Krivan V, Cressman R, Schneider C. The ideal free distribution: a review and synthesis of the game-theoretic perspective.
Theor Popul Biol 2008;
73:403-25. [PMID:
18282592 DOI:
10.1016/j.tpb.2007.12.009]
[Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 11/08/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
The Ideal Free Distribution (IFD), introduced by Fretwell and Lucas in [Fretwell, D.S., Lucas, H.L., 1970. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19, 16-32] to predict how a single species will distribute itself among several patches, is often cited as an example of an evolutionarily stable strategy (ESS). By defining the strategies and payoffs for habitat selection, this article puts the IFD concept in a more general game-theoretic setting of the "habitat selection game". Within this game-theoretic framework, the article focuses on recent progress in the following directions: (1) studying evolutionarily stable dispersal rates and corresponding dispersal dynamics; (2) extending the concept when population numbers are not fixed but undergo population dynamics; (3) generalizing the IFD to multiple species. For a single species, the article briefly reviews existing results. It also develops a new perspective for Parker's matching principle, showing that this can be viewed as the IFD of the habitat selection game that models consumer behavior in several resource patches and analyzing complications involved when the model includes resource dynamics as well. For two species, the article first demonstrates that the connection between IFD and ESS is now more delicate by pointing out pitfalls that arise when applying several existing game-theoretic approaches to these habitat selection games. However, by providing a new detailed analysis of dispersal dynamics for predator-prey or competitive interactions in two habitats, it also pinpoints one approach that shows much promise in this general setting, the so-called "two-species ESS". The consequences of this concept are shown to be related to recent studies of population dynamics combined with individual dispersal and are explored for more species or more patches.
Collapse