Heath KD, Nuismer SL. Connecting functional and statistical definitions of genotype by genotype interactions in coevolutionary studies.
Front Genet 2014;
5:77. [PMID:
24782890 PMCID:
PMC3990044 DOI:
10.3389/fgene.2014.00077]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Predicting how species interactions evolve requires that we understand the mechanistic basis of coevolution, and thus the functional genotype-by-genotype interactions (G × G) that drive reciprocal natural selection. Theory on host-parasite coevolution provides testable hypotheses for empiricists, but depends upon models of functional G × G that remain loosely tethered to the molecular details of any particular system. In practice, reciprocal cross-infection studies are often used to partition the variation in infection or fitness in a population that is attributable to G × G (statistical G × G). Here we use simulations to demonstrate that within-population statistical G × G likely tells us little about the existence of coevolution, its strength, or the genetic basis of functional G × G. Combined with studies of multiple populations or points in time, mapping and molecular techniques can bridge the gap between natural variation and mechanistic models of coevolution, while model-based statistics can formally confront coevolutionary models with cross-infection data. Together these approaches provide a robust framework for inferring the infection genetics underlying statistical G × G, helping unravel the genetic basis of coevolution.
Collapse