51
|
Liu Y, Wang DK, Jiang DZ, Qin X, Xie ZD, Wang QK, Liu M, Chen LM. Cloning and functional characterization of novel variants and tissue-specific expression of alternative amino and carboxyl termini of products of slc4a10. PLoS One 2013; 8:e55974. [PMID: 23409100 PMCID: PMC3567025 DOI: 10.1371/journal.pone.0055974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the electroneutral Na+/HCO3− cotransporter NBCn2 (SLC4A10) is predominantly expressed in the central nervous system (CNS). The physiological and pathological significances of NBCn2 have been well recognized. However, little is known about the tissue specificity of expression of different NBCn2 variants. Moreover, little is known about the expression of NBCn2 proteins in systems other than CNS. Here, we identified a set of novel Slc4a10 variants differing from the originally described ones by containing a distinct 5′ untranslated region encoding a new extreme amino-terminus (Nt). Electrophysiology measurements showed that both NBCn2 variants with alternative Nt contain typical electroneutral Na+-coupled HCO3− transport activity in Xenopus oocytes. Luciferase reporter assay showed that Slc4a10 contains two alternative promoters responsible for expression of the two types of NBCn2 with distinct extreme Nt. Western blotting showed that NBCn2 proteins with the original Nt are primarily expressed in CNS, whereas those with the novel Nt are predominantly expressed in the kidney and to a lesser extent in the small intestine. Due to alternative splicing, the known NBCn2 variants contain two types of carboxyl-termini (CT) differing in the optional inclusion of a PDZ-binding motif. cDNA cloning showed that virtually all NBCn2 variants expressed in epithelial tissues contain, but the vast majority of those from the neural tissues lack the PDZ-binding motif. We conclude that alternative transcription and splicing of Slc4a10 products are regulated in a tissue-specific manner. Our findings provide critical insights that will greatly influence the study of the physiology of NBCn2.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Deng-Ke Wang
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - De-Zhi Jiang
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhang-Dong Xie
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Qing K. Wang
- Department of Genetics and Developmental Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Mugen Liu
- Department of Genetics and Developmental Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
52
|
Thornell IM, Wu J, Liu X, Bevensee MO. PIP2 hydrolysis stimulates the electrogenic Na+-bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus laevis oocytes. J Physiol 2012; 590:5993-6011. [PMID: 22966160 DOI: 10.1113/jphysiol.2012.242479] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Electrogenic Na(+)-bicarbonate cotransporter NBCe1 variants contribute to pH(i) regulation, and promote ion reabsorption or secretion by many epithelia. Most Na(+)-coupled bicarbonate transporter (NCBT) families such as NBCe1 contain variants with differences primarily at the cytosolic N and/or C termini that are likely to impart on the transporters different modes of regulation. For example, N-terminal regions of NBCe1 autoregulate activity. Our group previously reported that cytosolic phosphatidylinositol 4,5-bisphosphate (PIP(2)) stimulates heterologously expressed rat NBCe1-A in inside-out macropatches excised from Xenopus laevis oocytes. In the current study on whole oocytes, we used the two-electrode voltage-clamp technique, as well as pH- and voltage-sensitive microelectrodes, to characterize the effect of injecting PIP(2) on the activity of heterologously expressed NBCe1-A, -B, or -C. Injecting PIP(2) (10 μM estimated final) into voltage-clamped oocytes stimulated NBC-mediated, HCO(3)(-)-induced outward currents by >100% for the B and C variants, but not for the A variant. The majority of this stimulation involved PIP(2) hydrolysis and endoplasmic reticulum (ER) Ca(2+) release. Stimulation by PIP(2) injection was mimicked by injecting IP(3), but inhibited by either applying the phospholipase C (PLC) inhibitor U73112 or depleting ER Ca(2+) with prolonged thapsigargin/EGTA treatment. Stimulating the activity of store-operated Ca(2+) channels (SOCCs) to trigger a Ca(2+) influx mimicked the PIP(2)/IP(3) stimulation of the B and C variants. Activating the endogenous G(q) protein-coupled receptor in oocytes with lysophosphatidic acid (LPA) also stimulated the B and C variants in a Ca(2+)-dependent manner, although via an increase in surface expression for the B variant. In simultaneous voltage-clamp and pH(i) studies on NBCe1-C-expressing oocytes, LPA increased the NBC-mediated pH(i)-recovery rate from a CO(2)-induced acid load by ∼80%. Finally, the general kinase inhibitor staurosporine completely inhibited the IP(3)-induced stimulation of NBCe1-C. In summary, injecting PIP(2) stimulates the activity of NBCe1-B and -C expressed in oocytes through an increase in IP(3)/Ca(2+) that involves a staurosporine-sensitive kinase. In conjunction with our previous macropatch findings, PIP(2) regulates NBCe1 through a dual pathway involving both a direct stimulatory effect of PIP(2) on at least NBCe1-A, as well as an indirect stimulatory effect of IP(3)/Ca(2+) on the B and C variants.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
53
|
Yamaguchi S, Ishikawa T. IRBIT reduces the apparent affinity for intracellular Mg²⁺ in inhibition of the electrogenic Na⁺-HCO₃⁻ cotransporter NBCe1-B. Biochem Biophys Res Commun 2012; 424:433-8. [PMID: 22771795 DOI: 10.1016/j.bbrc.2012.06.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 11/27/2022]
Abstract
The electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1-B can be regulated by intracellular Mg(2+) (Mg(2+)(i)). We previously reported that under whole-cell voltage-clamp conditions, bovine NBCe1-B (bNBCe1-B) currents heterologously expressed in mammalian cells are strongly inhibited by Mg(2+)(i), and the inhibition is likely mediated by electrostatic interaction and relieved by truncation of the cytosolic NBCe1-B specific N-terminal region. Intriguingly, NBCe1-B-like currents natively expressed in bovine parotid acinar (BPA) cells are much less sensitive to Mg(2+)(i) inhibition than bNBCe1-B currents. Here, we hypothesized that this apparent discrepancy may involve IRBIT, a previously identified NBCe1-B-interacting protein. RT-PCR, Western blot and immunofluorescence confocal microscopy revealed that IRBIT was not only expressed in the cytosol, but also colocalized with NBCe1-B in the region of plasma membranes of BPA cells. IRBIT was coimmunoprecipitated with NBCe1-B by an anti-NBCe1 antibody in bovine parotid cell lysate. Whole-cell patch-clamp experiments showed that coexpression of IRBIT lowered the Mg(2+)(i) sensitivity of bNBCe1-B currents stably expressed in HEK293 cells. Collectively, these results suggest that IRBIT may reduce the apparent affinity for Mg(2+)(i) in inhibition of NBCe1-B activity in mammalian cells.
Collapse
Affiliation(s)
- Soichiro Yamaguchi
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
54
|
Parker MD, Qin X, Williamson RC, Toye AM, Boron WF. HCO(3)(-)-independent conductance with a mutant Na(+)/HCO(3)(-) cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis. J Physiol 2012; 590:2009-34. [PMID: 22331414 PMCID: PMC3573318 DOI: 10.1113/jphysiol.2011.224733] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/07/2012] [Indexed: 12/14/2022] Open
Abstract
The renal electrogenic Na(+)/HCO(3)(−) cotransporter (NBCe1-A) contributes to the basolateral step of transepithelial HCO(3)(−) reabsorption in proximal tubule epithelia, contributing to the buffering of blood pH. Elsewhere in the body (e.g. muscle cells) NBCe1 variants contribute to, amongst other processes, maintenance of intracellular pH. Others have described a homozygous mutation in NBCe1 (NBCe1-A p.Ala799Val) in an individual with severe proximal renal tubular acidosis (pRTA; usually associated with defective HCO(3)(−) reabsorption in proximal tubule cells) and hypokalaemic periodic paralysis (hypoPP; usually associated with leaky cation channels in muscle cells). Using biotinylation and two-electrode voltage-clamp on Xenopus oocytes expressing NBCe1, we demonstrate that the mutant NBCe1-A (A(A799V)) exhibits a per-molecule transport defect that probably contributes towards the observed pRTA. Furthermore, we find that A(A799V) expression is associated with an unusual HCO(3)(−)-independent conductance that, if associated with mutant NBCe1 in muscle cells, could contribute towards the appearance of hypokalaemic paralysis in the affected individual. We also study three novel lab mutants of NBCe1-A: p.Ala799Ile, p.Ala799Gly and p.Ala799Ser. All three exhibit a per-molecule transport defect, but only A(A799I) exhibits an A(A799V)-like ion conductance. A(A799G) and A(A799S) exhibit unusual outward rectification in their HCO(3)(−)-dependent conductance and A(A799G) exhibits reduced sensitivity to both DIDS and tenidap. A799G is the first mutation shown to affect the apparent tenidap affinity of NBCe1. Finally we show that A(A799V) and A(A799I), which accumulate poorly in the plasma membrane of oocytes, exhibit signs of abnormal intracellular accumulation in a non-polarized renal cell-line.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
55
|
Liu Y, Wang DK, Chen LM. The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 2012; 86:99. [PMID: 22262691 DOI: 10.1095/biolreprod.111.096826] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HCO(3)(-) plays critically important roles during virtually the entire process of reproduction in mammals, including spermatogenesis, sperm capacitation, fertilization, and development of early stage embryos. Therefore, the acid-base balance in the male and female reproductive tracts must be finely modulated. The fluid milieu in the epididymis is acidic, containing very low concentration of HCO(3)(-). In this acidic low HCO(3)(-) environment, mature sperm are rendered quiescent in the epididymis. In contrast, the luminal fluid in the female uterus and oviduct is alkaline, with very high concentration of HCO(3)(-) that is essential for sperm to fulfill fertilization. HCO(3)(-) transporter of solute carrier 4 (SLC4) and SLC26 families represent the major carriers for HCO(3)(-) transport across the plasma membrane. These transporters play critical roles in intracellular pH regulation and transepithelial HCO(3)(-) transport. The physiological roles of these transporters in mammalian reproduction are of fundamental interest to investigators. Here we review recent progress in understanding the expression of HCO(3)(-) transporters in reproductive tract tissues as well as the physiological roles of these transporters in mammalian reproduction.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biological Sciences, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology School of Life Science and Technology, Wuhan, China
| | | | | |
Collapse
|
56
|
Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 2012; 92:39-74. [PMID: 22298651 DOI: 10.1152/physrev.00011.2011] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fluid and HCO(3)(-) secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO(3)(-) secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren's syndrome, and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO(3)(-) secretion, in particular by secretory glands. Fluid and HCO(3)(-) secretion by secretory glands is a two-step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl(-) and secrete HCO(3)(-). The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete a small amount of NaCl-rich fluid, while the duct absorbs the Cl(-) and secretes HCO(3)(-) and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO(3)(-) secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that is driven by active Cl(-) secretion and contains high concentrations of Na(+) and Cl(-). The salivary glands duct absorbs both the Na(+) and Cl(-) and secretes K(+) and HCO(3)(-). In this review, we focus on the molecular mechanism of fluid and HCO(3)(-) secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and to point out the differences to meet gland-specific secretions.
Collapse
Affiliation(s)
- Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
57
|
Li HC, Kucher V, Li EY, Conforti L, Zahedi KA, Soleimani M. The role of aspartic acid residues 405 and 416 of the kidney isotype of sodium-bicarbonate cotransporter 1 in its targeting to the plasma membrane. Am J Physiol Cell Physiol 2012; 302:C1713-30. [PMID: 22442137 DOI: 10.1152/ajpcell.00147.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NH(2) terminus of the sodium-bicarbonate cotransporter 1 (NBCe1) plays an important role in its targeting to the plasma membrane. To identify the amino acid residues that contribute to the targeting of NBCe1 to the plasma membrane, polarized MDCK cells were transfected with expression constructs coding for green fluorescent protein (GFP)-tagged NBCe1 NH(2)-terminal deletion mutants, and the localization of GFP-tagged proteins was analyzed by confocal microscopy. Our results indicate that the amino acids between residues 399 and 424 of NBCe1A contain important sequences that contribute to its localization to the plasma membrane. Site-directed mutagenesis studies showed that GFP-NBCe1A mutants D405A and D416A are retained in the cytoplasm of the polarized MDCK epithelial cells. Examination of functional activities of D405A and D416A reveals that their activities are reduced compared with the wild-type NBCe1A. Similarly, aspartic acid residues 449 and 460 of pancreatic NBCe1 (NBCe1B), which correspond to residues 405 and 416 of NBCe1A, are also required for its full functional activity and accurate targeting to the plasma membrane. In addition, while replacement of D416 with glutamic acid did not affect the targeting or functional activity of NBCe1A, substitution of D405 with glutamic acid led to the retention of the mutated protein in the intracellular compartment and impaired functional activity. These studies demonstrate that aspartic acid residues 405 and 416 in the NH(2) terminus of NBCe1A are important in its accurate targeting to the plasma membrane.
Collapse
Affiliation(s)
- Hong C Li
- Department of Medicine, University of Cincinnati, Ohio 45267-0585, USA.
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
SLC4A gene family proteins include bicarbonate transporters that move HCO(3)(-) across the plasma membrane and regulate intracellular pH and transepithelial movement of acid-base equivalents. These transporters are Cl/HCO(3) exchangers, electrogenic Na/HCO(3) cotransporters, electroneutral Na/HCO(3) cotransporters, and Na(+)-driven Cl/HCO(3) exchanger. Studies of the bicarbonate transporters in vitro and in vivo have demonstrated their physiological importance for acid-base homeostasis at the cellular and systemic levels. Recent advances in structure/function analysis have also provided valuable information on domains or motifs critical for regulation, ion translocation, and protein topology. This chapter focuses on the molecular mechanisms of ion transport along with associated structural aspects from mutagenesis of particular residues and from chimeric constructs. Structure/function studies have helped to understand the mechanism by which ion substrates are moved via the transporters. This chapter also describes some insights into the structure of SLC4A1 (AE1) and SLC4A4 (NBCe1) transporters. Finally, as some SLC4A transporters exist in concert with other proteins in the cells, the structural features associated with protein-protein interactions are briefly discussed.
Collapse
Affiliation(s)
- Inyeong Choi
- Department of Physiology, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
59
|
Chang MH, Plata C, Kurita Y, Kato A, Hirose S, Romero MF. Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology. Am J Physiol Cell Physiol 2011; 302:C1083-95. [PMID: 22159080 DOI: 10.1152/ajpcell.00233.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO(3) precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO(3)(-) secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na(+)/HCO(3)(-) cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li(+)/nHCO(3)(-) cotransport; HCO(3)(-) independent, DIDS-insensitive transport; and increased basal intracellular Na(+) accumulation. fNBCe1 is a voltage-dependent Na(+)/nHCO(3)(-) cotransporter that rectifies, independently from the extracellular Na(+) or HCO(3)(-) concentration, around -60 mV. Na(+) removal (0Na(+) prepulse) is necessary to produce the true HCO(3)(-)-elicited current. HCO(3)(-) addition results in huge outward currents with quick current decay. Kinetic analysis of HCO(3)(-) currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher K(m)) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = -80 mV; [HCO(3)(-)] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO(3)(-) secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence.
Collapse
Affiliation(s)
- Min-Hwang Chang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Lee SK, Boron WF, Parker MD. Relief of autoinhibition of the electrogenic Na-HCO(3) [corrected] cotransporter NBCe1-B: role of IRBIT vs.amino-terminal truncation. Am J Physiol Cell Physiol 2011; 302:C518-26. [PMID: 22012331 DOI: 10.1152/ajpcell.00352.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two maneuvers known to stimulate electrogenic sodium bicarbonate cotransporter 1 (NBCe1) activity are 1) deletion from the cytosolic amino-terminus (Nt) of NBCe1-C of an 87-amino acid sequence that contains an autoinhibitory domain (AID); and 2) binding of the protein IRBIT to elements within the same 87-amino acid module in a different variant, NBCe1-B. Helpful to understanding the relationship between these two phenomena would be an appreciation of the relative magnitude of stimulation caused by each maneuver for the same NBCe1 variant. In the present study, we performed two-electrode voltage-clamp on Xenopus oocytes expressing human NBCe1-B constructs, with and without human IRBIT constructs. We find that removal of the AID stimulates NBCe1-B to the same extent as coexpression of wild-type IRBIT. The potency of wild-type IRBIT apparently is reduced by the action of endogenous oocyte protein phosphatases: a mutant IRBIT that cannot be influenced by the action of protein phosphatase-1 stimulates NBCe1-B to an extent 50% greater than can be achieved by removal of the NBCe1-B AID. Thus the stimulatory effect of IRBIT cannot be explained solely by masking of autoinhibitory determinants within the AID. Finally, we find that an NBCe1-B construct that lacks amino acid residues 2-16 of the Nt is fully autoinhibited, but cannot be stimulated by IRBIT, indicating that autoinhibitory and IRBIT-binding determinants within the cytosolic Nt are not identical.
Collapse
Affiliation(s)
- Seong-Ki Lee
- Dept. of Physiology and Biophysics, Case Western Reserve Univ. School of Medicine, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
61
|
Renna MD, Oyadeyi AS, Bossi E, Kottra G, Peres A. Functional and structural determinants of reverse operation in the pH-dependent oligopeptide transporter PepT1. Cell Mol Life Sci 2011; 68:2961-75. [PMID: 21181229 PMCID: PMC11115064 DOI: 10.1007/s00018-010-0604-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/20/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
The functional and structural basis of reverse operation of PepT1 has been studied in Xenopus oocytes expressing the wild-type and mutated forms of this protein. Using brief pulses from a negative holding potential, wild-type and Arg282 mutants exhibit outward currents in the presence of Gly-Gln. The reversal potential of these currents is affected by both pH and substrate concentration, confirming coupled transport in the wild type and in the mutants as well. Long-lasting voltage and current-clamp experiments show that the outward currents are only temporary, and reflect accumulation and/or depletion effects near the membrane. The ability to operate in reverse mode was confirmed in all isoforms by intracellular injection of substrate. The role of Arg282 and Asp341 in the reverse transport was also investigated using charged substrates. Positive Lys-Gly (but not Gly-Lys) showed enhanced transport currents in the Arg282 mutants. In contrast, negative Gly-Asp and Asp-Gly elicited modest currents in all isoforms.
Collapse
Affiliation(s)
- Maria Daniela Renna
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Ayodele Stephen Oyadeyi
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Center for Neurosciences, University of Insubria, 21100 Varese, Italy
| | - Gabor Kottra
- Molecular Nutrition Unit, Technische Universität München, Freising, Germany
| | - Antonio Peres
- Laboratory of Cellular and Molecular Physiology, Dept. of Biotechnology and Molecular Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Center for Neurosciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
62
|
Liu Y, Xu JY, Wang DK, Wang L, Chen LM. Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: a comparative study of NCBT genes. Genomics 2011; 98:112-9. [PMID: 21600280 DOI: 10.1016/j.ygeno.2011.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 04/27/2011] [Indexed: 12/26/2022]
Abstract
Na(+)-coupled HCO(3)(-) transporters (NCBTs) of the SLC4 family play critical roles in pH regulation as well as transepithelial HCO(3)(-) transport. We systematically examined, in the mouse reproductive tract tissues, the mRNA expression of five NCBTs as well as the five NBCe1 (Slc4a4) variants NBCe1-A through -E, of which NBCe1-D and NBCe1-E are novel. Cloning of NBCe1-D and NBCe1-E, both lacking a 27-nucleotide cassette I, reveals a novel alternative splicing unit in the mouse Slc4a4 gene. Transcripts of Slc4a4 lacking cassette I are expressed in diverse murine tissues as shown by RT-PCR analysis and in diverse tissues of other vertebrate species as shown by blast against GenBank database. Genomic sequence analysis indicates that cassette I of SLC4A4 is conserved in all NCBT genes except for SLC4A5, which presumably lost cassette I during its evolution. Our present study represents an important step towards understanding the molecular physiology of NBCe1, and presumably other NCBTs.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biological Sciences, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology,Wuhan, Hubei Province 430074, China
| | | | | | | | | |
Collapse
|
63
|
Expression and distribution of NBCn2 (Slc4a10) splice variants in mouse brain: cloning of novel variant NBCn2-D. Brain Res 2011; 1390:33-40. [PMID: 21439947 DOI: 10.1016/j.brainres.2011.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 11/22/2022]
Abstract
The SLC4A10 gene, which is highly expressed in the mammalian brain, contains two known alternative splicing units, inserts A and B, and is theoretically capable of producing four NBCn2 splice variants: NBCn2-A, -B, -C, and -D. By immunoprecipitation and western blotting, a previous study showed the putative NBCn2-D to be expressed predominantly in the subcortex (SCX) and medulla (MD) of mouse brain. However, no evidence has been provided, in any species, for the existence of a full-length transcript encoding NBCn2-D. In the present study, we report for the first time the cloning of the full-length cDNAs encoding NBCn2-D from mouse SCX and MD. Based on the frequency of bacterial colonies obtained after PCR, we conclude that in SCX, the NBCn2-A transcript is dominant, whereas in MD, NBCn2-B is dominant. NBCn2-D is the least abundant transcript in each of these two brain regions. An analysis based upon the present PCR data as well as the previous immunoprecipitation/western-blot data suggests the following prevalence of NBCn2 variants in total mouse brain: NBCn2-A (~83%), NBCn2-B (~10%), NBCn2-C (~5%), and NBCn2-D (~2%). We also estimate the prevalence of each variant in each of the five brain regions (i.e., cerebral cortex, SCX, cerebellum, hippocampus, and MD). We hypothesize that the expression of different NBCn2 splice variants is characteristic of specific tissue/cells.
Collapse
|
64
|
Abstract
IRBIT (IP(3)Rs binding protein released with IP(3)) is a protein originally identified by the Mikoshiba group as an inhibitor of IP(3) receptors function. Subsequently it was found to have multiple functions and regulate the activity of diverse proteins, including regulation of HCO(3)(-) transporters to coordinate epithelial HCO(3)(-) secretion and to determine localization of the Fip1 subunit of the CPSF complex to regulate mRNA processing. This review highlights the remarkably divers functions of IRBIT that are likely only a fraction of all the potential functions of this protein.
Collapse
|
65
|
Bossi E, Renna MD, Sangaletti R, D'Antoni F, Cherubino F, Kottra G, Peres A. Residues R282 and D341 act as electrostatic gates in the proton-dependent oligopeptide transporter PepT1. J Physiol 2010; 589:495-510. [PMID: 21115649 DOI: 10.1113/jphysiol.2010.200469] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The oligopeptide transporter PepT1 is a protein found in the membrane of the cells of the intestinal walls, and represents the main route through which proteic nutrients are absorbed by the organism. Along the polypeptidic chain of this protein, two oppositely charged amino acids, an arginine in position 282 and an aspartate in position 341 of the sequence, have been hypothesised to form a barrier in the absorption pathway. In this paper we show that appropriate mutations of these amino acids change the properties of PepT1 in a way that confirms that these parts of the protein indeed act as an electrostatic gate in the transport process. The identification of the structural basis of the functional mechanism of this transporter is important because, in addition to its role in nutrient uptake, PepT1 represents a major pathway for the absorption of several therapeutic drugs.
Collapse
Affiliation(s)
- Elena Bossi
- Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
66
|
Majumdar D, Bevensee MO. Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience 2010; 171:951-72. [PMID: 20884330 DOI: 10.1016/j.neuroscience.2010.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/03/2010] [Accepted: 09/14/2010] [Indexed: 12/26/2022]
Abstract
Many cellular processes including neuronal activity are sensitive to changes in intracellular and/or extracellular pH-both of which are regulated by acid-base transporter activity. HCO(3)(-)-dependent transporters are particularly potent regulators of intracellular pH in neurons and astrocytes, and also contribute to the composition of the cerebrospinal fluid (CSF). The molecular physiology of HCO(3)(-) transporters has advanced considerably over the past ∼14 years as investigators have cloned and characterized the function and localization of many Na-Coupled Bicarbonate Transporters of the solute carrier 4 (Slc4) family (NCBTs). In this review, we provide an updated overview of the function and localization of NCBTs in the nervous system. Multiple NCBTs are expressed in neurons and astrocytes in various brain regions, as well as in epithelial cells of the choroid plexus. Characteristics of human patients with SLC4 gene mutations/deletions and results from recent studies on mice with Slc4 gene disruptions highlight the functional importance of NCBTs in neuronal activity, somatosensory function, and CSF production. Furthermore, energy-deficient states (e.g., hypoxia and ischemia) lead to altered expression and activity of NCBTs. Thus, recent studies expand our understanding of the role of NCBTs in regulating the pH and ionic composition of the nervous system that can modulate neuronal activity.
Collapse
Affiliation(s)
- D Majumdar
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
67
|
Zhu Q, Kao L, Azimov R, Abuladze N, Newman D, Pushkin A, Liu W, Chang C, Kurtz I. Structural and functional characterization of the C-terminal transmembrane region of NBCe1-A. J Biol Chem 2010; 285:37178-87. [PMID: 20837482 DOI: 10.1074/jbc.m110.169201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NBCe1-A and AE1 both belong to the SLC4 HCO(3)(-) transporter family. The two transporters share 40% sequence homology in the C-terminal transmembrane region. In this study, we performed extensive substituted cysteine-scanning mutagenesis analysis of the C-terminal region of NBCe1-A covering amino acids Ala(800)-Lys(967). Location of the introduced cysteines was determined by whole cell labeling with a membrane-permeant biotin maleimide and a membrane-impermeant 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) cysteine-reactive reagent. The results show that the extracellular surface of the NBCe1-A C-terminal transmembrane region is minimally exposed to aqueous media with Met(858) accessible to both biotin maleimide and TAMRA and Thr(926)-Ala(929) only to TAMRA labeling. The intracellular surface contains a highly exposed (Met(813)-Gly(828)) region and a cryptic (Met(887)-Arg(904)) connecting loop. The lipid/aqueous interface of the last transmembrane segment is at Asp(960). Our data clearly determined that the C terminus of NBCe1-A contains 5 transmembrane segments with greater average size compared with AE1. Functional assays revealed only two residues in the region of Pro(868)-Leu(967) (a functionally important region in AE1) that are highly sensitive to cysteine substitution. Our findings suggest that the C-terminal transmembrane region of NBCe1-A is tightly folded with unique structural and functional features that differ from AE1.
Collapse
Affiliation(s)
- Quansheng Zhu
- Division of Nephrology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1689, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Taylor JR, Mager EM, Grosell M. Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3- secretion, contributing to marine fish osmoregulation. ACTA ACUST UNITED AC 2010; 213:459-68. [PMID: 20086131 DOI: 10.1242/jeb.029363] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although endogenous CO2 hydration and serosal HCO3- are both known to contribute to the high rates of intestinal HCO3- secretion important to marine fish osmoregulation, the basolateral step by which transepithelial HCO3- secretion is accomplished has received little attention. Isolated intestine HCO3- secretion rates, transepithelial potential (TEP) and conductance were found to be dependent on serosal HCO3- concentration and sensitive to serosal DIDS. Elevated mucosal Cl- concentration had the unexpected effect of reducing HCO3- secretion rates, but did not affect electrophysiology. These characteristics indicate basolateral limitation of intestinal HCO3- secretion in seawater gulf toadfish, Opsanus beta. The isolated intestine has a high affinity for serosal HCO3- in the physiological range (Km=10.2 mmol l(-1)), indicating a potential to efficiently fine-tune systemic acid-base balance. We have confirmed high levels of intestinal tract expression of a basolateral Na+/HCO3- cotransporter of the electrogenic NBCe1 isoform in toadfish (tfNBCe1), which shows elevated expression following salinity challenge, indicating its importance in marine fish osmoregulation. When expressed in Xenopus oocytes, isolated tfNBCe1 has transport characteristics similar to those in the isolated tissue, including a similar affinity for HCO3- (Km=8.5 mmol l(-1)). Reported affinity constants of NBC1 for Na+ are generally much lower than physiological Na+ concentrations, suggesting that cotransporter activity is more likely to be modulated by HCO3- rather than Na+ availability in vivo. These similar functional characteristics of isolated tfNBCe1 and the intact tissue suggest a role of this cotransporter in the high HCO3- secretion rates of the marine fish intestine.
Collapse
Affiliation(s)
- J R Taylor
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA.
| | | | | |
Collapse
|
69
|
Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML. Regulation of pH During Amelogenesis. Calcif Tissue Int 2010; 86:91-103. [PMID: 20016979 PMCID: PMC2809306 DOI: 10.1007/s00223-009-9326-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/24/2009] [Indexed: 12/31/2022]
Abstract
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.
Collapse
Affiliation(s)
- Rodrigo S. Lacruz
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| | - Antonio Nanci
- Faculty of Dentistry, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Ira Kurtz
- David Geffen School Medicine at the University of California at Los Angeles, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095 USA
| | - J. Timothy Wright
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina at Chapel Hill, CB No. 7450 Brauer Hall, Chapel Hill, NC 27599 USA
| | - Michael L. Paine
- School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Room 103, Los Angeles, CA 90033 USA
| |
Collapse
|
70
|
Boron WF, Chen L, Parker MD. Modular structure of sodium-coupled bicarbonate transporters. ACTA ACUST UNITED AC 2009; 212:1697-706. [PMID: 19448079 DOI: 10.1242/jeb.028563] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian genomes contain 10 SLC4 genes that, between them, encode three Cl-HCO(3) exchangers, five Na(+)-coupled HCO(3) transporters (NCBTs), one reported borate transporter, and what is reported to be a fourth Cl-HCO(3) exchanger. The NCBTs are expressed throughout the body and play important roles in maintaining intracellular and whole-body pH, as well as contributing to transepithelial transport processes. The importance of NCBTs is underscored by the genetic association of dysfunctional NCBT genes with blindness, deafness, epilepsy, hypertension and metal retardation. Key to understanding the action and regulation of NCBTs is an appreciation of the diversity of NCBT gene products. The transmembrane domains of human NCBT paralogs are 50-84% identical to each other at the amino acid level, and are capable of a diverse range of actions, including electrogenic Na/HCO(3) cotransport (i.e. NBCe1 and NBCe2) and electroneutral Na/HCO(3) cotransport (i.e. NBCn1 and NBCn2), as well as Na(+)-dependent Cl-HCO(3) exchange (i.e. NDCBE). Furthermore, by the use of alternative promoters and alternative-splicing events, individual SLC4 genes have the potential to generate multiple splice variants (as many as 16 in the case of NBCn1), each of which could have unique temporal and spatial patterns of distribution, unitary transporter activity (i.e. flux mediated by one molecule), array of protein-binding partners, and complement of regulatory stimuli. In the first section of this review, we summarize our present knowledge of the function and distribution of mammalian NCBTs and their multiple variants. In the second section of this review we consider the molecular consequences of NCBT variation.
Collapse
Affiliation(s)
- Walter F Boron
- Department of Physiology, Case Western Reserve University Medical School, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
71
|
Wu J, McNicholas CM, Bevensee MO. Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 2009; 106:14150-5. [PMID: 19667194 PMCID: PMC2729035 DOI: 10.1073/pnas.0906303106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Indexed: 01/20/2023] Open
Abstract
Bicarbonate transporters are regulated by signaling molecules/ions such as protein kinases, ATP, and Ca(2+). While phospholipids such as PIP(2) can stimulate Na-H exchanger activity, little is known about phospholipid regulation of bicarbonate transporters. We used the patch-clamp technique to study the function and regulation of heterologously expressed rat NBCe1-A in excised macropatches from Xenopus laevis oocytes. Exposing the cytosolic side of inside-out macropatches to a 5% CO(2)/33 mM HCO(3)(-) solution elicited a mean inward current of 14 pA in 74% of macropatches attached to pipettes (-V(p) = -60 mV) containing a low-Na(+), nominally HCO(3)(-)-free solution. The current was 80-90% smaller in the absence of Na(+), approximately 75% smaller in the presence of 200 microM DIDS, and absent in macropatches from H(2)O-injected oocytes. NBCe1-A currents exhibited time-dependent rundown that was inhibited by removing Mg(2+) in the presence or absence of vanadate and F(-) to reduce general phosphatase activity. Applying 5 or 10 microM PIP(2) (diC8) in the presence of HCO(3)(-) induced an inward current in 54% of macropatches from NBC-expressing, but not H(2)O-injected oocytes. PIP(2)-induced currents were HCO(3)(-)-dependent and somewhat larger following more NBCe1-A rundown, 62% smaller in the absence of Na(+), and 90% smaller in the presence of 200 microM DIDS. The polycation neomycin (250-500 microM) reduced the PIP(2)-induced inward current by 69%; spermine (100 microM) reduced the current by 97%. Spermine, poly-D-lysine, and neomycin all reduced the baseline HCO(3)(-)-induced inward currents by as much as 85%. In summary, PIP(2) stimulates NBCe1-A activity, and phosphoinositides are regulators of bicarbonate transporters.
Collapse
Affiliation(s)
| | | | - Mark O. Bevensee
- Department of Physiology and Biophysics
- Nephrology Research and Training Center
- Center of Glial Biology in Medicine, and
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
72
|
Yang HS, Cooper DS, Rajbhandari I, Park HJ, Lee S, Choi I. Inhibition of rat Na+(-)HCO3(-) cotransporter (NBCn1) function and expression by the alternative splice domain. Exp Physiol 2009; 94:1114-23. [PMID: 19638364 DOI: 10.1113/expphysiol.2009.048603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Na(+)-HCO(3)(-) cotransporter NBCn1 (SLC4A7) has multiple variants depending upon splice domains in the cytoplasmic amino- and carboxy-termini of the protein. In this study, we examined the role of the amino-terminal splice domain containing 123 amino acids (cassette II) in the regulation of NBCn1 function and expression. Polymerase chain reaction detected NBCn1 mRNAs containing cassette II in a variety of tissues. Two variants, NBCn1-B containing cassette II and NBCn1-E lacking cassette II, were expressed in Xenopus oocytes and assessed by two-electrode voltage clamp to measure the ionic current mediated by the transporters. The two variants showed similar current-voltage (I-V) relations when measured 3-4 days after RNA injection. Replacment of Cl() with gluconate did not affect the I-V relations. When exposed to solutions containing 20-50 mm Na(+), the current produced by NBCn1-B was slightly more positive than that produced by NBCn1-E. The two currents were similar at 100 mm Na(+). The slope conductances for the two variants were progressively increased at higher Na(+) levels, and the increases were parallel and superimposed. Measured at different time points after RNA injection, NBCn1-B produced lower conductance than NBCn1-E at 24-48 h. Protein expression of NBCn1-B was also low at these time points as determined by immunoblot of oocyte membrane preparation. Expressed in opossum kidney (OK) cells, NBCn1-E caused a 1.5-fold increase in ouabain-sensitive production of p-nitrophenol from p-phenyl phosphate compared with control preparations, whereas NBCn1-B had negligible effect. We conclude that the primary function of cassette II is to reduce NBCn1 protein expression.
Collapse
Affiliation(s)
- Han Soo Yang
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
73
|
Sussman CR, Zhao J, Plata C, Lu J, Daly C, Angle N, DiPiero J, Drummond IA, Liang JO, Boron WF, Romero MF, Chang MH. Cloning, localization, and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish. Am J Physiol Cell Physiol 2009; 297:C865-75. [PMID: 19625604 DOI: 10.1152/ajpcell.00679.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the electrogenic Na+/nHCO3- cotransporter (NBCe1, SLC4A4) cause severe proximal renal tubular acidosis, glaucoma, and cataracts in humans, indicating NBCe1 has a critical role in acid-base homeostasis and ocular fluid transport. To better understand the homeostatic roles and protein ontogeny of NBCe1, we have cloned, localized, and downregulated NBCe1 expression in zebrafish, and examined its transport characteristics when expressed in Xenopus oocytes. Zebrafish NBCe1 (zNBCe1) is 80% identical to published mammalian NBCe1 cDNAs. Like other fish NBCe1 clones, zebrafish NBCe1 is most similar to the pancreatic form of mammalian NBC (Slc4a4-B) but appears to be the dominant isoform found in zebrafish. In situ hybridization of embryos demonstrated mRNA expression in kidney pronephros and eye by 24 h postfertilization (hpf) and gill and brain by 120 hpf. Immunohistochemical labeling demonstrated expression in adult zebrafish eye and gill. Morpholino knockdown studies demonstrated roles in eye and brain development and caused edema, indicating altered fluid and electrolyte balance. With the use of microelectrodes to measure membrane potential (Vm), voltage clamp (VC), intracellular pH (pH(i)), or intracellular Na+ activity (aNa(i)), we examined the function of zNBCe1 expressed in Xenopus oocytes. Zebrafish NBCe1 shared transport properties with mammalian NBCe1s, demonstrating electrogenic Na+ and HCO3- transport as well as similar drug sensitivity, including inhibition by 4,4'-diiso-thiocyano-2,2'-disulfonic acid stilbene and tenidap. These data indicate that NBCe1 in zebrafish shares many characteristics with mammalian NBCe1, including tissue distribution, importance in systemic water and electrolyte balance, and electrogenic transport of Na+ and HCO3-. Thus zebrafish promise to be useful model system for studies of NBCe1 physiology.
Collapse
Affiliation(s)
- Caroline R Sussman
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Yang HS, Kim E, Lee S, Park HJ, Cooper DS, Rajbhandari I, Choi I. Mutation of Aspartate 555 of the Sodium/Bicarbonate Transporter SLC4A4/NBCe1 Induces Chloride Transport. J Biol Chem 2009; 284:15970-9. [PMID: 19336397 DOI: 10.1074/jbc.m109.001438] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the mechanism for ion transport through the sodium/bicarbonate transporter SLC4A4 (NBCe1), we examined amino acid residues, within transmembrane domains, that are conserved among electrogenic Na/HCO(3) transporters but are substituted with residues at the corresponding site of all electroneutral Na/HCO(3) transporters. Point mutants were constructed and expressed in Xenopus oocytes to assess function using two-electrode voltage clamp. Among the mutants, D555E (charge-conserved substitution of the aspartate at position 555 with a glutamate) produced decreasing HCO(3)(-) currents at more positive membrane voltages. Immunohistochemistry showed D555E protein expression in oocyte membranes. D555E induced Na/HCO(3)-dependent pH recovery from a CO(2)-induced acidification. Current-voltage relationships revealed that D555E produced an outwardly rectifying current in the nominally CO(2)/HCO(3)(-)-free solution that was abolished by Cl(-) removal from the bath. In the presence of CO(2)/HCO(3)(-), however, the outward current produced by D555E decreased only slightly after Cl(-) removal. Starting from a Cl(-)-free condition, D555E produced dose-dependent outward currents in response to a series of chloride additions. The D555E-mediated chloride current decreased by 70% in the presence of CO(2)/HCO(3)(-). The substitution of Asp(555) with an asparagine also produced a Cl(-) current. Anion selectivity experiments revealed that D555E was broadly permissive to other anions including NO(3)(-). Fluorescence measurements of chloride transport were done with human embryonic kidney HEK 293 cells expressing NBCe1 and D555E. A marked increase in chloride transport was detected in cells expressing D555E. We conclude that Asp(555) plays a role in HCO(3)(-) selectivity.
Collapse
Affiliation(s)
- Han Soo Yang
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Yamaguchi S, Ishikawa T. The electrogenic Na+-HCO3- cotransporter NBCe1-B is regulated by intracellular Mg2+. Biochem Biophys Res Commun 2008; 376:100-4. [PMID: 18762166 DOI: 10.1016/j.bbrc.2008.08.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
Abstract
NBCe1-B, a major splice variant of the electrogenic Na+--HCO3- cotransporter (NBCe1) fulfills basic cellular functions including regulation of intracellular pH and epithelial HCO3- secretion. However, its cellular regulatory mechanism still remains elusive. Here, we provide evidence for the first time that NBCe1-B activity can be controlled by intracellular Mg2+ (Mg2+(i)), the physiologically most abundant intracellular divalent cation. Using the whole-cell patch-clamp technique, we found that recombinant NBCe1-B currents expressed in HEK293 and NIH3T3 cells were inhibited voltage-independently by Mg2+(i) in a concentration-dependent manner (K(i) approximately 0.01 mM). The Mg2+(i) inhibition was partially relieved by truncation of the NBCe1-B specific N-terminal region (K(i) approximately 0.3 mM), and was also observed for native electrogenic Na+--HCO3- cotransporter current in bovine parotid acinar cells that endogenously express NBCe1-B (K(i) approximately 1 mM). These results suggest that Mg2+ may be a cytosolic factor that limits intrinsic cotransport activity of NBCe1-B in mammalian cells.
Collapse
Affiliation(s)
- Soichiro Yamaguchi
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | |
Collapse
|
76
|
Parker MD, Bouyer P, Daly CM, Boron WF. Cloning and characterization of novel human SLC4A8 gene products encoding Na+-driven Cl-/HCO3(-) exchanger variants NDCBE-A, -C, and -D. Physiol Genomics 2008; 34:265-76. [PMID: 18577713 DOI: 10.1152/physiolgenomics.90259.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The reported sequences of the human and mouse Na+-driven Cl-/HCO3(-) exchangers (NDCBEs) differ greatly in their extreme cytosolic COOH termini (Ct). In human NDCBE (NDCBE-B), a 17-amino acid (aa) sequence replaces 66 aa at the equivalent position in mouse NDCBE (NDCBE-A). We performed 5'- and 3'-rapid amplification of cDNA ends (RACE) on human brain cDNA, followed by PCR of full-length cDNAs to determine whether the human SLC4A8 gene was capable of producing the mouselike Ct sequence. Our study confirmed the presence in human cDNA of mouse NDCBE-like transcripts (human NDCBE-A) and also disclosed the existence of three further novel NDCBE transcripts that we have called NDCBE-C, NDCBE-D, and NDCBE-D'. The novel NDCBE-C/D/D' transcripts initiate at a novel "exon 0" positioned approximately 35 kb upstream of the first exon of NDCBE-A/B. NDCBE-C/D/D' protein products are predicted to be truncated by 54 aa in the cytosolic NH(2) terminus (Nt) compared with NDCBE-A/B. Our data, combined with a new in silico analysis of partial transcripts reported by others in the region of the human SLC4A8 gene, increase the known extent of the SLC4A8 gene by 49 kb, to 124 kb. A functional comparison of NDCBE-A/B/C/D expressed in Xenopus oocytes demonstrates that the Nt variation does not affect the basal functional expression of NDCBE, but those with the shorter Ct have a 25-50% reduced functional expression compared with those with the longer Ct. By comparison with an artificially truncated NDCBE that contains neither 17-aa nor 66-aa Ct cassette, we determined that the functional difference is unrelated to the 66-aa cassette of NDCBE-A/C, but is instead due to an inhibitory effect of the 17-aa cassette of NDCBE-B/D.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, OH 44106, USA.
| | | | | | | |
Collapse
|
77
|
Chang MH, DiPiero J, Sönnichsen FD, Romero MF. Entry to "formula tunnel" revealed by SLC4A4 human mutation and structural model. J Biol Chem 2008; 283:18402-10. [PMID: 18441326 DOI: 10.1074/jbc.m709819200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glaucoma, cataracts, and proximal renal tubular acidosis are diseases caused by point mutations in the human electrogenic Na(+) bicarbonate cotransporter (NBCe1/SLC4A4) (1, 2). One such mutation, R298S, is located in the cytoplasmic N-terminal domain of NBCe1 and has only moderate (75%) function. As SLC transporters have high similarity in their membrane and N-terminal primary sequences, we homology-modeled NBCe1 onto the crystal structure coordinates of Band 3(AE1) (3). Arg-298 is predicted to be located in a solvent-inaccessible subsurface pocket and to associate with Glu-91 or Glu-295 via H-bonding and charge-charge interactions. We perturbed these putative interactions between Glu-91 and Arg-298 by site-directed mutagenesis and used expression in Xenopus oocyte to test our structural model. Mutagenesis of either residue resulted in reduced transport function. Function was "repaired" by charge reversal (E91R/R298E), implying that these two residues are interchangeable and interdependent. These results contrast the current understanding of the AE1 N terminus as protein-binding sites and propose that hkNBCe1 (and other SLC4) cytoplasmic N termini play roles in controlling HCO(3)(-) permeation.
Collapse
Affiliation(s)
- Min-Hwang Chang
- Department Physiology & Biophysics and Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
78
|
Obara M, Szeliga M, Albrecht J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 2007; 52:905-19. [PMID: 18061308 DOI: 10.1016/j.neuint.2007.10.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 11/27/2022]
Abstract
The maintenance of pH homeostasis in the CNS is of key importance for proper execution and regulation of neurotransmission, and deviations from this homeostasis are a crucial factor in the mechanism underlying a spectrum of pathological conditions. The first few sections of the review are devoted to the brain operating under normal conditions. The article commences with an overview of how extrinsic factors modelling the brain at work: neurotransmitters, depolarising stimuli (potassium and voltage changes) and cyclic nucleotides as major signal transducing vehicles affect pH in the CNS. Further, consequences of pH alterations on the major aspects of CNS function and metabolism are outlined. Next, the major cellular events involved in the transport, sequestration, metabolic production and buffering of protons that are common to all the mammalian cells, including the CNS cells. Since CNS function reflects tight interaction between astrocytes and neurons, the pH regulatory events pertinent to either cell type are discussed: overwhelming evidence implicates astrocytes as a key player in pH homeostasis in the brain. The different classes of membrane proteins involved in proton shuttling are listed and their mechanisms of action are given. These include: the Na+/H+ exchanger, different classes of bicarbonate transporters acting in a sodium-dependent- or -independent mode, monocarboxylic acid transporters and the vacuolar-type proton ATPase. A separate section is devoted to carbonic anhydrase, which is represented by multiple isoenzymes capable of pH buffering both in the cell interior and in the extracellular space. Next, impairment of pH regulation and compensatory responses occurring in brain affected by different pathologies: hypoxia/ischemia, epilepsy, hyperammonemic encephalopathies, cerebral tumours and HIV will be described. The review is limited to facts and plausible hypotheses pertaining to phenomena directly involved in pH regulation: changes in pH that accompany metabolic stress but have no distinct implications for the pH regulatory mechanisms are not dealt with. In most cases, the vast body of knowledge derived from in vitro studies remains to be verified in in vivo settings.
Collapse
Affiliation(s)
- Marta Obara
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
79
|
Liu X, Williams JB, Sumpter BR, Bevensee MO. Inhibition of the Na/Bicarbonate Cotransporter NBCe1-A by diBAC Oxonol Dyes Relative to Niflumic Acid and a Stilbene. J Membr Biol 2007; 215:195-204. [PMID: 17578633 DOI: 10.1007/s00232-007-9018-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/17/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
Na/HCO(3) cotransporters (NBCs) are important regulators of intracellular pH (pH(i) in a variety of organ systems where acid-base status is critical for tissue function. To characterize the pharmacology of NBCs in more detail, we used the two-electrode voltage-clamp technique to examine the effect of previously identified inhibitors of anion exchanger 1 (AE1) on the activity of rat NBCe1-A expressed in Xenopus laevis oocytes. NBC-expressing oocytes voltage-clamped at -60 mV and exposed to a 5% CO(2)/33 mM HCO(3)(-) solution displayed NBC-mediated outward currents that were inhibited by either niflumic acid or one of the two bis-oxonol dyes diBA(3)C4 and diBA(5)C4. NBCe1-A was less sensitive to niflumic acid (apparent K(i) of 100 microM) than 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, apparent K(i) of 36 microM) but more sensitive to the diBAC dyes (apparent K(i) of approximately 10 microM). Based on current-voltage relationships, the diBAC dyes inhibited HCO(3)(-) -induced NBCe1-mediated inward currents more so than outward currents. NBCe1 sensitivity to the dyes was (1) lower in the presence of 40 microM DIDS, (2) unaffected by changes in external HCO(3)(-) concentration and (3) only modestly higher at an external Na(+) concentration of 5, but not 15 or 33, mM. Therefore, the diBAC dyes compete with DIDS but not appreciably with Na(+) or HCO(3)(-) for binding. The mechanism of diBAC inhibition of NBCe1 appears similar to that previously reported for AE1.
Collapse
Affiliation(s)
- Xiaofen Liu
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 831 MCLM, 1918 University Boulevard, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
80
|
Rickmann M, Orlowski B, Heupel K, Roussa E. Distinct expression and subcellular localization patterns of Na+/HCO3− cotransporter (SLC 4A4) variants NBCe1-A and NBCe1-B in mouse brain. Neuroscience 2007; 146:1220-31. [PMID: 17433553 DOI: 10.1016/j.neuroscience.2007.02.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 11/29/2022]
Abstract
The electrogenic Na+/HCO3- cotransporter (NBCe1) has been identified as a key player for regulation of intracellular pH in several cell types. The present study was undertaken to determine expression and subcellular localization of the NH2-terminal solute carrier (SLC) 4A4 variants NBCe1-A and NBCe1-B in mouse brain using variant-specific antibodies by immunohistochemistry and immunoelectron microscopy. In addition, distribution of NBCe1 variants and activity-dependent regulation was investigated in mouse embryonic day 17.5 (E17.5) hippocampal primary cultures in vitro. The results showed NBCe1-A and NBCe1-B transcript expression in the mouse olfactory bulb, cerebral cortex, hippocampus and cerebellum. NBCe1-A was predominantly expressed in Purkinje cells, granule cells of the dentate gyrus, non-pyramidal cell bodies in cerebral cortex, and in periglomerular and mitral cells in the olfactory bulb. Pyramidal neurons in cerebral cortex and apical cell dendrites in the hippocampus were stained for both NBCe1-A and NBCe1-B. Moreover, NBCe1-B was present in Bergmann glia. At the ultrastructural level, NBCe1-B was preferentially expressed in perivascular astroglial lamellae, whereas both NBCe1 NH2-terminal variants were localized in pre- and postsynaptic compartments. Except for the olfactory bulb, NBCe1-A was always colocalized with calbindin. Treatment of E17.5 primary hippocampal cultures with KCl, showed dramatic downregulation of NBCe1-B mRNA and protein after 60 min, whereas NBCe1-A expression remained unchanged. These data demonstrate for the first time distinct cellular distribution of NBCe1 NH2-terminal variants in mouse brain. NBCe1 may be involved in neuronal modulation, and pH regulation during neuronal activity.
Collapse
Affiliation(s)
- M Rickmann
- Center for Anatomy, Department of Neuroanatomy, Georg-August-University Goettingen, Kreuzbergring 36, D-37075 Goettingen, Germany
| | | | | | | |
Collapse
|
81
|
Choi I, Soo Yang H, Boron WF. The electrogenicity of the rat sodium-bicarbonate cotransporter NBCe1 requires interactions among transmembrane segments of the transporter. J Physiol 2006; 578:131-42. [PMID: 17038436 PMCID: PMC2075136 DOI: 10.1113/jphysiol.2006.114959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The electrogenic Na+-HCO3- cotransporter (NBCe1) plays a central role in intracellular pH (pHi) regulation as well as HCO3- secretion by pancreatic ducts and HCO3- reabsorption by renal proximal tubules. To understand the structural requirements for the electrogenicity of NBCe1, we constructed chimeras of NBCe1-A and the electroneutral NBCn1-B, and used two-electrode voltage clamp to measure electrogenic transporter current in Xenopus oocytes exposed to 5% CO2-26 mm HCO3- (pH 7.40). The chimera consisting of NBCe1-A (i.e. NBCe1-A 'background') with the cytoplasmic N-terminal domain (Nt) of NBCn1-B had a reversal potential of -156.3 mV (compared with a membrane potential Vm of -43.1 mV in a HCO3(-)-free solution) and a slope conductance of 3.0 microS (compared with 12.5 microS for NBCe1-A). Also electrogenic were chimeras with an NBCe1-A background but with NBCn1-B contributing the extracellular loop (L) between transmembrane segment (TM) 5 and 6 (-140.9 mV/11.1 microS), the cytoplasmic C-terminal domain (Ct; -123.8 mV/9.7 microS) or Nt + L + Ct (-120.9 mV/3.7 microS). Reciprocal chimeras (with an NBCn1 background but with NBCe1 contributing Nt, L, Ct or Nt + L + Ct) produced no measurable electrogenic transporter currents in the presence of CO2-HCO3-. pHi recovered from an acid load, but without the negative shift of Vm that is characteristic of electrogenic Na+-HCO3- cotransporters. Thus, these chimeras were electroneutral, as were two others consisting of NBCe1(Nt-L)/NBCn1(TM6-Ct) and NBCn1(Nt-L)/NBCe1(TM6-Ct). We propose that the electrogenicity of NBCe1 requires interactions between TM1-5 and TM6-13.
Collapse
Affiliation(s)
- Inyeong Choi
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
82
|
McAlear SD, Bevensee MO. A Cysteine-scanning Mutagenesis Study of Transmembrane Domain 8 of the Electrogenic Sodium/Bicarbonate Cotransporter NBCe1. J Biol Chem 2006; 281:32417-27. [PMID: 16936285 DOI: 10.1074/jbc.m607253200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na/HCO(3) cotransporters (NBCs) such as NBCe1 are members of a superfamily of bicarbonate transporters that includes anion exchangers. Residues within putative transmembrane domain 8 (TMD8) of anion exchanger 1 are involved in ion translocation (Tang, X. B., Kovacs, M., Sterling, D., and Casey, J. R. (1999) J. Biol. Chem. 274, 3557-3564), and the corresponding domain in NBCe1 variants is highly homologous. We performed cysteine-scanning mutagenesis to examine the role of TMD8 residues in ion translocation by rat NBCe1-A. We accessed function and/or sulfhydryl sensitivity and p-chloromercuribenzene sulfonate (pCMBS) accessibility of 21 cysteine-substituted NBC mutants expressed in Xenopus oocytes using the two-electrode, voltage clamp technique. Five NBC mutants displayed <10% wild-type activity: P743C, A744C, L746C, D754C, and T758C. For the remaining 16 mutants, we compared transporter-mediated inward currents elicited by removing external Na(+) before and after exposing oocytes to either 2-aminoethylmethane thiosulfonate (MTSEA) or pCMBS. MTSEA inhibited NBC mutants T748C, I749C, I751C, F752C, M753C, and Q756C by 9-19% and stimulated mutants A739C, A741C, L745C, V747C, Q755C, and I757C by 11-21%. pCMBS mildly inhibited mutants A739C, A740, V747C, and Q756C by 5 or 8%, and stimulated I749C by 10%. However, both sulfhydryl reagents strongly inhibited the L750C mutant by > or =85%. Using the substituted cysteine accessibility method, we examined the accessibility of the NBC mutant L750C under different transporter conditions. pCMBS accessibility is (i) reduced when the transporter is active in the presence of both Na(+) and HCO(3)(-), likely due to substrate competition with pCMBS; (ii) reduced in the presence of a stilbene inhibitor; and (iii) stimulated at more positive membrane potentials. In summary, TMD8 residues of NBCe1, particularly L750, are involved in ion translocation, and accessibility is influenced by the state of transporter activity.
Collapse
Affiliation(s)
- Suzanne D McAlear
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|