51
|
Abstract
During early stages of development, precursor B lymphocytes express a characteristic type of antigen receptor known as the pre-B-cell receptor (pre-BCR). This receptor differs from conventional BCRs in that it possesses a germ line-encoded surrogate light chain (SLC), which is associated with the signal transduction machinery via heavy chain (HC) proteins that have been generated by productive rearrangement of the immunoglobulin HC genes. The pre-BCR marks a key step of B-cell commitment, as it activates the B-cell-specific signaling cascade and mediates the selection, expansion, and differentiation of cells expressing a productively rearranged HC protein. Another difference between the pre-BCR and conventional BCR might be the initial event that triggers receptor activation, as the pre-BCR is activated in the absence of external ligands, while conventional BCRs require antigen for activation. Nonetheless, the pre-BCR downstream signaling cascade is largely similar to that of the BCR suggesting that the characteristic LC of the pre-BCR mediates important receptor interactions thereby providing distinctive, germ line-encoded features to the pre-BCR. In fact, the SLC enables the pre-BCR to act as a surrogate autoreactive receptor. Here, we outline the structure and function of the pre-BCR and how the autonomous signaling capacity might be a direct consequence of pre-BCR assembly. In addition to its role in early B-cell development, we discuss how the ordered activation of downstream signaling cascades enables the pre-BCR to activate seemingly opposing cellular programs such as proliferation and differentiation.
Collapse
|
52
|
Engels N, König LM, Schulze W, Radtke D, Vanshylla K, Lutz J, Winkler TH, Nitschke L, Wienands J. The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module. Nat Commun 2014; 5:5456. [PMID: 25413232 PMCID: PMC4263166 DOI: 10.1038/ncomms6456] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022] Open
Abstract
The vigorous response of IgG-switched memory B cells to recurring pathogens involves enhanced signalling from their B-cell antigen receptors (BCRs). However, the molecular signal amplification mechanisms of memory-type BCRs remained unclear. Here, we identify the immunoglobulin tail tyrosine (ITT) motif in the cytoplasmic segments of membrane-bound IgGs (mIgGs) as the principle signal amplification device of memory-type BCRs in higher vertebrates and decipher its signalling microanatomy. We show that different families of protein tyrosine kinases act upstream and downstream of the ITT. Spleen tyrosine kinase (Syk) activity is required for ITT phosphorylation followed by recruitment of the adaptor protein Grb2 into the mIgG-BCR signalosome. Grb2 in turn recruits Bruton's tyrosine kinase (Btk) to amplify BCR-induced Ca(2+) mobilization. This molecular interplay of kinases and adaptors increases the antigen sensitivity of memory-type BCRs, which provides a cell-intrinsic trigger mechanism for the rapid reactivation of IgG-switched memory B cells on antigen recall.
Collapse
Affiliation(s)
- Niklas Engels
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Lars M. König
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Wiebke Schulze
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Daniel Radtke
- Chair of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Kanika Vanshylla
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Johannes Lutz
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Thomas H. Winkler
- Hematopoiesis Unit, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | - Lars Nitschke
- Chair of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| |
Collapse
|
53
|
Umiker BR, McDonald G, Larbi A, Medina CO, Hobeika E, Reth M, Imanishi-Kari T. Production of IgG autoantibody requires expression of activation-induced deaminase in early-developing B cells in a mouse model of SLE. Eur J Immunol 2014; 44:3093-108. [PMID: 25044405 DOI: 10.1002/eji.201344282] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 11/06/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of pathogenic IgG antinuclear antibodies. Pathogenic IgG autoantibody production requires B-cell activation, leading to the production of activation-induced deaminase (AID) and class switching of IgM genes to IgG. To understand how and when B cells are activated to produce these IgG autoantibodies, we studied cells from 564Igi, a mouse model of SLE. 564Igi mice develop a disease profile closely resembling that found in human SLE patients, including the presence of IgG antinucleic acid Abs. We have generated 564Igi mice that conditionally express an activation-induced cytidine deaminase transgene (Aicda(tg) ), either in all B cells or only in mature B cells. Here, we show that class-switched pathogenic IgG autoantibodies were produced only in 564Igi mice in which AID was functional in early-developing B cells, resulting in loss of tolerance. Furthermore, we show that the absence of AID in early-developing B cells also results in increased production of self-reactive IgM, indicating that AID, through somatic hypermutation, contributes to tolerance. Our results suggest that the pathophysiology of clinical SLE might also be dependent on AID expression in early-developing B cells.
Collapse
Affiliation(s)
- Benjamin R Umiker
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Integrative Physiology and Pathobiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Fukao S, Haniuda K, Nojima T, Takai T, Kitamura D. gp49B-mediated negative regulation of antibody production by memory and marginal zone B cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:635-44. [PMID: 24935931 DOI: 10.4049/jimmunol.1302772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rapid Ab responses observed after primary and secondary immunizations are mainly derived from marginal zone (MZ) and memory B cells, respectively, but it is largely unknown how these responses are negatively regulated. Several inhibitory receptors have been identified and their roles have been studied, but mainly on follicular B cells and much less so on MZ B, and never on memory B cells. gp49B is an Ig superfamily member that contains two ITIMs in its cytoplasmic tail, and it has been shown to negatively regulate mast cell, macrophage, and NK cell responses. In this study, we demonstrate that gp49B is preferentially expressed on memory and MZ B cells. We show that gp49B(-/-) mice produce more IgM after a primary immunization and more IgM and IgG1 after a secondary immunization than gp49B(+/+) mice in T cell-dependent immune responses. Memory and MZ B cells from gp49B(-/-) mice also produce more Abs upon in vitro stimulation with CD40 than those from gp49B(+/+) mice. The in vitro IgM production by MZ B cells from gp49B(+/+), but not gp49B(-/-), mice is suppressed by interaction with a putative gp49B ligand, the integrin αvβ3 heterodimer. In addition, gp49B(-/-) mice exhibited exaggerated IgE production in the memory recall response. These results suggest that plasma cell development from memory and MZ B cells, as well as subsequent Ab production, are suppressed via gp49B. In memory B cells, this suppression also prevents excessive IgE production, thus curtailing allergic diseases.
Collapse
Affiliation(s)
- Saori Fukao
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan; and
| | - Kei Haniuda
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan; and
| | - Takuya Nojima
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan; and
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan; and
| |
Collapse
|
55
|
Xu Y, Xu L, Zhao M, Xu C, Fan Y, Pierce SK, Liu W. No receptor stands alone: IgG B-cell receptor intrinsic and extrinsic mechanisms contribute to antibody memory. Cell Res 2014; 24:651-64. [PMID: 24839903 PMCID: PMC4042179 DOI: 10.1038/cr.2014.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acquired immunological memory is a striking phenomenon. A lethal epidemic sweeps through a naïve population, many die but those who survive are never "attacked twice - never at least fatally", as the historian Thucydides observed in 430 BCE. Antibody memory is critical for protection against many human infectious diseases and is the basis for nearly all current human vaccines. Antibody memory is encoded, in part, in isotype-switched immunoglobulin (Ig)G-expressing memory B cells that are generated in the primary response to antigen and give rise to rapid, high-affinity and high-titered antibody responses upon challenge with the same antigen. How IgG-B-cell receptors (BCRs) and antigen-induced IgG-BCR signaling contribute to memory antibody responses are not fully understood. In this review, we summarize exciting new advances that are revealing the cellular and molecular mechanisms at play in antibody memory and discuss how studies using different experimental approaches will help elucidate the complex phenomenon of B-cell memory.
Collapse
Affiliation(s)
- Yinsheng Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhao
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - ChenGuang Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yilin Fan
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Wanli Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| |
Collapse
|
56
|
Kumar S, Wuerffel R, Achour I, Lajoie B, Sen R, Dekker J, Feeney AJ, Kenter AL. Flexible ordering of antibody class switch and V(D)J joining during B-cell ontogeny. Genes Dev 2014; 27:2439-44. [PMID: 24240234 PMCID: PMC3841733 DOI: 10.1101/gad.227165.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Omenn syndrome is a severe immunodeficiency disease commonly arising from hypomorphic RAG recombinase gene mutations. RAG recombinase mediates V(D)J joining during early B-lymphocyte development in the bone marrow (BM). V(D)J recombination and class switch recombination are thought to partition between the BM and secondary lymphoid organs. Kenter and colleagues show that V(D)J joining and switching are interchangeably inducible in the BM. This study has important implications for the development of Omenn syndrome, autoimmune diseases, and leukemia. V(D)J joining is mediated by RAG recombinase during early B-lymphocyte development in the bone marrow (BM). Activation-induced deaminase initiates isotype switching in mature B cells of secondary lymphoid structures. Previous studies questioned the strict ontological partitioning of these processes. We show that pro-B cells undergo robust switching to a subset of immunoglobulin H (IgH) isotypes. Chromatin studies reveal that in pro-B cells, the spatial organization of the Igh locus may restrict switching to this subset of isotypes. We demonstrate that in the BM, V(D)J joining and switching are interchangeably inducible, providing an explanation for the hyper-IgE phenotype of Omenn syndrome.
Collapse
Affiliation(s)
- Satyendra Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
The development and function of B lymphocytes critically depend on the non-germline B-cell antigen receptor (BCR). In addition to the diverse antigen-recognition regions, whose coding sequences are generated by the somatic DNA rearrangement, the variety of the constant domains of the Heavy Chain (HC) portion contributes to the multiplicity of the BCR types. The functions of particular classes of the HC, particularly in the context of the membrane BCR, are not completely understood. The expression of the various classes of the HC correlates with the distinct stages of B-cell development, types of B-cell subsets, and their effector functions. In this chapter, we summarize and discuss the accumulated knowledge on the role of the μ, δ, and γ HC isotypes of the conventional and precursor BCR in B-cell differentiation, selection, and engagement with (auto)antigens.
Collapse
Affiliation(s)
- Elena Surova
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hassan Jumaa
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany; Department of Molecular immunology, Faculty of Biology, University of Freiburg and Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Department of Immunology, Ulm University, Ulm, Germany.
| |
Collapse
|
58
|
Murphy KA, Erickson JR, Johnson CS, Seiler CE, Bedi J, Hu P, Pluhar GE, Epstein AL, Ohlfest JR. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. THE JOURNAL OF IMMUNOLOGY 2013; 192:224-33. [PMID: 24293627 DOI: 10.4049/jimmunol.1301633] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Although some promising advances have been made, the immune response stimulated as a result of immunotherapeutic protocols has been inefficient at complete tumor elimination, primarily due to our lack of understanding of the necessary effector functions of the immune system. We previously demonstrated that a tumor lysate vaccine/Fc-OX40L therapy is capable of inducing enhanced survival and tumor elimination in the GL261 mouse glioma model. The following experiments were performed to determine the mechanism(s) of action of this therapy that elicits a potent antitumor immune response. The evidence subsequently outlined indicates a CD8(+) T cell-independent and CD4(+) T cell-, NK cell-, and B cell-dependent means of prolonged survival. CD8(+) T cell-independent tumor clearance is surprising considering the current focus of many cancer immunotherapy protocols. These results provide evidence for CD8(+) T cell-independent means of antitumor response and should lead to additional examination of the potential manipulation of this mechanism for future treatment strategies.
Collapse
Affiliation(s)
- Katherine A Murphy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Han JH, Umiker BR, Kazimirova AA, Fray M, Korgaonkar P, Selsing E, Imanishi-Kari T. Expression of an anti-RNA autoantibody in a mouse model of SLE increases neutrophil and monocyte numbers as well as IFN-I expression. Eur J Immunol 2013; 44:215-26. [PMID: 24105635 DOI: 10.1002/eji.201343714] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/19/2013] [Accepted: 09/13/2013] [Indexed: 11/06/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of antinucleic acid autoantibodies, high levels of circulating type I interferon (IFN-I), and an IFN-I-dependent elevated expression of activating FcγR. Increases in neutrophils and monocytes are often observed in clinical SLE, but how these contribute to autoantibody and IFN-I production is poorly understood. Here, we analyzed SLE pathogenesis in 564Igi mice, an SLE-model strain carrying gene-targeted heavy and light chain antibody genes encoding an anti-RNA autoantibody in a C57BL/6 background. Similar to human SLE patients, 564Igi mice produce anti-RNA autoantibodies and expanded neutrophil and monocyte populations. These myeloid cells produced IFN-I and exhibit increased FcγRIV expression induced via an IFN-I autocrine loop. A direct effect of IFN-I on 56 Igi BM B cells and neutrophils was supported by their upregulation of "IFN-I signature genes". In addition, 564Igi developing B cells showed upregulated TLR7 resulting in IgG2a/2b class switch recombination and autoantibody production. Our results indicate that the production of anti-RNA autoantibody is sufficient to induce an increase of BM, blood, and spleen IFN-I-producing neutrophils, and suggest a mechanism by which autoantibody and IFN-I contribute to SLE by activating B lymphocytes, neutrophils, and monocyte effector cells in vivo.
Collapse
Affiliation(s)
- Jin-Hwan Han
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Pierce SK, Liu W. Encoding immunological memory in the initiation of B-cell receptor signaling. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 78:231-7. [PMID: 24100585 DOI: 10.1101/sqb.2013.78.020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In one of the earliest events in the initiation of antigen-driven antibody responses, naïve, IgM-, and IgD-expressing B cells enter germinal centers where they irreversibly isotype switch to the expression of predominately IgG B-cell receptors (BCRs). The IgG-expressing B cells then undergo rounds of antigen-driven selection, ultimately exiting germinal centers as IgG-expressing memory B cells or plasma blast. This early switch from IgM to IgG begs the question: Of what advantage to the memory response is the B cell's expression of an IgG BCR? Despite convincing evidence that the expression of IgG BCRs is essential for antibody memory responses in vivo, the molecular basis of this requirement is only incompletely understood. Here we describe intrinsic features of IgG BCRs that endow memory B cells with the ability to rapidly and efficiently initiate signaling. Remarkably, efficient signaling is mediated through the cytoplasmic tail of the membrane IgG that binds to synapse associated protein 97, a member of a large family of proteins that are best studied for their role in regulating receptor signaling in neuronal synapses. These findings underscore an interesting parallel in the mechanisms at play in encoding immunological memory and memory in the nervous system.
Collapse
Affiliation(s)
- Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Wanli Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
61
|
New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol 2013; 13:578-91. [DOI: 10.1038/nri3487] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Straub T, Schweier O, Bruns M, Nimmerjahn F, Waisman A, Pircher H. Nucleoprotein-specific nonneutralizing antibodies speed up LCMV elimination independently of complement and FcγR. Eur J Immunol 2013; 43:2338-48. [PMID: 23749409 DOI: 10.1002/eji.201343565] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 12/12/2022]
Abstract
CD8(+) T cells have an essential role in controlling lymphocytic choriomeningitis virus (LCMV) infection in mice. Here, we examined the contribution of humoral immunity, including nonneutralizing antibodies (Abs), in this infection induced by low virus inoculation doses. Mice with impaired humoral immunity readily terminated infection with the slowly replicating LCMV strain Armstrong but showed delayed virus elimination after inoculation with the faster replicating LCMV strain WE and failed to clear the rapidly replicating LCMV strain Docile, which is in contrast to the results obtained with wild-type mice. Thus, the requirement for adaptive humoral immunity to control the infection was dependent on the replication speed of the LCMV strains used. Ab transfers further showed that LCMV-specific IgG Abs isolated from LCMV immune serum accelerated virus elimination. These Abs were mainly directed against the viral nucleoprotein (NP) and completely lacked virus neutralizing activity. Moreover, mAbs specific for the LCMV NP were also able to decrease viral titers after transfer into infected hosts. Intriguingly, neither C3 nor Fcγ receptors were required for the antiviral activity of the transferred Abs. In conclusion, our study suggests that rapidly generated nonneutralizing Abs specific for the viral NP speed up virus elimination and thereby may counteract T-cell exhaustion.
Collapse
Affiliation(s)
- Tobias Straub
- Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
63
|
CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Proc Natl Acad Sci U S A 2013; 110:12402-7. [PMID: 23836650 DOI: 10.1073/pnas.1304888110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A high proportion of human B cells carry B-cell receptors (BCRs) that are autoreactive. Inhibitory receptors such as CD22 can downmodulate autoreactive BCR responses. With its extracellular domain, CD22 binds to sialic acids in α2,6 linkages in cis, on the surface of the same B cell or in trans, on other cells. Sialic acids are self ligands, as they are abundant in vertebrates, but are usually not expressed by pathogens. We show that cis-ligand binding of CD22 is crucial for the regulation of B-cell Ca(2+) signaling by controlling the CD22 association to the BCR. Mice with a mutated CD22 ligand-binding domain of CD22 showed strongly reduced Ca(2+) signaling. In contrast, mice with mutated CD22 immunoreceptor tyrosine-based inhibition motifs have increased B-cell Ca(2+) responses, increased B-cell turnover, and impaired survival of the B cells. Thus, the CD22 ligand-binding domain has a crucial function in regulating BCR signaling, which is relevant for controlling autoimmunity.
Collapse
|
64
|
Kometani K, Nakagawa R, Shinnakasu R, Kaji T, Rybouchkin A, Moriyama S, Furukawa K, Koseki H, Takemori T, Kurosaki T. Repression of the Transcription Factor Bach2 Contributes to Predisposition of IgG1 Memory B Cells toward Plasma Cell Differentiation. Immunity 2013; 39:136-47. [DOI: 10.1016/j.immuni.2013.06.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/15/2013] [Indexed: 12/20/2022]
|
65
|
Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ, von Drygalski A, Paulson JC. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J Clin Invest 2013; 123:3074-83. [PMID: 23722906 DOI: 10.1172/jci69187] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023] Open
Abstract
Antibodies confer humoral immunity but can also be harmful when they target an autoantigen, alloantigen, allergen, or biotherapeutic. New strategies are needed for antigen-specific suppression of undesired antibody responses, particularly to T cell-dependent protein antigens, because they elicit T cell help. Here we show that liposomal nanoparticles, displaying both antigen and glycan ligands of the inhibitory coreceptor CD22, induce a tolerogenic program that selectively causes apoptosis in mouse and human B cells. These SIGLEC-engaging tolerance-inducing antigenic liposomes (STALs, where SIGLEC is defined as sialic acid-binding Ig-like lectin) induced robust antigen-specific tolerance to protein antigens in mice, preventing subsequent immune response to challenge with the same antigen. Since development of inhibitory antibodies to FVIII is a serious problem in treatment of hemophilia A patients, we investigated the potential of this approach for inducing tolerance to FVIII in a hemophilia mouse model. STALs prevented formation of inhibitory FVIII antibodies, allowing for effective administration of FVIII to hemophilia mice to prevent bleeding. These findings suggest that STALs could be used to eliminate or prevent harmful B cell-mediated immune responses.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
McGuire AT, Hoot S, Dreyer AM, Lippy A, Stuart A, Cohen KW, Jardine J, Menis S, Scheid JF, West AP, Schief WR, Stamatatos L. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. ACTA ACUST UNITED AC 2013; 210:655-63. [PMID: 23530120 PMCID: PMC3620356 DOI: 10.1084/jem.20122824] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eliminating key glycosylation sites on HIV envelope (Env) restores binding of the germline versions of known broadly neutralizing anti-Env antibodies. Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti–CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions.
Collapse
|
67
|
Zhang Y, Meyer-Hermann M, George LA, Figge MT, Khan M, Goodall M, Young SP, Reynolds A, Falciani F, Waisman A, Notley CA, Ehrenstein MR, Kosco-Vilbois M, Toellner KM. Germinal center B cells govern their own fate via antibody feedback. ACTA ACUST UNITED AC 2013; 210:457-64. [PMID: 23420879 PMCID: PMC3600904 DOI: 10.1084/jem.20120150] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
High-affinity antibodies reenter germinal centers (GCs) and limit antigen access, thus causing sustained directional evolution in GCs toward higher-affinity antibody production. Affinity maturation of B cells in germinal centers (GCs) is a process of evolution, involving random mutation of immunoglobulin genes followed by natural selection by T cells. Only B cells that have acquired antigen are able to interact with T cells. Antigen acquisition is dependent on the interaction of B cells with immune complexes inside GCs. It is not clear how efficient selection of B cells is maintained while their affinity matures. Here we show that the B cells’ own secreted products, antibodies, regulate GC selection by limiting antigen access. By manipulating the GC response with monoclonal antibodies of defined affinities, we show that antibodies in GCs are in affinity-dependent equilibrium with antibodies produced outside and that restriction of antigen access influences B cell selection, seen as variations in apoptosis, plasma cell output, T cell interaction, and antibody affinity. Feedback through antibodies produced by GC-derived plasma cells can explain how GCs maintain an adequate directional selection pressure over a large range of affinities throughout the course of an immune response, accelerating the emergence of B cells of highest affinities. Furthermore, this mechanism may explain how spatially separated GCs communicate and how the GC reaction terminates.
Collapse
Affiliation(s)
- Yang Zhang
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
IgG1+ ovalbumin-specific B-cell transnuclear mice show class switch recombination in rare allelically included B cells. Proc Natl Acad Sci U S A 2012; 109:13739-44. [PMID: 22869725 DOI: 10.1073/pnas.1210273109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used somatic cell nuclear transfer (SCNT) to generate a mouse from the nucleus of an IgG1(+) ovalbumin-specific B cell. The resulting OBI mice show generally normal B-cell development, with elevated percentages of marginal zone B cells and a reduction in B-1 B cells. Whereas OBI RAG1(-/-) mice have exclusively IgG1 anti-ovalbumin in their serum, OBI mice show elevated levels of anti-ovalbumin of nearly all isotypes 3' of the γ1 constant region in the IgH locus, indicating that class switch recombination (CSR) occurs in the absence of immunization with ovalbumin. This CSR is associated with the presence of IgM(+)IgG1(+) double producer B cells that represent <1% of total B cells, accumulate in the peritoneal cavity, and account for near-normal levels of serum IgM and IgG3.
Collapse
|
69
|
Liu W, Chen E, Zhao XW, Wan ZP, Gao YR, Davey A, Huang E, Zhang L, Crocetti J, Sandoval G, Joyce MG, Miceli C, Lukszo J, Aravind L, Swat W, Brzostowski J, Pierce SK. The scaffolding protein synapse-associated protein 97 is required for enhanced signaling through isotype-switched IgG memory B cell receptors. Sci Signal 2012; 5:ra54. [PMID: 22855505 PMCID: PMC3413325 DOI: 10.1126/scisignal.2002820] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
After their first encounter with a foreign antigen, naïve B cells that have immunoglobulin M (IgM) B cell receptors (BCRs) trigger the primary antibody response and the generation of memory B cells with IgG BCRs. When these memory B cells reencounter the same antigen, the cell surface IgG BCRs stimulate their rapid differentiation into plasma cells that release large amounts of IgG antibodies. We showed that the conserved cytoplasmic tail of the IgG BCR, which contains a putative PDZ (postsynaptic density 95/disc large/zona occludens 1)-binding motif, associated with synapse-associated protein 97 (SAP97), a PDZ domain-containing scaffolding molecule that is involved in controlling receptor density and signal strength at neuronal synapses. SAP97 accumulated and bound to IgG BCRs in the immunological synapses that formed in response to B cell engagement with antigen. Knocking down SAP97 in IgG⁺ B cells or mutating the putative PDZ-binding motif in the BCR tail impaired formation of the immunological synapse, initiation of IgG BCR signaling, and downstream activation of the mitogen-activated protein kinase p38. Thus, heightened B cell memory responses are encoded, in part, by a mechanism that involves SAP97 serving as a scaffolding protein in the IgG BCR immunological synapse.
Collapse
Affiliation(s)
- Wanli Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
- School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Elizabeth Chen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Xing Wang Zhao
- School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Zheng Peng Wan
- School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Yi Ren Gao
- School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Angel Davey
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Eric Huang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Lijia Zhang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Jillian Crocetti
- Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine and College of Letters and Sciences, 277B Biomedical Sciences Research Building, 615 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Gabriel Sandoval
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | - M. Gordon Joyce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Carrie Miceli
- Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine and College of Letters and Sciences, 277B Biomedical Sciences Research Building, 615 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Jan Lukszo
- Peptide Synthesis and Analysis Laboratory, RTB, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Wojciech Swat
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Avenue, St Louis, MO 63110, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| |
Collapse
|
70
|
Khalil AM, Cambier JC, Shlomchik MJ. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 2012; 336:1178-81. [PMID: 22555432 PMCID: PMC3777391 DOI: 10.1126/science.1213368] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Germinal centers (GCs) generate memory B and plasma cells, which are essential for long-lived humoral immunity. GC B cells with high-affinity B cell receptors (BCRs) are selectively expanded. To enable this selection, BCRs of such cells are thought to signal differently from those with lower affinity. We show that, surprisingly, most proliferating GC B cells did not demonstrate active BCR signaling. Rather, spontaneous and induced signaling was limited by increased phosphatase activity. Accordingly, both SH2 domain-containing phosphatase-1 (SHP-1) and SH2 domain-containing inositol 5 phosphatase were hyperphosphorylated in GC cells and remained colocalized with BCRs after ligation. Furthermore, SHP-1 was required for GC maintenance. Intriguingly, GC B cells in the cell-cycle G(2) period regained responsiveness to BCR stimulation. These data have implications for how higher-affinity B cells are selected in the GC.
Collapse
Affiliation(s)
- Ashraf M Khalil
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
71
|
Jellusova J, Nitschke L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol 2012; 2:96. [PMID: 22566885 PMCID: PMC3342095 DOI: 10.3389/fimmu.2011.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/28/2011] [Indexed: 01/08/2023] Open
Abstract
B cell antigen receptor (BCR) engagement can lead to many different physiologic outcomes. To achieve an appropriate response, the BCR signal is interpreted in the context of other stimuli and several additional receptors on the B cell surface participate in the modulation of the signal. Two members of the Siglec (sialic acid-binding immunoglobulin-like lectin) family, CD22 and Siglec-G have been shown to inhibit the BCR signal. Recent findings indicate that the ability of these two receptors to bind sialic acids might be important to induce tolerance to self-antigens. Sialylated glycans are usually absent on microbes but abundant in higher vertebrates and might therefore provide an important tolerogenic signal. Since the expression of the specific ligands for Siglec-G and CD22 is tightly regulated and since Siglecs are not only able to bind their ligands in trans but also on the same cell surface this might provide additional mechanisms to control the BCR signal. Although both Siglec-G and CD22 are expressed on B cells and are able to inhibit BCR mediated signaling, they also show unique biological functions. While CD22 is the dominant regulator of calcium signaling on conventional B2 cells and also seems to play a role on marginal zone B cells, Siglec-G exerts its function mainly on B1 cells and influences their lifespan and antibody production. Both Siglec-G and CD22 have also recently been linked to toll-like receptor signaling and may provide a link in the regulation of the adaptive and innate immune response of B cells.
Collapse
|
72
|
McHeyzer-Williams M, Okitsu S, Wang N, McHeyzer-Williams L. Molecular programming of B cell memory. Nat Rev Immunol 2011; 12:24-34. [PMID: 22158414 DOI: 10.1038/nri3128] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of high-affinity B cell memory is regulated through three separable phases, each involving antigen recognition by specific B cells and cognate T helper cells. Initially, antigen-primed B cells require cognate T cell help to gain entry into the germinal centre pathway to memory. Once in the germinal centre, B cells with variant B cell receptors must access antigens and present them to germinal centre T helper cells to enter long-lived memory B cell compartments. Following antigen recall, memory B cells require T cell help to proliferate and differentiate into plasma cells. A recent surge of information - resulting from dynamic B cell imaging in vivo and the elucidation of T follicular helper cell programmes - has reshaped the conceptual landscape surrounding the generation of memory B cells. In this Review, we integrate this new information about each phase of antigen-specific B cell development to describe the newly unravelled molecular dynamics of memory B cell programming.
Collapse
Affiliation(s)
- Michael McHeyzer-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
73
|
Baba Y, Kurosaki T. Impact of Ca2+ signaling on B cell function. Trends Immunol 2011; 32:589-94. [DOI: 10.1016/j.it.2011.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/26/2011] [Accepted: 09/09/2011] [Indexed: 10/16/2022]
|
74
|
Kardava L, Moir S, Wang W, Ho J, Buckner CM, Posada JG, O'Shea MA, Roby G, Chen J, Sohn HW, Chun TW, Pierce SK, Fauci AS. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors. J Clin Invest 2011; 121:2614-24. [PMID: 21633172 DOI: 10.1172/jci45685] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/06/2011] [Indexed: 01/08/2023] Open
Abstract
Chronic immune activation in HIV-infected individuals leads to accumulation of exhausted tissue-like memory B cells. Exhausted lymphocytes display increased expression of multiple inhibitory receptors, which may contribute to the inefficiency of HIV-specific antibody responses. Here, we show that downregulation of B cell inhibitory receptors in primary human B cells led to increased tissue-like memory B cell proliferation and responsiveness against HIV. In human B cells, siRNA knockdown of 9 known and putative B cell inhibitory receptors led to enhanced B cell receptor-mediated (BCR-mediated) proliferation of tissue-like memory but not other B cell subpopulations. The strongest effects were observed with the putative inhibitory receptors Fc receptor-like-4 (FCRL4) and sialic acid-binding Ig-like lectin 6 (Siglec-6). Inhibitory receptor downregulation also led to increased levels of HIV-specific antibody-secreting cells and B cell-associated chemokines and cytokines. The absence of known ligands for FCRL4 and Siglec-6 suggests these receptors may regulate BCR signaling through their own constitutive or tonic signaling. Furthermore, the extent of FCLR4 knockdown effects on BCR-mediated proliferation varied depending on the costimulatory ligand, suggesting that inhibitory receptors may engage specific pathways in inhibiting B cell proliferation. These findings on HIV-associated B cell exhaustion define potential targets for reversing the deleterious effect of inhibitory receptors on immune responses against persistent viral infections.
Collapse
Affiliation(s)
- Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-1576, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Haniuda K, Nojima T, Ohyama K, Kitamura D. Tolerance induction of IgG+ memory B cells by T cell-independent type II antigens. THE JOURNAL OF IMMUNOLOGY 2011; 186:5620-8. [PMID: 21490159 DOI: 10.4049/jimmunol.1100213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory B cells generated during a T cell-dependent immune response rapidly respond to a secondary immunization by producing abundant IgG Abs that bind cognate Ag with high affinity. It is currently unclear whether this heightened recall response by memory B cells is due to augmented IgG-BCR signaling, which has only been demonstrated in the context of naive transgenic B cells. To address this question, we examined whether memory B cells can respond in vivo to Ags that stimulate only through BCR, namely T cell-independent type II (TI-II) Ags. In this study, we show that the TI-II Ag (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll cannot elicit the recall response in mice first immunized with the T cell-dependent Ag NP-chicken γ-globulin. Moreover, the NP-Ficoll challenge in vivo as well as in vitro significantly inhibits a subsequent recall response to NP-chicken γ-globulin in a B cell-intrinsic manner. This NP-Ficoll-mediated tolerance is caused by the preferential elimination of IgG(+) memory B cells binding to NP with high affinity. These data indicate that BCR cross-linking with a TI-II Ag does not activate IgG(+) memory B cells, but rather tolerizes them, identifying a terminal checkpoint of memory B cell differentiation that may prevent autoimmunity.
Collapse
Affiliation(s)
- Kei Haniuda
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | | | | | | |
Collapse
|
76
|
Grb2 regulates B-cell maturation, B-cell memory responses and inhibits B-cell Ca2+ signalling. EMBO J 2011; 30:1621-33. [PMID: 21427701 DOI: 10.1038/emboj.2011.74] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/23/2011] [Indexed: 12/18/2022] Open
Abstract
Grb2 is a ubiquitously expressed adaptor protein, which activates Ras and MAP kinases in growth factor receptor signalling, while in B-cell receptor (BCR) signalling this role is controversial. In B cell lines it was shown that Grb2 can inhibit BCR-induced Ca(2+) signalling. Nonetheless, the physiological role of Grb2 in primary B cells is still unknown. We generated a B-cell-specific Grb2-deficient mouse line, which had a severe reduction of mature follicular B cells in the periphery due to a differentiation block and decreased B-cell survival. Moreover, we found several changes in important signalling pathways: enhanced BCR-induced Ca(2+) signalling, alterations in mitogen-activated protein kinase activation patterns and strongly impaired Akt activation, the latter pointing towards a defect in PI3K signalling. Interestingly, B-cell-specific Grb2-deficient mice showed impaired IgG and B-cell memory responses, and impaired germinal centre formation. Thus, Grb2-dependent signalling pathways are crucial for lymphocyte differentiation processes, as well as for control of secondary humoral immune responses.
Collapse
|
77
|
Engels N, Wienands J. The signaling tool box for tyrosine-based costimulation of lymphocytes. Curr Opin Immunol 2011; 23:324-9. [PMID: 21324660 DOI: 10.1016/j.coi.2011.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 12/31/2022]
Abstract
Triggering lymphocyte effector functions is controlled by a diverse array of immune cell coreceptors that dampen or potentiate the primary activation signal from antigen receptors. Attenuation of lymphocyte activation has been shown to be accomplished by immunoreceptor tyrosine-based inhibition motifs that upon phosphorylation recruit protein or lipid phosphatases. By contrast, a general concept of signal amplification and/or diversification is still out. However, the recent discovery of antigen receptor-intrinsic costimulation by membrane-bound immunoglobulins in class-switched memory B cells identified a consensus phosphorylation motif that can boost antigen-induced signal chains and is also employed by costimulatory receptors on T and Natural Killer cells to provide secondary signals for cellular activation. Here we define a common basis of tyrosine-based lymphocyte costimulation comprising immunoglobulin tail tyrosine (ITT)-like phosphorylation motifs and their proximal effectors, growth factor receptor-bound protein (Grb) 2 and phosphatidylinositol-3 kinase (PI3K) enzymes of class IA.
Collapse
Affiliation(s)
- Niklas Engels
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | | |
Collapse
|
78
|
Kannagi R, Ohmori K, Chen GY, Miyazaki K, Izawa M, Sakuma K. Sialylated and Sulfated Carbohydrate Ligands for Selectins and Siglecs: Involvement in Traffic and Homing of Human Memory T and B Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:549-69. [DOI: 10.1007/978-1-4419-7877-6_29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
79
|
Pierce SK, Liu W. The tipping points in the initiation of B cell signalling: how small changes make big differences. Nat Rev Immunol 2010; 10:767-77. [PMID: 20935671 PMCID: PMC3406597 DOI: 10.1038/nri2853] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
B cells are selected by the binding of antigen to clonally distributed B cell receptors (BCRs), triggering signalling cascades that result in B cell activation. With the recent application of high-resolution live-cell imaging, we are gaining an understanding of the events that initiate BCR signalling within seconds of its engagement with antigen. These observations are providing a molecular explanation for fundamental aspects of B cell responses, including antigen affinity discrimination and the value of class switching, as well as insights into the underlying causes of B cell tumorigenesis. Advances in our understanding of the earliest molecular events that follow antigen binding to the BCR may provide a general framework for the initiation of signalling in the adaptive immune system.
Collapse
Affiliation(s)
- Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | |
Collapse
|
80
|
Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK. Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity 2010; 32:778-89. [PMID: 20620943 DOI: 10.1016/j.immuni.2010.06.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/22/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
Memory B cells express high-affinity, immunoglobulin GB cell receptors (IgG BCRs) that enhance B cell responses, giving rise to the rapid production of high-affinity, IgG antibodies. Despite the central role of IgG BCRs in memory responses, the mechanisms by which the IgG BCRs function to enhance B cell responses are not fully understood. Using high-resolution live-cell imaging, we showed that IgG1 BCRs dramatically enhanced the earliest BCR-intrinsic events that followed within seconds of B cells' encounter with membrane bound antigen, including BCR oligomerization and BCR microcluster growth, leading to Syk kinase recruitment and calcium responses. The enhancement of these early events was dependent on a membrane proximal region of the IgG1 cytoplasmic tail not previously appreciated to play a role in IgG1 BCR signaling. Thus, intrinsic properties of the IgG1 BCR enhance early antigen-driven events that ultimately translate into heightened signaling.
Collapse
Affiliation(s)
- Wanli Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
81
|
N-linked glycosylation selectively regulates autonomous precursor BCR function. Nat Immunol 2010; 11:759-65. [PMID: 20622883 DOI: 10.1038/ni.1903] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/15/2010] [Indexed: 11/08/2022]
Abstract
Developing B cells express distinct classes of B cell antigen receptors (BCRs) that differ in their heavy chain (HC). Although only muHC is expressed in early stages, deltaHC-containing BCRs dominate on the surface of mature B cells. The reason for the tightly regulated expression of these receptors is poorly understood. Here we show that muHC was specifically required for precursor BCR (pre-BCR) function and that deltaHC was unable to form a functional pre-BCR. A conserved asparagine (N)-linked glycosylation site at position 46 (N46) in the first conserved domain of muHC was absolutely required for pre-BCR function, and swapping that domain with deltaHC resulted in a functional deltaHC-containing pre-BCR. When tested in the context of the BCR, muHC with a mutant N46 showed normal function, which indicated that N46-glycosylation is specifically required for pre-BCR function. Our results suggest an unexpected mode of pre-BCR function, in which binding of the surrogate light chain to N46 mediates autonomous crosslinking and, concomitantly, receptor formation.
Collapse
|
82
|
Liu W, Sohn HW, Tolar P, Pierce SK. It's all about change: the antigen-driven initiation of B-cell receptor signaling. Cold Spring Harb Perspect Biol 2010; 2:a002295. [PMID: 20591989 DOI: 10.1101/cshperspect.a002295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
B-cell responses are initiated by the binding of foreign antigens to the clonally distributed B-cell receptors (BCRs) resulting in the triggering of signaling cascades that activate a variety of genes associated with B-cell activation. Although we now understand the molecular nature of the signaling pathways in considerable detail what remains only poorly understood are the mechanisms by which the information that antigen has bound to the BCR ectodomain is transduced across the B-cell membrane to the BCR cytoplasmic domains to trigger signaling. To a large part this gap in knowledge is because of the paucity of techniques to temporally and spatially resolve changes in the behavior of the BCR that occur within several seconds of antigen binding. With the advent of new live-cell imaging technologies we are gaining our first clear views of the events that lead up to the triggering of BCR signaling cascades. These events may provide potential new targets for therapeutic intervention in disease involving hyper or chronic activation of B cells.
Collapse
Affiliation(s)
- Wanli Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | |
Collapse
|
83
|
Abstract
The growth factor receptor-bound protein 2 (Grb2) is a ubiquitously expressed and evolutionary conserved adapter protein possessing a plethora of described interaction partners for the regulation of signal transduction. In B lymphocytes, the Grb2-mediated scaffolding function controls the assembly and subcellular targeting of activating as well as inhibitory signalosomes in response to ligation of the antigen receptor. Also, integration of simultaneous signals from B-cell coreceptors that amplify or attenuate antigen receptor signal output relies on Grb2. Hence, Grb2 is an essential signal integrator. The key question remains, however, of how pathway specificity can be maintained during signal homeostasis critically required for the balance between immune cell activation and tolerance induction. Here, we summarize the molecular network of Grb2 in B cells and introduce a proteomic approach to elucidate the interactome of Grb2 in vivo.
Collapse
Affiliation(s)
- Konstantin Neumann
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
84
|
Ishiura N, Nakashima H, Watanabe R, Kuwano Y, Adachi T, Takahashi Y, Tsubata T, Okochi H, Tamaki K, Tedder TF, Fujimoto M. Differential phosphorylation of functional tyrosines in CD19 modulates B-lymphocyte activation. Eur J Immunol 2010; 40:1192-204. [PMID: 20101619 DOI: 10.1002/eji.200939848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD19 is a B-cell transmembrane molecule that is critical for B-cell activation. CD19 serves as a scaffold protein for key signal transduction molecules including Lyn, PI3K, and Vav, by providing docking sites for these molecules via phosphorylation of CD19-Y(513), CD19-Y(482), and CD19-Y(391). We investigated the process of CD19 tyrosine phophorylation during B-cell activation using Ab specific for each of these phosphorylated tyrosines. BCR engagement induced differential tyrosine phosphorylation, as CD19-Y(513) phophorylation occurred first, and CD19-Y(482) phosphorylation was delayed and transient. Different BCR isotypes exhibited distinct patterns of CD19 phosphorylation: IgG-BCR ligation resulted in faster phosphorylation of CD19-Y(513) and more intense phosphorylation of CD19-Y(391) than IgM-BCR ligation. This affected CD19-mediated downstream pathways involving Vav, PI3K, and Akt. Additionally, the phosphorylation profile of CD19 differed distinctly according to its plasma membrane location. CD19 phosphorylated at Y(513) was almost exclusively located within lipid rafts, whereas phosphorylated Y(482) and Y(391) were found both inside and outside of the rafts. Furthermore, the phosphorylation of all three tyrosines was remarkably enhanced and prolonged following the simultaneous stimulation of BCR and CD40. Thus, variations in phosphorylation patterns may contribute to the complexity of CD19-regulated signal transduction.
Collapse
Affiliation(s)
- Nobuko Ishiura
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Premature replacement of mu with alpha immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation. Proc Natl Acad Sci U S A 2010; 107:3064-9. [PMID: 20133609 DOI: 10.1073/pnas.0912393107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sequentially along B cell differentiation, the different classes of membrane Ig heavy chains associate with the Ig alpha/Ig beta heterodimer within the B cell receptor (BCR). Whether each Ig class conveys specific signals adapted to the corresponding differentiation stage remains debated. We investigated the impact of the forced expression of an IgA-class receptor throughout murine B cell differentiation by knocking in the human C alpha Ig gene in place of the S mu region. Despite expression of a functional BCR, homozygous mutant mice showed a partial developmental blockade at the pro-B/pre-BI and large pre-BII cell stages, with decreased numbers of small pre-BII cells. Beyond this stage, peripheral B cell compartments of reduced size developed and allowed specific antibody responses, whereas mature cells showed constitutive activation and a strong commitment to plasma cell differentiation. Secreted IgA correctly assembled into polymers, associated with the murine J chain, and was transported into secretions. In heterozygous mutants, cells expressing the IgA allele competed poorly with those expressing IgM from the wild-type allele and were almost undetectable among peripheral B lymphocytes, notably in gut-associated lymphoid tissues. Our data indicate that the IgM BCR is more efficient in driving early B cell education and in mucosal site targeting, whereas the IgA BCR appears particularly suited to promoting activation and differentiation of effector plasma cells.
Collapse
|
86
|
Man RY, Onodera T, Komatsu E, Tsubata T. Augmented B lymphocyte response to antigen in the absence of antigen-induced B lymphocyte signaling in an IgG-transgenic mouse line. PLoS One 2010; 5:e8815. [PMID: 20098688 PMCID: PMC2809105 DOI: 10.1371/journal.pone.0008815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 11/27/2009] [Indexed: 01/09/2023] Open
Abstract
IgG-containing B cell antigen receptor (IgG-BCR), the BCR mostly expressed on memory B cells, contains a distinct signaling function from IgM-BCR or IgD-BCR expressed on naïve B cells. Because naïve B cells transgenic for IgG exhibit augmented response to antigens similar to memory B cells, the distinct signaling function of IgG-BCR appears to play a role in augmented antibody responses of memory B cells. However, how IgG-BCR signaling augments B cell responses is not yet well understood. Here we demonstrate that B cells from IgG-transgenic mice are anergic with defect in generation of BCR signaling upon BCR ligation. However, these IgG-transgenic B cells generate markedly augmented antibody response to a T cell-dependent antigen, probably due to hyper-responsiveness to a T cell-derived signal through CD40. Both BCR signaling defect and augmented response to CD40 ligation are partially restored in xid IgG-transgenic mice in which BCR signaling is down-modulated due to a loss-of-function mutation in the tyrosine kinase Btk crucial for BCR signaling. Thus, IgG-BCR induces augmented B cell responses in the absence of antigen-induced BCR signaling probably through high ligand-independent BCR signaling that may “idle” B cells to make them ready to respond to T cell help. This finding strongly suggests a crucial role of ligand-independent signaling in receptor function.
Collapse
Affiliation(s)
- Rong-Yong Man
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taishi Onodera
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Emi Komatsu
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Tsubata
- Laboratory of Immunology, Graduate School of Biomedical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
87
|
Engels N, König LM, Heemann C, Lutz J, Tsubata T, Griep S, Schrader V, Wienands J. Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells. Nat Immunol 2009; 10:1018-25. [PMID: 19668218 DOI: 10.1038/ni.1764] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/04/2009] [Indexed: 12/27/2022]
Abstract
The improved antibody responses of class-switched memory B cells depend on enhanced signaling from their B cell antigen receptors (BCRs). However, BCRs on both naive and antigen-experienced B cells use the canonical immunoglobulin-associated alpha and beta-protein signaling subunits. Here we identified a BCR isotype-specific signal-amplification mechanism. Whereas immunoglobulin M (IgM)-containing BCRs initiated intracellular signals exclusively through immunoglobulin-associated alpha- and beta-proteins, IgG- and IgE-containing BCRs also used a conserved tyrosine residue in the cytoplasmic segments of immunoglobulin heavy chains. When phosphorylated, this tyrosine recruited the adaptor Grb2, resulting in sustained protein kinase activation and prolonged generation of second messengers, which together culminated in enhanced B cell proliferation. Hence, membrane-bound IgG and IgE exert antigen recognition as well as costimulatory functions, thereby rendering memory B cells less dependent on T cell help.
Collapse
Affiliation(s)
- Niklas Engels
- Institute of Cellular and Molecular Immunology, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
88
|
|
89
|
Hikida M, Casola S, Takahashi N, Kaji T, Takemori T, Rajewsky K, Kurosaki T. PLC-gamma2 is essential for formation and maintenance of memory B cells. ACTA ACUST UNITED AC 2009; 206:681-9. [PMID: 19273623 PMCID: PMC2699133 DOI: 10.1084/jem.20082100] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Resting antigen-experienced memory B cells are thought to be responsible for the more rapid and robust antibody responses after antigen reencounter, which are the hallmark of memory humoral responses. The molecular basis for the development and survival of memory B cells remains largely unknown. We report that phospholipase C (PLC) γ2 is required for efficient formation of germinal center (GC) and memory B cells. Moreover, memory B cell homeostasis is severely hampered by inducible loss of PLC-γ2. Accordingly, mice with a conditional deletion of PLC-γ2 in post-GC B cells had an almost complete abrogation of the secondary antibody response. Collectively, our data suggest that PLC-γ2 conveys a survival signal to GC and memory B cells and that this signal is required for a productive secondary immune response.
Collapse
Affiliation(s)
- Masaki Hikida
- Laboratory for Lymphocyte Differentiation, Research Center for Allergy and Immunology, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
90
|
Edry E, Azulay-Debby H, Melamed D. TOLL-like receptor ligands stimulate aberrant class switch recombination in early B cell precursors. Int Immunol 2008; 20:1575-85. [PMID: 18974086 DOI: 10.1093/intimm/dxn117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TOLL-like receptor (TLR) ligands stimulate class switch recombination (CSR) in mature B cells. We showed earlier that developing B cells in the bone marrow (BM) express TLR9 and are responsive to CpG DNA. Since CSR is a critical process for synthesis of effector antibodies, we studied the competence of precursor B cells to undergo CSR in response to TLR ligands, and the regulation of these cells. We found that CSR is induced throughout B lymphopoiesis in response to CpG and to LPS. However, sequencing analysis revealed aberrant joining of the switch junctions. In addition, we found that this CSR is independent of IgM expression and/or VDJ assembly and is directed to a specific isotype by cytokines. Finally, we found that activation of the switched precursor B cells is regulated by Fas. Thus, BM B cells can be activated by TLR ligands to undergo CSR and to secrete non-IgM antibodies. However, the effector potential of these cells is regulated by the Fas pathway.
Collapse
Affiliation(s)
- Efrat Edry
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
91
|
Li Y, Chen F, Putt M, Koo YK, Madaio M, Cambier JC, Cohen PL, Eisenberg RA. B cell depletion with anti-CD79 mAbs ameliorates autoimmune disease in MRL/lpr mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:2961-72. [PMID: 18713966 DOI: 10.4049/jimmunol.181.5.2961] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MRL/lpr mice develop a spontaneous systemic lupus erythematosus-like autoimmune syndrome due to a dysfunctional Fas receptor, with contributions from other less well-defined genetic loci. The removal of B cells by genetic manipulation not only prevents autoantibody formation, but it also results in substantially reduced T cell activation and kidney inflammation. To determine whether B cell depletion by administration of Abs is effective in lupus mice with an intact immune system and established disease, we screened several B cell-specific mAbs and found that a combination of anti-CD79alpha and anti-CD79beta Abs was most effective at depleting B cells in vivo. Anti-CD79 therapy started at 4-5 mo of age in MRL/lpr mice significantly decreased B cells (B220(+)CD19(+)) in peripheral blood, bone marrow, and spleens. Treated mice also had a significant increase in the number of both double-negative T cells and naive CD4(+) T cells, and a decreased relative abundance of CD4(+) memory cells. Serum anti-chromatin IgG levels were significantly decreased compared with controls, whereas serum anti-dsDNA IgG, total IgG, or total IgM were unaffected. Overall, survival was improved with lower mean skin scores and significantly fewer focal inflammatory infiltrates in submandibular salivary glands and kidneys. Anti-CD79 mAbs show promise as a potential treatment for systemic lupus erythematosus and as a model for B cell depletion in vivo.
Collapse
Affiliation(s)
- Yongmei Li
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Antibody class switching occurs in mature B cells in response to antigen stimulation and costimulatory signals. It occurs by a unique type of intrachromosomal deletional recombination within special G-rich tandem repeated DNA sequences [called switch, or S, regions located upstream of each of the heavy chain constant (C(H)) region genes, except Cdelta]. The recombination is initiated by the B cell-specific activation-induced cytidine deaminase (AID), which deaminates cytosines in both the donor and acceptor S regions. AID activity converts several dC bases to dU bases in each S region, and the dU bases are then excised by the uracil DNA glycosylase UNG; the resulting abasic sites are nicked by apurinic/apyrimidinic endonuclease (APE). AID attacks both strands of transcriptionally active S regions, but how transcription promotes AID targeting is not entirely clear. Mismatch repair proteins are then involved in converting the resulting single-strand DNA breaks to double-strand breaks with DNA ends appropriate for end-joining recombination. Proteins required for the subsequent S-S recombination include DNA-PK, ATM, Mre11-Rad50-Nbs1, gammaH2AX, 53BP1, Mdc1, and XRCC4-ligase IV. These proteins are important for faithful joining of S regions, and in their absence aberrant recombination and chromosomal translocations involving S regions occur.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-012, USA.
| | | | | |
Collapse
|
93
|
Waisman A, Croxford AL, Demircik F. New tools to study the role of B cells in cytomegalovirus infections. Med Microbiol Immunol 2008; 197:145-149. [PMID: 18330599 DOI: 10.1007/s00430-008-0088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Indexed: 01/08/2023]
Abstract
B cells were previously shown to mediate partial protection against CMV infection, as in the absence of B cells, latently infected mice were more susceptible to virus reactivation. It remains unclear if this effect stems from the loss of B cells as antibody producers or as antigen presenting cells. To address this fundamental question, we propose to make use of new mouse models that allow conditional ablation of B cells or that allow for the generation of mice with B cells that are not able to produce antibodies.
Collapse
Affiliation(s)
- Ari Waisman
- 1st Medical Department, University of Mainz, Obere-Zahlbacherstr. 63, 55131 Mainz, Germany.
| | | | | |
Collapse
|
94
|
Onodera T, Poe JC, Tedder TF, Tsubata T. CD22 regulates time course of both B cell division and antibody response. THE JOURNAL OF IMMUNOLOGY 2008; 180:907-13. [PMID: 18178830 DOI: 10.4049/jimmunol.180.2.907] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because pathogens induce infectious symptoms in a time-dependent manner, a rapid immune response is beneficial for defending hosts from pathogens, especially those inducing acute infectious diseases. However, it is largely unknown how the time course of immune responses is regulated. In this study, we demonstrate that B cells deficient in the inhibitory coreceptor CD22 undergo accelerated cell division after Ag stimulation, resulting in rapid generation of plasma cells and Ab production. This finding indicates that CD22 regulates the time course of B cell responses and suggests that CD22 is a good target to shorten the time required for Ab production, thereby augmenting host defense against acute infectious diseases as "universal vaccination."
Collapse
Affiliation(s)
- Taishi Onodera
- Laboratory of Immunology, School of Biomedical Science, Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
95
|
LMP1 signaling can replace CD40 signaling in B cells in vivo and has unique features of inducing class-switch recombination to IgG1. Blood 2008; 111:1448-55. [DOI: 10.1182/blood-2007-10-117655] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe Epstein-Barr virus (EBV) protein LMP1 is considered to be a functional homologue of the CD40 receptor. However, in contrast to the latter, LMP1 is a constitutively active signaling molecule. To compare B cell–specific LMP1 and CD40 signaling in an unambiguous manner, we generated transgenic mice conditionally expressing a CD40/LMP1 fusion protein, which retained the LMP1 cytoplasmic tail but has lost the constitutive activity of LMP1 and needs to be activated by the CD40 ligand. We show that LMP1 signaling can completely substitute CD40 signaling in B cells, leading to normal B-cell development, activation, and immune responses including class-switch recombination, germinal center formation, and somatic hypermutation. In addition, the LMP1-signaling domain has a unique property in that it can induce class-switch recombination to IgG1 independent of cytokines. Thus, our data indicate that LMP1 has evolved to imitate T-helper cell function allowing activation, proliferation, and differentiation of EBV-infected B cells independent of T cells.
Collapse
|
96
|
Ilić V, Milosević-Jovcić N, Petrović S, Marković D, Stefanović G, Ristić T. Glycosylation of IgG B cell receptor (IgG BCR) in multiple myeloma: relationship between sialylation and the signal activity of IgG BCR. Glycoconj J 2008; 25:383-92. [PMID: 18188696 DOI: 10.1007/s10719-007-9101-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Little is known about the glycosylation of the isotype switched B cell receptor (BCR) in multiple myeloma, and the way it might affect receptor function. In this work IgG BCRs isolated from the individual lysates of peripheral blood lymphocytes (PBL) of 32 patients with IgG multiple myeloma and healthy controls were investigated for the expression of sialic acid (SA), galactose (Gal) and N-acetylglucosamine (GlcNAc), the sugars known to specify the glycoforms of human serum IgG. The degree of glycosylation and signaling status of all 32 isolated myeloma IgG BCRs were correlated and compared with the glycosylation of the IgG paraproteins isolated from sera of the same patients. It was shown that BCR IgG in myeloma is more heavily sialylated when compared with normal controls, that the increased sialylation of IgG BCR is associated with higher levels of tyrosine phosphorylation (signaling activity) of the IgG BCR supramolecular complex and that BCR IgG and serum IgG paraprotein from the same patient differed in all cases in the levels of terminal sugar expression. The results suggest that the development of the malignant clone in MM from post-switch B cells expressing IgG BCR at their surfaces to plasma cells secreting IgG paraprotein may be followed by permanent glycosylation changes in the IgG molecules.
Collapse
Affiliation(s)
- Vesna Ilić
- Institute for Medical Research, University of Belgrade, Dr Subotića 4, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
97
|
Conformational plasticity and navigation of signaling proteins in antigen-activated B lymphocytes. Adv Immunol 2008; 97:251-81. [PMID: 18501772 DOI: 10.1016/s0065-2776(08)00005-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past two decades our view of the B cell antigen receptor (BCR) has fundamentally changed. Being initially regarded as a mute antibody orphan of the B cell surface, the BCR turned out to be a complex multimolecular machine monitoring almost all stages of B cell development, selection, and activation through a plethora of ubiquitously and cell-type-specific effector proteins. A comprehensive understanding of the many BCR signaling facets is still out but a few common biochemical principles outlined in this review operate at the level of receptor activation and orchestrate specific wiring of intracellular transducer cascades. First, initiation and processing of antigen-induced signal transduction relies on transient conformational changes in the signaling proteins to trigger their physical interaction with downstream elements. Second, this dynamic assembly of signalosomes occurs at distinct subcellular locations, most prominently the plasma membrane, which requires dynamic relocalization of one or more of the engaged molecules. For both, precise complex formation and efficient subcellular targeting, B cell signaling components are equipped with a variety of protein interaction domains. Here we provide an overview on how these simple rules are applied by a limited number of transmembrane and cytosolic proteins to convert BCR ligation into Ca(2+) mobilization and Ras activation in an adjustable manner.
Collapse
|
98
|
Bhattacharya D, Cheah MT, Franco CB, Hosen N, Pin CL, Sha WC, Weissman IL. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation. THE JOURNAL OF IMMUNOLOGY 2007; 179:6808-19. [PMID: 17982071 DOI: 10.4049/jimmunol.179.10.6808] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford Cancer Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
99
|
Edry E, Koralov SB, Rajewsky K, Melamed D. Spontaneous class switch recombination in B cell lymphopoiesis generates aberrant switch junctions and is increased after VDJ rearrangement. THE JOURNAL OF IMMUNOLOGY 2007; 179:6555-60. [PMID: 17982044 DOI: 10.4049/jimmunol.179.10.6555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mature B cells replace the mu constant region of the H chain with a downstream isotype in a process of class switch recombination (CSR). Studies suggest that CSR induction is limited to activated mature B cells in the periphery. Recently, we have shown that CSR spontaneously occur in B lymphopoiesis. However, the mechanism and regulation of it have not been defined. In this study, we show that spontaneous CSR occurs at all stages of B cell development and generates aberrant joining of the switch junctions as revealed by: 1) increased load of somatic mutations around the CSR break points, 2) reduced sequence overlaps at the junctions, and 3) excessive switch region deletion. In addition, we found that incidence of spontaneous CSR is increased in cells carrying VDJ rearrangements. Our results reveal major differences between spontaneous CSR in developing B cells and CSR induced in mature B cells upon activation. These differences can be explained by deregulated expression or function of activation-induced cytidine deaminase early in B cell development.
Collapse
Affiliation(s)
- Efrat Edry
- Department of Immunology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
100
|
Abstract
CD22 is an inhibitory coreceptor of the B-cell receptor (BCR), and plays a critical role in establishing signalling thresholds for B-cell activation. Like other coreceptors, the ability of CD22 to modulate B-cell signalling is critically dependent upon its proximity to the BCR, and this in turn is governed by the binding of its extracellular domain to alpha2,6-linked sialic acid ligands. Manipulation of CD22 ligand binding in various experimental settings has profound effects on B-cell signalling, but as yet there is no complete model for how ligand binding in vivo controls normal CD22 function. Several elegant studies have recently shed light on this issue, although the results appear to suggest two mutually exclusive models for the role of ligand binding; in either promoting or inhibiting, CD22 function. We shall therefore discuss these results in detail, and suggest possible approaches by which these conflicting experimental findings might be reconciled. We shall also consider a second important issue in CD22 biology, which relates to the role that defects in this receptor might play in mediating autoimmune disease. We review the current evidence for this, and discuss the importance of genetic background in modifying CD22 function and predisposition to autoimmunity.
Collapse
Affiliation(s)
- Jennifer A Walker
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom.
| | | |
Collapse
|