was not clear. We recently described the existence of a new anatomical structure, the 'gut vascular barrier' (GVB), both in murine and human intestines that plays a fundamental role in avoiding indiscriminate trafficking of bacteria from the gut into the blood circulation. The vascular barrier integrity could be altered by Salmonella typhimurium, a pathogen capable of systemic dissemination, through the modulation of the Wnt/β-catenin signaling pathway. Here we have analyzed the differences in gut endothelial gene expression profiles during Salmonella infection and have identified some interesting characteristics of endothelial to mesenchymal transition. These findings add new insights in the gut-liver axis.
Collapse
Affiliation(s)
- Ilaria Spadoni
- Department of Experimental Oncology, European
Institute of Oncology, Milan, Italy
| | - Alessandro Pietrelli
- Istituto Nazionale di Genetica Molecolare,
Romeo ed Enrica Invernizzi, Bioinformatic Group, Milan,
Italy,Department of Pathophysiology and
Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale
Policlinico, Milan, Italy
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics,
Consiglio Nazionale delle Ricerche and Department of Biosciences, Biotechnology and
Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, European
Institute of Oncology, Milan, Italy,Department of Oncology and Hemato-oncology,
University of Milan, Milan, Italy,CONTACT Maria Rescigno, PhD Director of Dendritic cell biology and immunotherapy Unit, Department of
Experimental Oncology, European Institute of Oncology, Via
Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
95
|
Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell Microbiol 2016; 18:1429-43. [PMID: 26918803 PMCID: PMC5031194 DOI: 10.1111/cmi.12584] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/21/2016] [Indexed: 12/15/2022]
Abstract
Host and parasite diversity are suspected to be key factors in Chagas disease pathogenesis. Experimental investigation of underlying mechanisms is hampered by a lack of tools to detect scarce, pleiotropic infection foci. We developed sensitive imaging models to track Trypanosoma cruzi infection dynamics and quantify tissue-specific parasite loads, with minimal sampling bias. We used this technology to investigate cardiomyopathy caused by highly divergent parasite strains in BALB/c, C3H/HeN and C57BL/6 mice. The gastrointestinal tract was unexpectedly found to be the primary site of chronic infection in all models. Immunosuppression induced expansion of parasite loads in the gut and was followed by widespread dissemination. These data indicate that differential immune control of T. cruzi occurs between tissues and shows that the large intestine and stomach provide permissive niches for active infection. The end-point frequency of heart-specific infections ranged from 0% in TcVI-CLBR-infected C57BL/6 to 88% in TcI-JR-infected C3H/HeN mice. Nevertheless, infection led to fibrotic cardiac pathology in all models. Heart disease severity was associated with the model-dependent frequency of dissemination outside the gut and inferred cumulative heart-specific parasite loads. We propose a model of cardiac pathogenesis driven by periodic trafficking of parasites into the heart, occurring at a frequency determined by host and parasite genetics.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, 20892, USA.
| | - Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Shiromani Jayawardhana
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
96
|
Salavati Schmitz S. Retrospective characterisation and outcome of canine idiopathic mesenteric purulent lymphadenitis and lymph node abscesses at a teaching hospital from 2005 to 2015. J Small Anim Pract 2016; 57:690-697. [PMID: 27627549 DOI: 10.1111/jsap.12551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/14/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Idiopathic purulent mesenteric lymphadenitis or lymph node abscessation, even though rare in dogs, are important diseases in which rapid diagnosis and treatment is critical. This study aimed to characterise the typical features of these conditions in dogs. MATERIAL AND METHODS Archived records from 2005 to 2015 were retrospectively evaluated for the occurrence of idiopathic purulent mesenteric lymphadenitis or lymph node abscesses in dogs. History, physical and clinicopathological abnormalities, diagnostic tests performed, treatment and outcome were reviewed. RESULTS A total of 14 cases with histopathologic and/or cytologic confirmation were identified. Typically, there were gastrointestinal signs including abdominal pain and elevated body temperature. Blood analysis revealed non-specific inflammatory changes including elevated C-reactive protein. Half of the bacterial cultures from lymph nodes showed growth of various bacteria. A primary cause was not identified in any case. Out of 14 cases, 10 cases underwent surgery and all dogs were discharged from the hospital. Three suffered from a relapse between 1 and 5 months after discharge but were successfully managed with antibiotics. CONCLUSION AND CLINICAL RELEVANCE Idiopathic purulent mesenteric lymphadenitis or lymph node abscessation are infrequent but clinically important diseases. Surgical, symptomatic and antibiotic treatment led to resolution of clinical signs in the evaluated cases. Thorough and standardised diagnostic workup and treatment of future cases are necessary to investigate possible pathogeneses and optimal therapeutic options. Outcome was favourable overall.
Collapse
Affiliation(s)
- S Salavati Schmitz
- Small Animal Hospital (Internal Medicine), Justus-Liebig University, 35390, Giessen, Germany
| |
Collapse
|
97
|
Auci DL, Egilmez NK. Synergy of Transforming Growth Factor Beta 1 and All Trans Retinoic Acid in the Treatment of Inflammatory Bowel Disease: Role of Regulatory T cells. ACTA ACUST UNITED AC 2016; 3. [PMID: 28603774 DOI: 10.15226/2374-815x/3/4/00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Nejat K Egilmez
- University of Louisville, Department of Microbiology and Immunology, Louisville, KY
| |
Collapse
|
98
|
Smedley J, Macalister R, Wangari S, Gathuka M, Ahrens J, Iwayama N, May D, Bratt D, O’Connor M, Munson P, Koday M, Lifson J, Fuller DH. Laparoscopic Technique for Serial Collection of Para-Colonic, Left Colic, and Inferior Mesenteric Lymph Nodes in Macaques. PLoS One 2016; 11:e0157535. [PMID: 27309717 PMCID: PMC4911112 DOI: 10.1371/journal.pone.0157535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/01/2016] [Indexed: 11/26/2022] Open
Abstract
Unlike peripheral lymph nodes (PLN), the mesenteric lymph nodes (MLN) draining the gastrointestinal (GI) tract are exposed to microbes and microbial products from the intestines and as such, are immunologically distinct. GI draining (MLN) have also been shown to be sites of early viral replication and likely impact early events that determine the course of HIV infection. They also are important reservoir sites that harbor latently-infected cells and from which the virus can emerge even after prolonged combination antiretroviral therapy (cART). Changes in the microbial flora and increased permeability of the GI epithelium associated with lentiviral infection can impact the gut associated lymphoid tissue (GALT) and induce changes to secondary lymphoid organs limiting immune reconstitution with cART. Nonhuman primate models for AIDS closely model HIV infection in humans and serial sampling of the GALT and associated secondary lymphoid organs in this model is crucial to gain a better understanding of the critical early events in infection, pathogenesis, and the role of immune responses or drugs in controlling virus at these sites. However, current techniques to sample GI draining (MLN) involve major surgery and/or necropsy, which have, to date, limited the ability to investigate mechanisms mediating the initiation, persistence and control of infection in this compartment. Here, we describe a minimally invasive laparoscopic technique for serial sampling of these sites that can be used with increased sampling frequency, yields greater cell numbers and immune cell subsets than current non-invasive techniques of the GALT and reduces the potential for surgical complications that could complicate interpretation of the results. This procedure has potential to facilitate studies of pathogenesis and evaluation of preventive and treatment interventions, reducing sampling variables that can influence experimental results, and improving animal welfare.
Collapse
Affiliation(s)
- Jeremy Smedley
- Division of Primate Resources, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Rhonda Macalister
- Oregon National Primate Research Center, Oregon Health Sciences University, Beaverton, Oregon, United States of America
| | - Solomon Wangari
- Division of Primate Resources, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Mercy Gathuka
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory Frederick, Maryland, United States of America
| | - Joel Ahrens
- Division of Primate Resources, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Naoto Iwayama
- Division of Primate Resources, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Drew May
- Division of Primate Resources, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Debbie Bratt
- Division of AIDS Research, Washington National Primate Research Center, Department of Microbiology University of Washington Seattle, Washington, United States of America
| | - Megan O’Connor
- Division of AIDS Research, Washington National Primate Research Center, Department of Microbiology University of Washington Seattle, Washington, United States of America
| | - Paul Munson
- Division of AIDS Research, Washington National Primate Research Center, Department of Microbiology University of Washington Seattle, Washington, United States of America
| | - Michael Koday
- Division of AIDS Research, Washington National Primate Research Center, Department of Microbiology University of Washington Seattle, Washington, United States of America
| | - Jeff Lifson
- AIDS and Cancer Viruses Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Deborah Heydenburg Fuller
- Division of AIDS Research, Washington National Primate Research Center, Department of Microbiology University of Washington Seattle, Washington, United States of America
| |
Collapse
|
99
|
Mirkov I, Popov Aleksandrov A, Demenesku J, Ninkov M, Mileusnic D, Zolotarevski L, Subota V, Kataranovski D, Kataranovski M. Intestinal toxicity of oral warfarin intake in rats. Food Chem Toxicol 2016; 94:11-8. [PMID: 27181730 DOI: 10.1016/j.fct.2016.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/18/2022]
Abstract
Though warfarin is extensively used in the prevention and treatment of thromboembolic processes in humans, adverse effects of warfarin therapy have been recognized. Intestinal hemorrhage is one of the hazards of anticoagulant therapy, but the mechanisms of warfarin toxicity are virtually unknown. In this work, the effects of 30 days oral warfarin (0.35 mg/l and 3.5 mg/l) intake on rat's gut were examined. Both doses resulted in prolongation of prothrombin time. Systemic effects of higher warfarin dose (increases in plasma AST, proteinuria, hematuria, changes in peripheral blood hematological parameters) were seen. Warfarin intake resulted in histologically evident tissue damage, leukocyte infiltration and intestinal inflammation [increases in myeloperoxidase activity, malondialdehyde content, superoxide dismutase and catalase activity, proinflammatory cytokine (IFN-γ, IL-17) concentrations in intestinal homogenates]. In contrast, suppression of gut-draining mesenteric lymph node (MLN) cell activity [proliferation responsiveness, production of IFN-γ and IL-17 to T lymphocyte mitogen Concanavalin A stimulation] was noted. Inhibition of regulatory cytokine IL-10 production by MLN cells, suggests commitment of MLN to the suppression of all inflammatory activities and creation of the microenvironment which is non-permissive for induction of potentially harmful immune response. These novel findings indicate the need of staying alert for (adverse) effects of warfarin therapy.
Collapse
Affiliation(s)
- Ivana Mirkov
- Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Jelena Demenesku
- Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Marina Ninkov
- Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Dina Mileusnic
- Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia
| | - Lidija Zolotarevski
- Institute for Pathology, Military Medical Academy, 17 Crnotravska, 11000 Belgrade, Serbia
| | - Vesna Subota
- Institute for Medical Biochemistry, Military Medical Academy, 17 Crnotravska, 11000 Belgrade, Serbia
| | - Dragan Kataranovski
- Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia; Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg 11000 Belgrade, Serbia
| | - Milena Kataranovski
- Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar despota Stefana, 11000 Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia.
| |
Collapse
|
100
|
Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model. Nutrients 2016; 8:242. [PMID: 27120615 PMCID: PMC4848710 DOI: 10.3390/nu8040242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/13/2016] [Indexed: 01/10/2023] Open
Abstract
Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.
Collapse
|