51
|
Kim TJ, Cheng K, Zhang H, Liu S, Skinner L, Xing L. Second window near-infrared dosimeter (NIR2D) system for radiation dosimetry. Phys Med Biol 2020; 65:175013. [PMID: 32869751 DOI: 10.1088/1361-6560/ab9b56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fiber-coupled scintillation dosimeters are a cost-effective alternative to the conventional ion chambers in radiation dosimetry. However, stem effects from optical fibers such as Cerenkov radiation incur significant errors in the readout signal. Here we introduce a second near-infrared window dosimeter, dubbed as NIR2D, that can potentially be used as real-time radiation detector for clinical megavoltage beams. Lanthanide-based rare-earth NaYF4 nano-phosphors doped with both erbium and cerium elements were synthesized, and a compact 3D printed reader device integrated with a photodetector and data acquisition system was designed. The performance of the NIR2D was tested using a pre-clinical orthovoltage radiation source and a clinical megavoltage radiation source. The system was tested for dose linearity (100, 200, 600 MU), dose rate dependency (100, 200, 400, 600 MU min-1), and energy dependency (6, 10, 15 MV). Test results with the clinical linear accelerator demonstrated excellent dose linearity and dose rate independency when exposed to 6 MV linac beams-both data follows a linear trendline with R2 > 0.99. On the other hand, the NIR2D was energy dependent, where the readout dropped by 9% between 6 and 15 MV. For stem effects, we observed a finite Cerenkov contribution of 1%-3% when exposed between 100-600 MU min-1 (6 MV) and 3%-6% when exposed between 5-15 MV (600 MU min-1). While the stem effects were still observable, we expect that enhancing the current optical setup will simultaneously improve the scintillation signal and reduce the stem effects.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
52
|
Yada R, Maenaka K, Miyamoto S, Okada G, Sasakura A, Ashida M, Adachi M, Sato T, Wang T, Akasaka H, Mukumoto N, Shimizu Y, Sasaki R. Real-time in vivo dosimetry system based on an optical fiber-coupled microsized photostimulable phosphor for stereotactic body radiation therapy. Med Phys 2020; 47:5235-5249. [PMID: 32654194 DOI: 10.1002/mp.14383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To develop an in vivo dosimeter system for stereotactic body radiation therapy (SBRT) that can perform accurate and precise real-time measurements, using a microsized amount of a photostimulable phosphor (PSP), BaFBr:Eu2+ . METHODS The sensitive volume of the PSP was 1.26 × 10-5 cm3 . The dosimeter system was designed to apply photostimulation to the PSP after the decay of noise signals, in synchronization with the photon beam pulse of a linear accelerator (LINAC), to eliminate the noise signals completely using a time separation technique. The noise signals included stem signals, and radioluminescence signals generated by the PSP. In addition, the dosimeter system was built on a storage-type dosimeter that could read out a signal after an arbitrary preset number of photon beam pulses were incident. First, the noise and photostimulated luminescence (PSL) signal decay times were measured. Subsequently, we confirmed that the PSL signals could be exclusively read out within the photon beam pulse interval. Finally, using a water phantom, the basic characteristics of the dosimeter system were demonstrated under SBRT conditions, and the feasibility for clinical application was investigated. The reproducibility, dose linearity, dose-rate dependence, temperature dependence, and angular dependence were evaluated. The feasibility was confirmed by measurements at various dose gradients and using a representative treatment plan for a metastatic liver tumor. A clinical plan was created with a two-arc beam volumetric modulated arc therapy using a 10 MV flattening filter-free photon beam. For the water phantom measurements, the clinical plan was compiled into a plan with a fixed gantry angle of 0°. To evaluate the energy dependence during SBRT, the percent depth dose (PDD) was measured and compared with those calculated via Monte Carlo (MC) simulations. RESULTS All the PSL signals could be read out while eliminating the noise signals within the minimum pulse interval of the LINAC. Stable real-time measurements could be performed with a time resolution of 56 ms (i.e., number of pulses = 20). The dose linearity was good in the dose range of 0.01-100 Gy. The measurements agreed within 1% at dose rates of 40-2400 cGy/min. The temperature and angular dependence were also acceptable since these dependencies had only a negligible effect on the measurements in SBRT. At a dose gradient of 2.21 Gy/mm, the measured dose agreed with that calculated using a treatment planning system (TPS) within the measurement uncertainties due to the probe position. For measurements using a representative treatment plan, the measured dose agreed with that calculated using the TPS within 0.5% at the center of the beam axis. The PDD measurements agreed with the MC calculations to within 1% for field sizes <5 × 5 cm2 . CONCLUSION The in vivo dosimeter system developed using BaFBr:Eu2+ is capable of real-time, accurate, and precise measurement under SBRT conditions. The probe is smaller than a conventional dosimeter, has excellent spatial resolution, and can be valuable in SBRT with a steep dose distribution over a small field. The developed PSP dosimeter system appears to be suitable for in vivo SBRT dosimetry.
Collapse
Affiliation(s)
- Ryuichi Yada
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Kazusuke Maenaka
- Department of Electrical Engineering and Computer Science, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Shuji Miyamoto
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigoricho, Akogun, Hyogo, 678-1205, Japan
| | - Go Okada
- Co-creative Research Center of Industrial Science and Technology, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
| | - Aki Sasakura
- Meisyo Kiko Co., Ltd, 148 Numa, Hikamicho, Tamba, Hyogo, 669-3634, Japan
| | - Motoi Ashida
- Meisyo Kiko Co., Ltd, 148 Numa, Hikamicho, Tamba, Hyogo, 669-3634, Japan
| | - Masashi Adachi
- Meisyo Kiko Co., Ltd, 148 Numa, Hikamicho, Tamba, Hyogo, 669-3634, Japan
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan
| | - Tianyuan Wang
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuyuki Shimizu
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuouku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
53
|
|
54
|
Yabe T, Yamamoto S, Oda M, Mori K, Toshito T, Akagi T. Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy. Med Phys 2020; 47:3882-3891. [DOI: 10.1002/mp.14372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Takuya Yabe
- Radiological and Medical Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
- Department of Medical Technology Nagoya University Hospital Nagoya Japan
| | - Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
| | - Masahiro Oda
- Graduate School of Informatics Nagoya University Nagoya Japan
| | - Kensaku Mori
- Graduate School of Informatics Nagoya University Nagoya Japan
| | - Toshiyuki Toshito
- Nagoya Proton Therapy Center Nagoya City West Medical Center Nagoya Japan
| | | |
Collapse
|
55
|
Olaciregui-Ruiz I, Beddar S, Greer P, Jornet N, McCurdy B, Paiva-Fonseca G, Mijnheer B, Verhaegen F. In vivo dosimetry in external beam photon radiotherapy: Requirements and future directions for research, development, and clinical practice. Phys Imaging Radiat Oncol 2020; 15:108-116. [PMID: 33458335 PMCID: PMC7807612 DOI: 10.1016/j.phro.2020.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022] Open
Abstract
External beam radiotherapy with photon beams is a highly accurate treatment modality, but requires extensive quality assurance programs to confirm that radiation therapy will be or was administered appropriately. In vivo dosimetry (IVD) is an essential element of modern radiation therapy because it provides the ability to catch treatment delivery errors, assist in treatment adaptation, and record the actual dose delivered to the patient. However, for various reasons, its clinical implementation has been slow and limited. The purpose of this report is to stimulate the wider use of IVD for external beam radiotherapy, and in particular of systems using electronic portal imaging devices (EPIDs). After documenting the current IVD methods, this report provides detailed software, hardware and system requirements for in vivo EPID dosimetry systems in order to help in bridging the current vendor-user gap. The report also outlines directions for further development and research. In vivo EPID dosimetry vendors, in collaboration with users across multiple institutions, are requested to improve the understanding and reduce the uncertainties of the system and to help in the determination of optimal action limits for error detection. Finally, the report recommends that automation of all aspects of IVD is needed to help facilitate clinical adoption, including automation of image acquisition, analysis, result interpretation, and reporting/documentation. With the guidance of this report, it is hoped that widespread clinical use of IVD will be significantly accelerated.
Collapse
Affiliation(s)
- Igor Olaciregui-Ruiz
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sam Beddar
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Greer
- Calvary Mater Newcastle Hospital and University of Newcastle, Newcastle, New South Wales, Australia
| | - Nuria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Boyd McCurdy
- Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Gabriel Paiva-Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ben Mijnheer
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
56
|
Linares Rosales HM, Archambault L, Beddar S, Beaulieu L. Dosimetric performance of a multipoint plastic scintillator dosimeter as a tool for real‐time source tracking in high dose rate Ir brachytherapy. Med Phys 2020; 47:4477-4490. [DOI: 10.1002/mp.14246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Haydee M. Linares Rosales
- Département de physique de génie physique et d’optique et Centre de recherche sur le cancer Université Laval Québec Canada
- Département de radio‐oncologie et Axe Oncologie du CRCHU de Québec CHU de Québec ‐ Université Laval Québec QC Canada
| | - Louis Archambault
- Département de physique de génie physique et d’optique et Centre de recherche sur le cancer Université Laval Québec Canada
- Département de radio‐oncologie et Axe Oncologie du CRCHU de Québec CHU de Québec ‐ Université Laval Québec QC Canada
| | - Sam Beddar
- Department of Radiation Physics The University of Texas MD Anderson Cancer Center Houston TX USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences Houston TX USA
| | - Luc Beaulieu
- Département de physique de génie physique et d’optique et Centre de recherche sur le cancer Université Laval Québec Canada
- Département de radio‐oncologie et Axe Oncologie du CRCHU de Québec CHU de Québec ‐ Université Laval Québec QC Canada
| |
Collapse
|
57
|
Son J, Shin D, Kim T, Park S, Rah JE. Feasibility study of patient-specific energy verification using a multilayer acrylic-disk radiation sensor. Med Phys 2020; 47:3789-3796. [PMID: 32535940 DOI: 10.1002/mp.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Obtaining an integral depth-dose (IDD) curve using a recently developed acrylic-disk radiation sensor (ADRS) is time-consuming because its single structure requires point-by-point measurements in a water phantom. The goal of this study was to verify the ability of a newly designed multilayer ADRS, composed of 20 layers, to measure the energy of proton pencil beam scanning (PBS) in patient-specific quality assurance (QA). MATERIALS AND METHODS The multilayer ADRS consisted of a disk-type transmitter, with a diameter of 15 cm and with a thickness of 1 mm, surrounded by a thin optical fiber; this ADRS provided a higher spatial resolution than the single ADRS, which was 2 mm. The dosimetric characteristics of the multilayer ADRS were determined to accurately measure the energy delivered layer-by-layer. We selected five patients to verify the energy measured using the multilayer ADRS from the actual clinical proton therapy plans. The accuracy of the results measured using the multilayer ADRS was compared with that of measurements by a Bragg peak ionization chamber (IC) and that calculated by a Monte Carlo TOPAS simulation. RESULTS The difference between the multilayer ADRS measurements and those of the TOPAS simulation was within 1% for all patients. The ranges, corresponding to the beam energies for each patient, measured using the multilayer ADRS were closer to those calculated using the TOPAS simulation than those measured using the Bragg peak IC. CONCLUSIONS The multilayer ADRS is well suited to verifying the energy of a pencil beam. The acrylic materials used in its configuration make this device easier to use and more cost-effective than conventional detectors. This device, with its high extensibility and stability, may be applicable as a new dosimetry tool for PBS.
Collapse
Affiliation(s)
- Jaeman Son
- SNUH Heavy Ion Medical Accelerator of Gijang, Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Korea
| | - Dongho Shin
- Proton Therapy Center, National Cancer Center, Goyang, 10408, Korea
| | - Taeho Kim
- Proton Therapy Center, National Cancer Center, Goyang, 10408, Korea
| | - Sukwon Park
- Department of Radiation Oncology, Myongji Hospital, Hanyang University College of Medicine, Goyang, 10475, Korea
| | - Jeong-Eun Rah
- Department of Radiation Oncology, Myongji Hospital, Hanyang University College of Medicine, Goyang, 10475, Korea
| |
Collapse
|
58
|
Simiele E, Kapsch RP, Ankerhold U, Culberson W, DeWerd L. Technical note: characterization of spectral changes with measurement geometry and magnetic field strength in light guides used for scintillation dosimetry. ACTA ACUST UNITED AC 2020; 65:11NT01. [DOI: 10.1088/1361-6560/ab8afa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
59
|
Yabe T, Akagi T, Yamamoto S. Estimation and correction of Cerenkov-light on luminescence image of water for carbon-ion therapy dosimetry. Phys Med 2020; 74:118-124. [PMID: 32464469 DOI: 10.1016/j.ejmp.2020.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The luminescence images of water during the irradiation of carbon-ions provide useful information such as the ranges and the widths of carbon-ion beams. However, measured luminescence images show higher intensities in shallow depths and wider lateral profiles than those of the dose distributions. These differences prevent the luminescence imaging of water from being applied to a quality assurance for carbon-ion therapy. We assumed that the differences were due to the contaminations of Cerenkov-light from the secondary electrons of carbon-ions as well as the prompt gamma photons in the measured image. In this study, we applied a correction method to a luminescence image of water during the irradiation of carbon-ion beams. METHODS We estimated the distribution of the Cerenkov-light in water during the irradiation of carbon-ions by Monte Carlo simulation and subtracted the simulated Cerenkov-light from the depth and lateral profiles of the measured luminescence image for 241.5 MeV/u-carbon-ions. RESULTS With these corrections, we successfully obtained depth and lateral profiles whose distributions are almost identical to the dose distributions of carbon-ions. The high intensities in the shallow depth areas decreased and the Bragg peak intensity increased. The beam widths of the measured images approached those of the ionization chamber. CONCLUSIONS These results indicate that the luminescence imaging of water with our proposed correction has potential to be used for dose distribution measurements for carbon-ion therapy dosimetry.
Collapse
Affiliation(s)
- Takuya Yabe
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Japan; Department of Medical Technology, Nagoya University Hospital, Japan
| | - Takashi Akagi
- Department of Radiation Physics, Hyogo Ion Beam Medical Center, Japan
| | - Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Japan.
| |
Collapse
|
60
|
Rilling M, Allain G, Thibault S, Archambault L. Tomographic‐based 3D scintillation dosimetry using a three‐view plenoptic imaging system. Med Phys 2020; 47:3636-3646. [DOI: 10.1002/mp.14213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- Madison Rilling
- Département de physique de génie physique et d’optique Faculté des sciences et de génie Université Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
- Centre d’optique photonique et laser Université Laval 2375 rue de la Terrasse Québec QC G1V 0A6 Canada
- Centre de recherche du CHU de Québec‐Université Laval Hôtel‐Dieu de Québec 11 Côte du Palais Québec QC G1R 2J6 Canada
- Centre de recherche sur le cancer de l’Université Laval 9 rue McMahon Québec QC G1R 3S3 Canada
| | - Guillaume Allain
- Département de physique de génie physique et d’optique Faculté des sciences et de génie Université Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Simon Thibault
- Département de physique de génie physique et d’optique Faculté des sciences et de génie Université Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
| | - Louis Archambault
- Département de physique de génie physique et d’optique Faculté des sciences et de génie Université Laval 1045 avenue de la Médecine Québec QC G1V 0A6 Canada
- Centre de recherche du CHU de Québec‐Université Laval Hôtel‐Dieu de Québec 11 Côte du Palais Québec QC G1R 2J6 Canada
- Centre de recherche sur le cancer de l’Université Laval 9 rue McMahon Québec QC G1R 3S3 Canada
| |
Collapse
|
61
|
Response of plastic scintillator to gamma sources. Appl Radiat Isot 2020; 159:109086. [PMID: 32250760 DOI: 10.1016/j.apradiso.2020.109086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/17/2019] [Accepted: 02/14/2020] [Indexed: 11/23/2022]
Abstract
In this study, we developed a method for directly determining the energy deposited over the entire energy range by monitoring the light output from a plastic scintillator under gamma irradiation. The relative light output was analyzed based on Birks' semi-empirical formula for ionization to obtain the quenching parameter as kB = 0.016 ± 0.0004 g cm-2 MeV-1. Comparisons of experimental and calculated results for the light output spectra showed that considering the quenching effect, background subtraction, source casing, and energy sampling were essential for achieving good agreement.
Collapse
|
62
|
Snyder JD, Sullivan RJ, Wu X, Covington EL, Popple RA. Use of a plastic scintillator detector for patient-specific quality assurance of VMAT SRS. J Appl Clin Med Phys 2020; 20:143-148. [PMID: 31538717 PMCID: PMC6753731 DOI: 10.1002/acm2.12705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/13/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose To evaluate a scintillator detector for patient‐specific quality assurance of VMAT radiosurgery plans. Methods The detector was comprised of a 1 mm diameter, 1 mm high scintillator coupled to an acrylic optical fiber. Sixty VMAT SRS plans for treatment of single targets having sizes ranging from 3 mm to 30.2 mm equivalent diameter (median 16.3 mm) were selected. The plans were delivered to a 20 cm × 20 cm x 15 cm water equivalent plastic phantom having either the scintillator detector or radiochromic film at the center. Calibration films were obtained for each measurement session. The films were scanned and converted to dose using a 3‐channel technique. Results The mean difference between scintillator and film was ‒0.45% (95% confidence interval ‒0.1% to 0.8%). For target equivalent diameter smaller than the median, the mean difference was 1.1% (95% confidence interval 0.5% to 1.7%). For targets larger than the median, the mean difference was ‒0.2% (95% confidence interval ‒0.7% to 0.1%). Conclusions The scintillator detector response is independent of target size for targets as small as 3 mm and is well‐suited for patient‐specific quality assurance of VMAT SRS plans. Further work is needed to evaluate the accuracy for VMAT plans that treat multiple targets using a single isocenter.
Collapse
Affiliation(s)
- Jesse D Snyder
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodney J Sullivan
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xingen Wu
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth L Covington
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard A Popple
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
63
|
A method of absorbed dose determination using vitamin B2 water for optical imaging of X-rays from high energy medical linear accelerators. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2019.106227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
64
|
Debnath SBC, Fauquet C, Tallet A, Goncalves A, Lavandier S, Jandard F, Tonneau D, Darreon J. High spatial resolution inorganic scintillator detector for high-energy X-ray beam at small field irradiation. Med Phys 2020; 47:1364-1371. [PMID: 31883388 PMCID: PMC7155062 DOI: 10.1002/mp.14002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Small field dosimetry for radiotherapy is one of the major challenges due to the size of most dosimeters, for example, sufficient spatial resolution, accurate dose distribution and energy dependency of the detector. In this context, the purpose of this research is to develop a small size scintillating detector targeting small field dosimetry and compare its performance with other commercial detectors. Method An inorganic scintillator detector (ISD) of about 200 µm outer diameter was developed and tested through different small field dosimetric characterizations under high‐energy photons (6 and 15 MV) delivered by an Elekta Linear Accelerator (LINAC). Percentage depth dose (PDD) and beam profile measurements were compared using dosimeters from PTW namely, microdiamond and PinPoint three‐dimensional (PP3D) detector. A background fiber method has been considered to quantitate and eliminate the minimal Cerenkov effect from the total optical signal magnitude. Measurements were performed inside a water phantom under IAEA Technical Reports Series recommendations (IAEA TRS 381 and TRS 483). Results Small fields ranging from 3 × 3 cm2, down to 0.5 × 0.5 cm2 were sequentially measured using the ISD and commercial dosimeters, and a good agreement was obtained among all measurements. The result also shows that, scintillating detector has good repeatability and reproducibility of the output signal with maximum deviation of 0.26% and 0.5% respectively. The Full Width Half Maximum (FWHM) was measured 0.55 cm for the smallest available square size field of 0.5 × 0.5 cm2, where the discrepancy of 0.05 cm is due to the scattering effects inside the water and convolution effect between field and detector geometries. Percentage depth dose factor dependence variation with water depth exhibits nearly the same behavior for all tested detectors. The ISD allows to perform dose measurements at a very high accuracy from low (50 cGy/min) to high dose rates (800 cGy/min) and was found to be independent of dose rate variation. The detection system also showed an excellent linearity with dose; hence, calibration was easily achieved. Conclusions The developed detector can be used to accurately measure the delivered dose at small fields during the treatment of small volume tumors. The author's measurement shows that despite using a nonwater‐equivalent detector, the detector can be a powerful candidate for beam characterization and quality assurance in, for example, radiosurgery, Intensity‐Modulated Radiotherapy (IMRT), and brachytherapy. Our detector can provide real‐time dose measurement and good spatial resolution with immediate readout, simplicity, flexibility, and robustness.
Collapse
Affiliation(s)
| | - Carole Fauquet
- Aix Marseille Université, CNRS, CINaM, UMR 7325, 13288, Marseille, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, 13009, Marseille, France
| | - Anthony Goncalves
- Aix Marseille Université, CNRS, UMR 7258, INSERM, UMR 1068, CRCM, 13009, Marseille, France
| | | | - Franck Jandard
- Aix Marseille Université, CNRS, CINaM, UMR 7325, 13288, Marseille, France
| | - Didier Tonneau
- Aix Marseille Université, CNRS, CINaM, UMR 7325, 13288, Marseille, France
| | | |
Collapse
|
65
|
|
66
|
Alharbi M, Martyn M, O'Keeffe S, Therriault-Proulx F, Beaulieu L, Foley M. Benchmarking a novel inorganic scintillation detector for applications in radiation therapy. Phys Med 2019; 68:124-131. [DOI: 10.1016/j.ejmp.2019.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
|
67
|
Suarez MA, Lim T, Robillot L, Maillot V, Lihoreau T, Bontemps P, Pazart L, Grosjean T. Miniaturized fiber dosimeter of medical ionizing radiations on a narrow optical fiber. OPTICS EXPRESS 2019; 27:35588-35599. [PMID: 31878728 DOI: 10.1364/oe.27.035588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Fiber dosimeters have recently drawn much interest for measuring in vivo and in real time the dose of medical radiations. This paper presents the first miniaturized fiber dosimeter integrated at the end of a narrow 125 μm outer diameter optical fiber. Miniaturization is rendered possible by exploiting the concept of a leaky wave optical antenna for interfacing the scintillators and the fiber and by taking advantage of the low propagation loss of narrow silica fibers and high detection yield of single-pixel photon counters. Upon irradiation at 6 MV in air, our fiber probe leads to a linear detection response with a signal-to-noise ratio as high as 195. Although implemented with inorganic scintillators and fiber, our miniaturized fiber probe induces minimum screening effects on ionizing radiations over a negligible area (0.153 mm2). Our nano-optically driven approach may thus result in ultra-compact fiber dosimeters of negligible footprint in the radiotherapeutic processes, even with non-water equivalent fibers and scintillators. This opens new opportunities for a large panel of therapies relying on ionizing radiations (photons or charged particles).
Collapse
|
68
|
Abstract
Many brachytherapy (BT) errors could be detected with real-time in vivo dosimetry technology. Inorganic scintillation detectors (ISDs) have demonstrated promising capabilities for BT, because some ISD materials can generate scintillation signals large enough that (a) the background signal emitted in the fiber-optic cable (stem signal) is insignificant, and (b) small detector volumes can be used to avoid volume averaging effects in steep dose gradients near BT sources. We investigated the characteristics of five ISD materials to identify one that is appropriate for BT. ISDs consisting of a 0.26 to 1.0 mm3 volume of ruby (Al2O3:Cr), a mixture of Y2O3:Eu and YVO4:Eu, ZnSe:O, or CsI:Tl coupled to a fiber-optic cable were irradiated in a water-equivalent phantom using a high-dose-rate 192Ir BT source. Detectors based on plastic scintillators BCF-12 and BCF-60 (0.8 mm3 volume) were used as a reference. Measurements demonstrated that the ruby, Y2O3:Eu+YVO4:Eu, ZnSe:O, and CsI:Tl ISDs emitted scintillation signals that were up to 19, 19, 250, and 880 times greater, respectively, than that of the BCF-12 detector. While the total signals of the plastic scintillation detectors were dominated by the stem signal for source positions 0.5 cm from the fiber-optic cable and >3.5 cm from the scintillator volume, the stem signal for the ruby and Y2O3:Eu+YVO4:Eu ISDs were <1% of the total signal for source positions <3.4 and <4.4 cm from the scintillator, respectively, and <0.7% and <0.5% for the ZnSe:O and CsI:Tl ISDs, respectively, for positions ⩽8.0 cm. In contrast to the other ISDs, the Y2O3:Eu+YVO4:Eu ISD exhibited unstable scintillation and significant afterglow. All ISDs exhibited significant energy dependence, i.e. their dose response to distance-dependent 192Ir energy spectra differed significantly from the absorbed dose in water. Provided that energy dependence is accounted for, ZnSe:O ISDs are promising for use in error detection and patient safety monitoring during BT.
Collapse
Affiliation(s)
- Gustavo Kertzscher
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | |
Collapse
|
69
|
Jeong S, Chung K, Ahn SH, Lee B, Seo J, Yoon M. Feasibility study of a plastic scintillating plate-based treatment beam fluence monitoring system for use in pencil beam scanning proton therapy. Med Phys 2019; 47:703-712. [PMID: 31732965 DOI: 10.1002/mp.13922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The purpose of this study was to describe a plastic scintillating plate-based gantry-attachable dosimetry system for pencil beam scanning proton therapy to monitor entrance proton beam fluence, and to evaluate the dosimetric characteristics of this system and its feasibility for clinical use. METHODS The dosimetry system, consisting of a plastic scintillating plate and a CMOS camera, was attached to a dedicated scanning nozzle and scintillation during proton beam irradiation was recorded. Dose distribution was calculated from the accumulated recorded frames. The dosimetric characteristics (energy dependency, dose linearity, dose rate dependency, and reproducibility) of the gantry-attachable dosimetry system for use with therapeutic proton beams were measured, and the feasibility of this system during clinical use was evaluated by determining selected quality assurance items at our institution. RESULTS The scintillating plate shortened the range of the proton beam by the water-equivalent thickness of the plate and broadened the spatial profile of the single proton spot by 11% at 70 MeV. The developed system functioned independently of the beam energy (<1.3%) and showed dose linearity, and also functioned independently of the dose rate. The feasibility of the system for clinical use was evaluated by comparing the measured quality assurance dose distribution to that of the treatment planning system. The gamma passing rate with a criterion of 3%/3 mm was 97.58%. CONCLUSIONS This study evaluated the dosimetric characteristics of a plastic scintillating plate-based dosimetry system for use with scanning proton beams. The ability to account for the interference of the dosimetry system on the therapeutic beam enabled offline monitoring of the entrance beam fluence of the pencil beam scanning proton therapy independent of the treatment system with high resolution and in a cost-effective manner.
Collapse
Affiliation(s)
- Seonghoon Jeong
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Kwangzoo Chung
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Hwan Ahn
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Boram Lee
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jaehyeon Seo
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| | - Myonggeun Yoon
- Department of Bio-Convergence Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
70
|
Santos AMC, Gowda R, Bezak E, Afshar V S. Evaluation of a real-time optically stimulated luminescence beryllium oxide (BeO) fibre-coupled dosimetry system with a superficial 140 kVp X-ray beam. Phys Med 2019; 65:167-171. [PMID: 31494370 DOI: 10.1016/j.ejmp.2019.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/18/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the potential of real-time optically stimulated luminescence (rtOSL) measurements of a beryllium oxide (BeO) ceramic fibre-coupled luminescence dosimetry system. By pulsing the stimulation laser during the exposure to ionizing radiation, an rtOSL dose-rate measurement can be obtained which could be stem effect free. A portable rtOSL BeO ceramic fibre-coupled dosimetry system is presented and characterized using a constant dose-rate superficial 140 kVp X-ray beam. The rtOSL was measured for dose-rates between 0.29 and 3.88 Gy/min, controlled by varying the source to surface distance. After correcting for OSL decay during the exposure, a linear dose-rate response of the change in rtOSL (ΔrtOSL) was observed. The ΔrtOSL was also observed to be stem effect free.
Collapse
Affiliation(s)
- Alexandre M Caraça Santos
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia; School of Physical Sciences and Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Raghu Gowda
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Eva Bezak
- School of Physical Sciences and Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia 5005, Australia; Cancer Research Institute and the School of Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shahraam Afshar V
- School of Physical Sciences and Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia 5005, Australia; Division of Information Technology, Engineering and Environment, School of Engineering, The University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
71
|
Madden L, Archer J, Li E, Jelen U, Dong B, Roberts N, Holloway L, Rosenfeld A. First measurements with a plastic scintillation dosimeter at the Australian MRI-LINAC. ACTA ACUST UNITED AC 2019; 64:175015. [DOI: 10.1088/1361-6560/ab324b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
72
|
Ahmed S, Zhang G, Moros EG, Feygelman V. Comprehensive evaluation of the high-resolution diode array for SRS dosimetry. J Appl Clin Med Phys 2019; 20:13-23. [PMID: 31478343 PMCID: PMC6806480 DOI: 10.1002/acm2.12696] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 11/08/2022] Open
Abstract
A high-resolution diode array has been comprehensively evaluated. It consists of 1013 point diode detectors arranged on the two 7.7 × 7.7 cm2 printed circuit boards (PCBs). The PCBs are aligned face to face in such a way that the active volumes of all diodes are in the same plane. All individual correction factors required for accurate dosimetry have been validated for conventional and flattening filter free (FFF) 6MV beams. That included diode response equalization, linearity, repetition rate dependence, field size dependence, angular dependence at the central axis and off-axis in the transverse, sagittal, and multiple arbitrary planes. In the end-to-end tests the array and radiochromic film dose distributions for SRS-type multiple-target plans were compared. In the equalization test (180° rotation), the average percent dose error between the normal and rotated positions for all diodes was 0.01% ± 0.1% (range -0.3 to 0.4%) and -0.01% ± 0.2% (range -0.9 to 0.9%) for 6 MV and 6MV FFF beams, respectively. For the axial angular response, corrected dose stayed within 2% from the ion chamber for all gantry angles, until the beam direction approached the detector plane. In azimuthal direction, the device agreed with the scintillator within 1% for both energies. For multiple combinations of couch and gantry angles, the average percent errors were -0.00% ± 0.6% (range: -2.1% to 1.6%) and -0.1% ± 0.5% (range -1.6% to 2.1%) for the 6MV and 6MV FFF beams, respectively. The measured output factors were largely within 2% of the scintillator, except for the 5 mm 6MV beam showing a 3.2% deviation. The 2%/1 mm gamma analysis of composite SRS measurements produced the 97.2 ± 1.3% (range 95.8-98.5%) average passing rate against film. Submillimeter (≤0.5 mm) dose profile alignment with film was demonstrated in all cases.
Collapse
Affiliation(s)
- Saeed Ahmed
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Physics, University of South Florida, Tampa, FL, USA
| | - Geoffrey Zhang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
73
|
Turgeon V, Kertzscher G, Carroll L, Hopewell R, Massarweh G, Enger SA. Characterization of scintillating fibers for use as positron detector in positron emission tomography. Phys Med 2019; 65:114-120. [PMID: 31450121 DOI: 10.1016/j.ejmp.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Manual and automatic blood sampling at different time intervals is considered the gold standard to determine the arterial input function (AIF) in dynamic positron emission tomography (PET). However, blood sampling is characterized by poor time resolution and is an invasive procedure. The aim of this study was to characterize the scintillating fibers used to develop a non-invasive positron detector. METHODS The detector consists of a scintillating fiber coupled at each end to transmission fiber-optic cables that are connected to photo multiplier tubes in a dual readout setup. The detector is designed to be wrapped around the wrist of the patient undergoing dynamic PET. The attenuation length and bending losses were measured with excitation from gamma radiation (137Cs) and ultraviolet (UV) light. The response to positron-emitting radio-tracers was evaluated with 18F and 11C. RESULTS The attenuation length for a 3.0 m and 1.5 m long scintillating fiber both coincides with the attenuation length given by the manufacturer when excited with the 137Cs source, but not with the UV source due to the differences in scintillation mechanisms. The bending losses are smaller than the measurement uncertainty for the 137Cs source irradiation, and increase when the bending radius decrease for the UV source irradiation. The signal-to-noise ratio for 18F and 11C solutions are 1.98 and 22.54 respectively. The measured decay constant of 11C agrees with its characteristic value. CONCLUSION The performed measurements in the dual readout configuration suggest that scintillating fibers may be suitable to determine the AIF non-invasively.
Collapse
Affiliation(s)
- Vincent Turgeon
- Medical Physics Unit, McGill University, Montreal, Quebec, Canada; Jewish General Hospital, Montreal, Quebec, Canada.
| | | | - Liam Carroll
- Medical Physics Unit, McGill University, Montreal, Quebec, Canada
| | - Robert Hopewell
- Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Shirin A Enger
- Medical Physics Unit, McGill University, Montreal, Quebec, Canada; Department of Oncology, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
74
|
Qin Z, Xie T, Dai X, Zhang B, Ma Y, Khan IU, Zhang X, Li H, Yan Y, Zhao W, Li S, Chen Z, Zhang D, Xu J, Hu X, Xing L, Feng K, Lewis E, Sun W. New model for explaining the over-response phenomenon in percentage of depth dose curve measured using inorganic scintillating materials for optical fiber radiation sensors. OPTICS EXPRESS 2019; 27:23693-23706. [PMID: 31510270 DOI: 10.1364/oe.27.023693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Inorganic scintillating material used in optical fibre sensors (OFS) when used as dosimeters for measuring percentage depth dose (PDD) characteristics have exhibited significant differences when compared to those measured using an ionization chamber (IC), which is the clinical gold standard for quality assurance (QA) assessments. The percentage difference between the two measurements is as high as 16.5% for a 10 × 10 cm2 field at 10 cm depth below the surface. Two reasons have been suggested for this: the presence of an energy effect and Cerenkov radiation. These two factors are analysed in detail and evaluated quantitatively. It is established that the influence of the energy effect is only a maximum of 2.5% difference for a beam size 10 × 10 cm2 compared with the measured ionization chamber values. And the influence of the Cerenkov radiation is less than 0.14% in an inorganic scintillating material in the case of OFS when using Gd2O2S:Tb as the luminescent material. Therefore, there must be other mechanisms leading to over-response. The luminescence mechanism of inorganic scintillating material is theoretically analysed and a new model is proposed and validated that helps explain the over-response phenomenon.
Collapse
|
75
|
Rilling M, Archambault L, Thibault S. Simulating imaging-based tomographic systems using optical design software for resolving 3D structures of translucent media. APPLIED OPTICS 2019; 58:5942-5951. [PMID: 31503910 DOI: 10.1364/ao.58.005942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Imaging-based tomography is emerging as the technique of choice for resolving 3D structures of translucent media, in particular for applications in external beam radiation therapy and combustion diagnostics. However, designing experimental prototypes is time-consuming and costly, and is carried out without the certainty of the imaging optics being optimal. In this paper, we present an optical-design-software-based method that enables end-to-end simulation imaging-based tomography systems. The method, developed using the real ray tracing features of Zemax OpticStudio, was validated in the context of 3D scintillation dosimetry, where multiple imaging systems are used to image the 3D light pattern emitted within an irradiated cubic plastic scintillator volume. The flexibility of the workflow enabled the assessment and comparison of the tomographic performance of standard and focused plenoptic cameras for the reconstruction of a clinical radiation dose distribution. The versatility of the proposed method offers the potential to ease the developmental and optimization process of imaging systems used in volumetric emission computed tomography applications.
Collapse
|
76
|
|
77
|
Nusrat H, Pang G, Ahmad SB, Keller B, Sarfehnia A. Quantifying the impact of lead doping on plastic scintillator response to radiation. Med Phys 2019; 46:4215-4223. [DOI: 10.1002/mp.13691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/03/2019] [Accepted: 06/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Humza Nusrat
- Department of Physics Ryerson University 350 Victoria St. M5B 2K3 Toronto ON Canada
| | - Geordi Pang
- Department of Medical Physics Odette Cancer Center, Sunnybrook Health Sciences Center 2075 Bayview Ave. M4N 3M5 Toronto ON Canada
| | - Syed Bilal Ahmad
- Department of Medical Physics Odette Cancer Center, Sunnybrook Health Sciences Center 2075 Bayview Ave. M4N 3M5 Toronto ON Canada
| | - Brian Keller
- Department of Medical Physics Odette Cancer Center, Sunnybrook Health Sciences Center 2075 Bayview Ave. M4N 3M5 Toronto ON Canada
| | - Arman Sarfehnia
- Department of Medical Physics Odette Cancer Center, Sunnybrook Health Sciences Center 2075 Bayview Ave. M4N 3M5 Toronto ON Canada
| |
Collapse
|
78
|
Horita R, Yamamoto S, Yogo K, Komori M, Toshito T. Three-dimensional (3D) dose distribution measurements of proton beam using a glass plate. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab169e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
79
|
Archer J, Li E, Davis J, Cameron M, Rosenfeld A, Lerch M. High spatial resolution scintillator dosimetry of synchrotron microbeams. Sci Rep 2019; 9:6873. [PMID: 31053762 PMCID: PMC6499773 DOI: 10.1038/s41598-019-43349-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/10/2019] [Indexed: 11/23/2022] Open
Abstract
Microbeam radiation therapy is a novel pre-clinical external beam therapy that uses high-brilliance synchrotron X-rays to deliver the necessary high dose rates. The unique conditions of high dose rate and high spatial fractionation demand a new class of detector to experimentally measure important beam quality parameters. Here we demonstrate the highest spatial resolution plastic scintillator fibre-optic dosimeter found in the literature to date and tested it on the Imaging and Medical Beam-Line at the Australian Synchrotron in a X-ray beam where the irradiation dose rate was 4435 Gy/s. With a one-dimensional spatial resolution of 10 μm the detector is able to resolve the individual microbeams (53.7 ± 0.4 μm wide), and measure the peak-to-valley dose ratio to be 55 ± 17. We also investigate the role of radioluminescence in the optical fibre used to transport the scintillation photons, and conclude that it creates a significant contribution to the total light detected.
Collapse
Affiliation(s)
- James Archer
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Enbang Li
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Matthew Cameron
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
80
|
Horita R, Yamamoto S, Yogo K, Hirano Y, Okudaira K, Kawabata F, Nakaya T, Komori M, Oguchi H. Estimation of the three-dimensional (3D) dose distribution of electron beams from medical linear accelerator (LINAC) using plastic scintillator plate. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
81
|
Christensen JB, Andersen CE. Applications of amorphous track structure models for correction of ionization quenching in organic scintillators exposed to ion beams. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
82
|
Simultaneous measurement of the spectral and temporal properties of a LINAC pulse from outside the treatment room. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
83
|
Christensen JB, Almhagen E, Stolarczyk L, Vestergaard A, Bassler N, Andersen CE. Ionization quenching in scintillators used for dosimetry of mixed particle fields. Phys Med Biol 2019; 64:095018. [PMID: 30909170 DOI: 10.1088/1361-6560/ab12f2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ionization quenching in ion beam dosimetry is often related to the fluence- or dose-averaged linear energy transfer (LET). Both quantities are however averaged over a wide LET range and a mixed field of primary and secondary ions. We propose a novel method to correct the quenched luminescence in scintillators exposed to ion beams. The method uses the energy spectrum of the primaries and accounts for the varying quenched luminescence in heavy, secondary ion tracks through amorphous track structure theory. The new method is assessed against more traditional approaches by correcting the quenched luminescence response from the BCF-12, BCF-60, and 81-0084 plastic scintillators exposed to a 100 MeV pristine proton beam in order to compare the effects of the averaged LET quantities and the secondary ions. Calculations and measurements show that primary protons constitute more than 92% of the energy deposition but account for more than 95% of the luminescence signal in the scintillators. The quenching corrected luminescence signal is in better agreement with the dose measurement when the secondary particles are taken into account. The Birks model provided the overall best quenching corrections, when the quenching corrected signal is adjusted for the number of free model parameters. The quenching parameter kB for the BCF-12 and BCF-60 scintillators is in agreement with literature values and was found to be [Formula: see text] [Formula: see text]m keV-1 for the 81-0084 scintillator. Finally, a fluence threshold for the 100 MeV proton beam was calculated to be of the order of 1010 cm-2, corresponding to 110 Gy, above which the quenching increases non-linearly and the Birks model no longer is applicable.
Collapse
|
84
|
Galavis PE, Hu L, Holmes S, Das IJ. Characterization of the plastic scintillation detector Exradin W2 for small field dosimetry. Med Phys 2019; 46:2468-2476. [DOI: 10.1002/mp.13501] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paulina E. Galavis
- Department of Radiation Oncology New York University, Langone Medical Center & Laura and Issac Perlmutter Cancer Center New York NY 10016USA
| | - Lei Hu
- Department of Radiation Oncology New York University, Langone Medical Center & Laura and Issac Perlmutter Cancer Center New York NY 10016USA
| | | | - Indra J. Das
- Department of Radiation Oncology New York University, Langone Medical Center & Laura and Issac Perlmutter Cancer Center New York NY 10016USA
| |
Collapse
|
85
|
Linares Rosales HM, Duguay-Drouin P, Archambault L, Beddar S, Beaulieu L. Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy. Med Phys 2019; 46:2412-2421. [PMID: 30891803 DOI: 10.1002/mp.13498] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study is devoted to optimizing and characterizing the response of a multipoint plastic scintillator detector (mPSD) for application to in vivo dosimetry in high dose rate (HDR) brachytherapy. METHODS An exhaustive analysis was carried out in order to obtain an optimized mPSD design that maximizes the scintillation light collection produced by the interaction of ionizing photons. More than 20 prototypes of mPSD were built and tested in order to determine the appropriate order of scintillators relative to the photodetector (distal, center, or proximal) as well as their length as a function of the scintillation light emitted. The available detecting elements are the BCF-60, BCF-12, and BCF-10 scintillators (Saint Gobain Crystals, Hiram, OH, USA), separated from each other by segments of Eska GH-4001 clear optical fibers (Mitsubishi Rayon Co., Ltd., Tokyo, Japan). The contribution of each scintillator to the total spectrum was determined by irradiations in the low energy range (<120 keV). For the best mPSD design, a numerical optimization was done in order to select the optical components [dichroic mirrors, filters, and photomultipliers tubes (PMTs)] that best match the light emission profile. Calculations were performed taking into account the measured scintillation spectrum and light yield, the manufacturer-reported transmission and attenuation of the optical components, and the experimentally characterized PMT noise. The optimized dosimetric system was used for HDR brachytherapy measurements. The system was independently controlled from the 192 Ir source via LabVIEW and read simultaneously using an NI-DAQ board. Dose measurements as a function of distance from the source were carried out according to TG-43U1 recommendations. The system performance was quantified in terms of signal to noise ratio (SNR) and signal to background ratio (SBR). RESULTS For best overall light-yield emission, it was determined that BCF-60 should be placed at the distal position, BCF-12 in the center, and BCF-10 at the proximal position with respect to the photodetector. This configuration allowed for optimized light transmission through the collecting fiber and avoided inter-scintillator excitation and self-absorption effects. The optimal scintillator length found was of 3, 6, and 7 mm for BCF-10, BCF- 12, and BCF-60, respectively. The optimized luminescence system allowed for signal deconvolution using a multispectral approach, extracting the dose to each element while taking into account the Cerenkov stem effect. Differences between the mPSD measurements and TG-43U1 remain below 5% in the range of 0.5 to 6.5 cm from the source. The dosimetric system can properly differentiate the scintillation signal from the background for a wide range of dose rate conditions; the SNR was found to be above 5 for dose rates above 22 mGy/s while the minimum SBR measured was 1.8 at 6 mGy/s. CONCLUSION Based on the spectral response at different conditions, an mPSD was constructed and optimized for HDR brachytherapy dosimetry. It is sensitive enough to allow multiple simultaneous measurements over a clinically useful distance range, up to 6.5 cm from the source. This study constitutes a baseline for future applications enabling real-time dose measurements and source position reporting over a wide range of dose rate conditions.
Collapse
Affiliation(s)
- Haydee M Linares Rosales
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Patricia Duguay-Drouin
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Louis Archambault
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77003, USA
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Québec City, QC, Canada
| |
Collapse
|
86
|
Whittaker CA, Santos AM, Kalnins CA, Ebendorff-Heidepriem H, Ottaway D, Spooner NA. Evaluating the energy dependence of various polystyrene based plastic scintillators. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2019.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
87
|
Archer J, Madden L, Li E, Wilkinson D, Rosenfeld AB. An algorithmic approach to single-probe Cherenkov removal in pulsed x-ray beams. Med Phys 2019; 46:1833-1839. [PMID: 30629742 DOI: 10.1002/mp.13383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/21/2018] [Accepted: 01/05/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The removal of Cherenkov light in an optical dosimetry system is an important process to ensure accurate dosimetry without compromising spatial resolution. Many solutions have been presented in the literature, each with advantages and disadvantages. We present a methodology to remove Cherenkov light from a scintillator fiber optic dosimeter in a pulsed megavoltage x-ray beam using the temporal waveform across the pulse. METHODS A sample waveform of Cherenkov light can be measured by exposing only the fiber to the beam. By assuming that the Cherenkov waveform closely matches the intensity of incident radiation, this waveform can be convoluted with the instantaneous scintillation response function to generate an expected scintillation signal. By finding the least-squares fit between these two functions and the experimental data, the estimated Cherenkov contribution can be subtracted off the net signal. This can be applied for arbitrarily complex Cherenkov waveforms (within the 2 ns timing resolution of the data acquisition), and in fact, the results suggest more fluctuations in the waveforms provide a better fit to data. RESULTS Four beam profiles for different field sizes and energies were found with this method. They closely matched references data measured with ionization chamber with average differences across the beam no more than 4%. Noisy waveforms are assumed to be the primary cause of differences between the analyzed scintillator and IC results. We propose methods for improving the results and optimizing the data acquisition and analysis processes. CONCLUSIONS These results demonstrate that it is possible and effective with a single probe to use function fitting of expected data to experimental to remove a complicated Cherenkov signal from the net light signal in pulsed-beam optical dosimetry.
Collapse
Affiliation(s)
- James Archer
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Levi Madden
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Enbang Li
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dean Wilkinson
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
88
|
Lee U, Choi WN, Kim MJ, Kim HR. In situ beta radiation monitoring system with enhanced efficiency for water samples from decommissioned nuclear environment. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:025103. [PMID: 30831768 DOI: 10.1063/1.5078643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
A nuclear environment, including decommissioning activity contains various radioactive nuclides such as pure beta emitters. These radionuclides should be monitored to ensure radiological safety. In particular, beta radionuclides, such as 3H and 14C, can cause internal exposures and should be managed more strictly in terms of health physics. For beta radionuclides, the measurement is carried out in a laboratory through sampling rather than on-site because of the short range. This method is time consuming, laborious, and costly and can also generate secondary waste. In this study, a system for the in situ monitoring of beta radionuclides in water samples is proposed for nuclear facilities and decommissioned environments. A plastic scintillator with low sensitivity to gamma rays and good reactivity with beta radionuclides was used. The detection efficiency was increased by using a detection part, whereby the water sample is made to directly contact the scintillator by utilizing the characteristic of plastic scintillators (i.e., they do not react with water). A coincidence circuit was constructed by using multiple photomultiplier tubes (PMTs) and applied to gross beta activity measurements. The values obtained from a single PMT were used in the spectral analysis to determine the effect of each beta radionuclide. Beta radionuclides in water samples in the field can be monitored by using plastic scintillators and multiple PMTs.
Collapse
Affiliation(s)
- UkJae Lee
- Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea
| | - Woo Nyun Choi
- Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea
| | - Min Ji Kim
- Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea
| | - Hee Reyoung Kim
- Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea
| |
Collapse
|
89
|
Johnstone CD, Therriault-Proulx F, Beaulieu L, Bazalova-Carter M. Characterization of a plastic scintillating detector for the Small Animal Radiation Research Platform (SARRP). Med Phys 2018; 46:394-404. [PMID: 30417377 DOI: 10.1002/mp.13283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this study was to characterize a small plastic scintillator developed for high resolution, real-time dosimetry of therapy and imaging x-ray beams delivered by an image-guided small animal irradiator. MATERIALS AND METHODS A 1 mm diameter, 1 mm long polystyrene BCF-60 scintillating fiber dosimeter was characterized with 220 kVp therapy and 40, 50, 60, 70, and 80 kVp imaging beams on the Small Animal Research Platform (SARRP). Scintillator output, sensitivity (charge per unit dose), linearity, and 0.2-mm resolution beam profile measurements were performed. A validated in-house Monte Carlo (MC) model of the SARRP was used to compute detailed energy spectra at locations of dosimetry, and validated scintillator measurement with MC simulations. Mass energy-absorption coefficients from the National Institute of Standards and Technology (NIST) tables convolved with MC-derived spectra were used in conjunction with Birks ionization quenching factors to correct scintillator output. An air kerma calibration method was employed to correct scintillator output for in-air beam profile measurements with open, 5 × 5, and 3 × 3 mm2 square field sizes, and compared to MC simulations. RESULTS Scintillator dose response showed excellent linearity (R2 ≥ 0.999) for all sensitivity measurements, including output as a function of tube current. Detector sensitivity was 2.41 μC Gy-1 for the 220 kVp therapy beam, and it ranged from 1.21 to 1.32 μC Gy-1 for the 40-80 imaging beams. Percentage difference in sensitivity between the therapy and imaging beams before sensitivity correction and after using the Birks quenching factors were 52.3% and 10.2%, respectively. Percentage differences between the therapy and imaging beam sensitivities after using the air kerma calibration method for in-air measurements was excellent and below 0.3%. In-air beam profile measurements agreed to MC simulations within a mean difference of 2.4% for the 5 × 5 and 3 × 3 mm2 field sizes, however, the scintillator showed signs of volume averaging at the penumbra edges. CONCLUSIONS A small plastic scintillator was characterized for therapy and imaging energies of a small animal irradiator, with output corrected for using an in-house MC model of the irradiator. The characterization of the scintillator detector system for small fields presents steps toward implementing real-time measurements for quality assurance and small animal treatment and imaging dose verification.
Collapse
Affiliation(s)
| | - François Therriault-Proulx
- Departement de Radio-Oncologie and Centre de recherche du CHU de Quebec, CHU de Quebec, Quebec, QC, G1R 3S1, Canada
| | - Luc Beaulieu
- Departement de Radio-Oncologie and Centre de recherche du CHU de Quebec, CHU de Quebec, Quebec, QC, G1R 3S1, Canada.,Departement de physique and Centre de recherche sur le Cancer, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
90
|
Madden L, Archer J, Li E, Wilkinson D, Rosenfeld A. Temporal separation of Cerenkov radiation and scintillation using a clinical LINAC and artificial intelligence. Phys Med Biol 2018; 63:225004. [PMID: 30412477 DOI: 10.1088/1361-6560/aae938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Convolutional neural network (CNN) type artificial intelligences were trained to estimate the Cerenkov radiation present in the temporal response of a LINAC irradiated scintillator-fiber optic dosimeter. The CNN estimate of Cerenkov radiation is subtracted from the combined scintillation and Cerenkov radiation temporal response of the irradiated scintillator-fiber optic dosimeter, giving the sole scintillation signal, which is proportional to the scintillator dose. The CNN measured scintillator dose was compared to the background subtraction measured scintillator dose and ionisation chamber measured dose. The dose discrepancy of the CNN measured dose was on average 1.4% with respect to the ionisation chamber measured dose, matching the 1.4% average dose discrepancy of the background subtraction measured dose with respect to the ionisation chamber measured dose. The developed CNNs had an average time of 3 ms to calculate scintillator dose, permitting the CNNs presented to be applicable for dosimetry in real time.
Collapse
Affiliation(s)
- Levi Madden
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | | | |
Collapse
|
91
|
Belley MD, Craciunescu O, Chang Z, Langloss BW, Stanton IN, Yoshizumi TT, Therien MJ, Chino JP. Real-time dose-rate monitoring with gynecologic brachytherapy: Results of an initial clinical trial. Brachytherapy 2018; 17:1023-1029. [DOI: 10.1016/j.brachy.2018.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/10/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022]
|
92
|
Madden L, Archer J, Li E, Wilkinson D, Rosenfeld A. Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs. Phys Med 2018; 54:131-136. [DOI: 10.1016/j.ejmp.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022] Open
|
93
|
Christensen JB, Andersen CE. Relating ionization quenching in organic plastic scintillators to basic material properties by modelling excitation density transport and amorphous track structure during proton irradiation. Phys Med Biol 2018; 63:195010. [PMID: 30183687 DOI: 10.1088/1361-6560/aadf2d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ionization quenching in organic scintillators is usually corrected with methods that require careful assessment of the response relative to that of an ionization chamber. Here, we present a framework to compute ionization quenching correction factors (QCFs) from first principles for organic plastic scintillators exposed to ions. The tool solves the kinetic Blanc equation, of which the Birks model is a simplified solution, based on amorphous track structures models. As a consequence, ionization quenching correction factors can be calculated relying only on standard, tabulated scintillator material properties such as the density, light yield, and decay time. The tool is validated against experimentally obtained QCFs for two different organic plastic scintillators irradiated with protons with linear energy transfers (LETs) between 5-[Formula: see text]. The QCFs computed from amorphous track structure models and the BC-400 scintillator properties deviate less than 3% from the Birks model for LETs below [Formula: see text] and less than 5% for higher LETs. The agreement between experiments and the software for the BCF-12 scintillator is within 2% for LETs below [Formula: see text] and within 10% for LETs above, comparable to the experimental uncertainties. The framework is compiled into the open source software [Formula: see text] available for download. [Formula: see text] enables computations of QCFs in organic plastic scintillators exposed to ions independently of experimentally based quenching parameters in contrast to the Birks model. [Formula: see text] can improve the accuracy of correction factors and understanding of ionization quenching in scintillator dosimetry.
Collapse
Affiliation(s)
- Jeppe Brage Christensen
- Center for Nuclear Technologies, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | |
Collapse
|
94
|
Monajemi TT, Ruiz EA. Application of plastic scintillating fibres to surface dosimetry in megavoltage photon and electron beams: considerations for Cerenkov correction. ACTA ACUST UNITED AC 2018; 63:185003. [DOI: 10.1088/1361-6560/aad9b6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
95
|
Imaging of produced light in water during high energy electron beam irradiations from a medical linear accelerator. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
96
|
Archer J, Madden L, Li E, Carolan M, Rosenfeld A. A comparison of temporal Cherenkov separation techniques in pulsed signal scintillator dosimetry. Biomed Phys Eng Express 2018; 4. [DOI: 10.1088/2057-1976/aacf56] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022]
|
97
|
Simiele EA, DeWerd LA. Characterization of spectral and intensity changes with measurement geometry in various light guides used in scintillation dosimetry. Med Phys 2018; 45:3417-3428. [DOI: 10.1002/mp.12992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Eric A. Simiele
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin–Madison Madison WI 53705USA
| | - Larry A. DeWerd
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin–Madison Madison WI 53705USA
| |
Collapse
|
98
|
Therriault-Proulx F, Wen Z, Ibbott G, Beddar S. Effect of Magnetic Field Strength on Plastic Scintillation Detector Response. RADIAT MEAS 2018; 116:10-13. [PMID: 30559600 DOI: 10.1016/j.radmeas.2018.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Purpose To characterize the response of plastic scintillation detectors (PSDs) to high-energy photon radiation as a function of magnetic field strength. Materials and Methods PSDs were placed inside a plastic phantom held at the center point between 2 magnets and irradiated using a 6-MV photon beam from a linear accelerator. The magnetic field was varied from 0 T to 1.5 T by 0.3-T increments. The light emission and stem-effect-corrected response as a function of magnetic field strength were obtained for both a commercial PSD (Exradin W1, Standard Imaging) and an in-house hyperspectral PSD. Spectral signatures were obtained for the in-house PSD, and light emission from a bare fiber was also measured. Results Light emission increased as magnetic field strength increased for all detectors tested. The tested PSDs exhibited an increase in light intensity of 10% to 20%, mostly owing to the increase in Cerenkov light produced within and transmitted along the optical fiber. When corrected for stem effects, the increase in PSD response went down to 2.4% for both detectors. This most likely represents the change in the inherent dose deposition within the phantom. Conclusion PSDs with a suitable stem-effect removal approach were less dependent on magnetic field strength and had better water equivalence than did ion chambers tested in previous studies. PSDs therefore show great promise for use in both quality assurance and in-vivo dosimetry applications in a magnetic field environment.
Collapse
Affiliation(s)
- F Therriault-Proulx
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX, USA
| | - Z Wen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX, USA
| | - G Ibbott
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX, USA
| | - S Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX, USA
| |
Collapse
|
99
|
Akino Y, Sumida I, Shiomi H, Higashinaka N, Murashima Y, Hayashida M, Mabuchi N, Ogawa K. Evaluation of the accuracy of the CyberKnife Synchrony™ Respiratory Tracking System using a plastic scintillator. Med Phys 2018; 45:3506-3515. [PMID: 29858498 DOI: 10.1002/mp.13028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The Synchrony™ Respiratory Tracking System of the CyberKnife® Robotic Radiosurgery System (Accuray, Inc., Sunnyvale, CA, USA) enables real-time tracking of moving targets such as lung and liver tumors during radiotherapy. Although film measurements have been used for quality assurance of the tracking system, they cannot evaluate the temporal tracking accuracy. We have developed a verification system using a plastic scintillator that can evaluate the temporal accuracy of the CyberKnife Synchrony. METHODS A phantom consisting of a U-shaped plastic frame with three fiducial markers was used. The phantom was moved on a plastic scintillator plate. To identify the phantom position on the recording video in darkness, four pieces of fluorescent tape representing the corners of a 10 cm × 10 cm square around an 8 cm × 8 cm window were attached to the phantom. For a stable respiration model, the phantom was moved with the fourth power of a sinusoidal wave with breathing cycles of 4, 3, and 2 s and an amplitude of 1 cm. To simulate irregular breathing, the respiratory cycle was varied with Gaussian random numbers. A virtual target was generated at the center of the fluorescent markers using the MultiPlan™ treatment planning system. Photon beams were irradiated using a fiducial tracking technique. In a dark room, the fluorescent light of the markers and the scintillation light of the beam position were recorded using a camera. For each video frame, a homography matrix was calculated from the four fluorescent marker positions, and the beam position derived from the scintillation light was corrected. To correct the displacement of the beam position due to oblique irradiation angles and other systematic measurement errors, offset values were derived from measurements with the phantom held stationary. RESULTS The average SDs of beam position measured without phantom motion were 0.16 and 0.20 mm for lateral and longitudinal directions, respectively. For the stable respiration model, the tracking errors (mean ± SD) were 0.40 ± 0.64 mm, -0.07 ± 0.79 mm, and 0.45 ± 1.14 mm for breathing cycles of 4, 3, and 2 s, respectively. The tracking errors showed significant linear correlation with the phantom velocity. The correlation coefficients were 0.897, 0.913, and 0.957 for breathing cycles of 4, 3, and 2 s, respectively. The unstable respiration model also showed linear correlation between tracking errors and phantom velocity. The probability of tracking error incidents increased with decreasing length of the respiratory cycles. Although the tracking error incidents increased with larger variations in respiratory cycle, the effect on the cumulative probability was insignificant. For a respiratory cycle of 4 s, the maximum tracking error was 1.10 and 1.43 mm at the probability of 10% and 5%, respectively. Large tracking errors were observed when there was phase shift between the tumor and the LED marker. CONCLUSION This technique allows evaluation of the motion tracking accuracy of the Synchrony™ system over time by measurement of the photon beam. The velocity of the target and phase shift have significant effects on accuracy.
Collapse
Affiliation(s)
- Yuichi Akino
- Oncology Center, Osaka University Hospital, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroya Shiomi
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | - Miori Hayashida
- Soseikai CyberKnife Center, Fushimi-ku, Kyoto, 612-8248, Japan
| | | | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
100
|
Tsuneda M, Nishio T, Saito A, Tanaka S, Suzuki T, Kawahara D, Matsushita K, Nishio A, Ozawa S, Karasawa K, Nagata Y. A novel verification method using a plastic scintillator imagining system for assessment of gantry sag in radiotherapy. Med Phys 2018; 45:2411-2424. [DOI: 10.1002/mp.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Masato Tsuneda
- Department of Radiation Oncology; Graduate School of Biomedical & Health Sciences; Hiroshima University; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
- Department of Radiation Oncology; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666 Japan
| | - Teiji Nishio
- Department of Medical Physics; Graduate School of Medicine; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666 Japan
| | - Akito Saito
- Department of Radiation Oncology; Hiroshima University Hospital; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Sodai Tanaka
- Department of Nuclear Engineering and Management; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Tatsuhiko Suzuki
- Department of Radiation Oncology; Graduate School of Biomedical & Health Sciences; Hiroshima University; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology; Graduate School of Biomedical & Health Sciences; Hiroshima University; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Keiichiro Matsushita
- Department of Radiology; Kyoto Prefecture University of Medicine; 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku Kyoto 602-8566 Japan
| | - Aya Nishio
- Department of Radiation Oncology; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666 Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center; 2-2 Hutabanosato, Higashi-ku Hiroshima 732-0057 Japan
| | - Kumiko Karasawa
- Department of Radiation Oncology; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666 Japan
| | - Yasushi Nagata
- Department of Radiation Oncology; Graduate School of Biomedical & Health Sciences; Hiroshima University; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
- Hiroshima High-Precision Radiotherapy Cancer Center; 2-2 Hutabanosato, Higashi-ku Hiroshima 732-0057 Japan
| |
Collapse
|