51
|
|
52
|
Paelinck L, Smedt BD, Reynaert N, Coghe M, Gersem WD, Wagter CD, Vanderstraeten B, Thierens H, Neve WD. Comparison of dose-volume histograms of IMRT treatment plans for ethmoid sinus cancer computed by advanced treatment planning systems including Monte Carlo. Radiother Oncol 2006; 81:250-6. [PMID: 17113671 DOI: 10.1016/j.radonc.2006.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 09/12/2006] [Accepted: 10/27/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE To recompute clinical intensity-modulated treatment plans for ethmoid sinus cancer and to compare quantitatively the dose-volume histograms (DVHs) of the planning target volume (PTV) and the optic organs at risk. MATERIAL AND METHODS Ten step-and-shoot intensity-modulated treatment plans were enrolled in this study. Large natural and surgical air cavities challenged the calculation systems. Each optimized treatment plan was recalculated by two superposition convolution (TMS and Pinnacle) and a Monte Carlo system (MCDE). To compare the resulting DVHs, a one-way ANOVA for repeated measurements was performed and multiple pairwise comparisons were made. RESULTS The tails of the PTV-DVHs were significantly higher for the Monte Carlo system. The DVHs of the critical organs displayed some statistically but not always clinically significant differences. For the individual patients, the three planning systems sometimes reproduced clinically discrepant DVHs that were not significantly different when averaged over all patients. CONCLUSIONS Dose to air cavities contains computational uncertainty. As this dose is clinically irrelevant and optimizing it is meaningless, we recommended extracting the air from the PTV when constructing the PTV-DVH. The planning systems considered reproduce DVHs that are significantly different, especially in the tail region of PTV-DVHs.
Collapse
Affiliation(s)
- Leen Paelinck
- Department of Radiotherapy and Nuclear Medicine, University Hospital Ghent, Gent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kehwar TS, Bhardwaj AK, Chakarvarti SK. Evaluation of dosimetric effect of leaf position in a radiation field of an 80 leaf multileaf collimator fitted to the LINAC head as tertiary collimator. J Appl Clin Med Phys 2006; 7:43-54. [PMID: 17533348 PMCID: PMC5722428 DOI: 10.1120/jacmp.v7i3.2310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/14/2006] [Accepted: 12/31/1969] [Indexed: 11/23/2022] Open
Abstract
This study evaluates changes in the dosimetric characteristics of a Varian Millennium 80‐leaf multileaf collimator (MLC) in a radiation field. In this study, dose rate, scatter factor, percentage depth dose, surface dose and dose in the buildup region, beam profile, flatness and symmetry, and penumbra width measurements were made for 6‐MV and 15‐MV photon beams. Analysis of widths between 50% dose levels of the beam profiles to reflect the field size at the level of profile measurement shows a significant difference between the fields defined by MLC and/or jaws and MLC (zero gap) and the fields defined by jaws only. The position of the MLC leaves in the radiation field also significantly affects scatter factors. A new relationship has, therefore, been established between the scatter factors and the position of the MLC, which will indeed be useful in the dose calculation for irregular fields. Penumbra widths increase with field size and were higher for fields defined by jaws and/or MLC than jaws and MLC (zero gap) by 1.5 mm to 4.2 mm and 3.8 mm to 5.0 mm, for 6‐MV, and 1.5 mm to 2.4 mm and 3.0 mm to 5.6 mm, for 15‐MV, at 20% to 80% and 10% to 90% levels, respectively. The surface dose and the dose in the buildup region were smaller for fields defined by jaws and MLC (zero gap) than the fields defined by jaws and/or MLC for both photon energies. No significant differences were found in percentage depth dose beyond dmax, beam profiles above 80% dose level, and flatness and symmetry for both energies. The results of this study suggest that while one collects linear accelerator beam data with a MLC, the effects of the positions of the MLC leaves play an important role in dosimetric characteristics of 3D conformal radiation therapy as well as intensity‐modulated radiotherapy. PACS number: 87.53.Dq
Collapse
Affiliation(s)
- Than S. Kehwar
- Department of Radiation OncologyUniversity of Pittsburgh Cancer InstitutePittsburghPennsylvaniaU.S.A.
| | - Anup K. Bhardwaj
- Department of Radiation OncologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Shiv K. Chakarvarti
- Department of Applied PhysicsNational Institute of TechnologyKurukshetraIndia
| |
Collapse
|
54
|
Mihaylov IB, Lerma FA, Wu Y, Siebers JV. Analytic IMRT dose calculations utilizing Monte Carlo to predict MLC fluence modulation. Med Phys 2006; 33:828-39. [PMID: 16696458 PMCID: PMC2621101 DOI: 10.1118/1.2178449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A hybrid dose-computation method is designed which accurately accounts for multileaf collimator (MLC)-induced intensity modulation in intensity modulated radiation therapy (IMRT) dose calculations. The method employs Monte Carlo (MC) modeling to determine the fluence modulation caused by the delivery of dynamic or multisegmental (step-and-shoot) MLC fields, and a conventional dose-computation algorithm to estimate the delivered dose to a phantom or a patient. Thus, it determines the IMRT fluence prediction accuracy achievable by analytic methods in the limit that the analytic method includes all details of the MLC leaf transport and scatter. The hybrid method is validated and benchmarked by comparison with in-phantom film dose measurements, as well as dose calculations from two in-house, and two commercial treatment planning system analytic fluence estimation methods. All computation methods utilize the same dose algorithm to calculate dose to a phantom, varying only in the estimation of the MLC modulation of the incident photon energy fluence. Gamma analysis, with respect to measured two-dimensional (2D) dose planes, is used to benchmark each algorithm's performance. The analyzed fields include static and dynamic test patterns, as well as fields from ten DMLC IMRT treatment plans (79 fields) and five SMLC treatment plans (29 fields). The test fields (fully closed MLC, picket fence, sliding windows of different size, and leaf-tip profiles) cover the extremes of MLC usage during IMRT, while the patient fields represent realistic clinical conditions. Of the methods tested, the hybrid method most accurately reproduces measurements. For the hybrid method, 79 of 79 DMLC field calculations have gamma < 1 (3%/3 mm) for more than 95% of the points (per field) while for SMLC fields, 27 of 29 pass the same criteria. The analytic energy fluence estimation methods show inferior pass rates, with 76 of 79 DMLC and 24 of 29 SMLC fields having more than 95% of the test points with gamma < or = 1 (3%/3 mm). Paired one-way ANOVA tests of the gamma analysis results found that the hybrid method better predicts measurements in terms of both the fraction of points with gamma < or = 1 and the average gamma for both 2%/2 mm and 3%/3 mm criteria. These results quantify the enhancement in accuracy in IMRT dose calculations when MC is used to model the MLC field modulation.
Collapse
Affiliation(s)
- I B Mihaylov
- Department of Radiation Oncology, Virginia Commonwealth University, PO. Box 980058, Richmond, Virginia 23298, USA.
| | | | | | | |
Collapse
|
55
|
Cao D, Earl MA, Luan S, Shepard DM. Continuous intensity map optimization (CIMO): A novel approach to leaf sequencing in step and shoot IMRT. Med Phys 2006; 33:859-67. [PMID: 16696461 DOI: 10.1118/1.2176057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A new leaf-sequencing approach has been developed that is designed to reduce the number of required beam segments for step-and-shoot intensity modulated radiation therapy (IMRT). This approach to leaf sequencing is called continuous-intensity-map-optimization (CIMO). Using a simulated annealing algorithm, CIMO seeks to minimize differences between the optimized and sequenced intensity maps. Two distinguishing features of the CIMO algorithm are (1) CIMO does not require that each optimized intensity map be clustered into discrete levels and (2) CIMO is not rule-based but rather simultaneously optimizes both the aperture shapes and weights. To test the CIMO algorithm, ten IMRT patient cases were selected (four head-and-neck, two pancreas, two prostate, one brain, and one pelvis). For each case, the optimized intensity maps were extracted from the Pinnacle3 treatment planning system. The CIMO algorithm was applied, and the optimized aperture shapes and weights were loaded back into Pinnacle. A final dose calculation was performed using Pinnacle's convolution/superposition based dose calculation. On average, the CIMO algorithm provided a 54% reduction in the number of beam segments as compared with Pinnacle's leaf sequencer. The plans sequenced using the CIMO algorithm also provided improved target dose uniformity and a reduced discrepancy between the optimized and sequenced intensity maps. For ten clinical intensity maps, comparisons were performed between the CIMO algorithm and the power-of-two reduction algorithm of Xia and Verhey [Med. Phys. 25(8), 1424-1434 (1998)]. When the constraints of a Varian Millennium multileaf collimator were applied, the CIMO algorithm resulted in a 26% reduction in the number of segments. For an Elekta multileaf collimator, the CIMO algorithm resulted in a 67% reduction in the number of segments. An average leaf sequencing time of less than one minute per beam was observed.
Collapse
Affiliation(s)
- Daliang Cao
- Department of Radiation Oncology, University of Maryland, 22 South Greene St., Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
56
|
Wang L, Li J, Paskalev K, Hoban P, Luo W, Chen L, McNeeley S, Price R, Ma C. Commissioning and quality assurance of a commercial stereotactic treatment-planning system for extracranial IMRT. J Appl Clin Med Phys 2006; 7:21-34. [PMID: 16518314 PMCID: PMC5722476 DOI: 10.1120/jacmp.v7i1.2125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A 3D treatment‐planning system (TPS) for stereotactic intensity‐modulated radiotherapy (IMRT) using a micro‐multileaf collimator has been made available by Radionics. In this work, we report our comprehensive quality assurance (QA) procedure for commissioning this TPS. First, the accuracy of stereotaxy established with a body frame was checked to ensure accurate determination of a target position within the planning system. Second, the CT‐to‐electron density conversion curve used in the TPS was fitted to our site‐specific measurement data to ensure the accuracy of dose calculation and measurement verification in a QA phantom. Using the QA phantom, the radiological path lengths were verified against known geometrical depths to ensure the accuracy of the ray‐tracing algorithm. We also checked inter‐ and intraleaf leakage/transmission for adequate jaw settings. Measurements for dose verification were performed in various head/neck and prostate IMRT treatment plans using the patient‐specific optimized fluence maps. Both ion chamber and film were used for point dose and isodose distribution verifications. To ensure that adjacent organs at risk receive dose within the expectation, we used the Monte Carlo method to calculate dose distributions and dose‐volume histograms (DVHs) for these organs at risk. The dosimetric accuracy satisfied the published acceptability criteria. The Monte Carlo calculations confirmed the measured dose distributions for target volumes. For organs located on the beam boundary or outside the beam, some differences in the DVHs were noticed. However, the plans calculated by both methods met our clinical criteria. We conclude that the accuracy of the XKnife™ RT2 treatment‐planning system is adequate for the clinical implementation of stereotactic IMRT. PACS numbers: 87.53.Xd, 87.53.Ly, 87.53.Wz
Collapse
MESH Headings
- Brain Neoplasms/diagnostic imaging
- Brain Neoplasms/radiotherapy
- Equipment Failure Analysis/instrumentation
- Equipment Failure Analysis/methods
- Equipment Failure Analysis/standards
- Humans
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Imaging, Three-Dimensional/standards
- Phantoms, Imaging
- Quality Assurance, Health Care/methods
- Quality Assurance, Health Care/standards
- Radiographic Image Interpretation, Computer-Assisted/methods
- Radiographic Image Interpretation, Computer-Assisted/standards
- Radiometry/instrumentation
- Radiometry/methods
- Radiometry/standards
- Radiosurgery/instrumentation
- Radiosurgery/methods
- Radiosurgery/standards
- Radiotherapy Dosage
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy Planning, Computer-Assisted/standards
- Radiotherapy, Conformal/instrumentation
- Radiotherapy, Conformal/methods
- Radiotherapy, Conformal/standards
- Reproducibility of Results
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Lu Wang
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Williams MJ, Metcalfe P. Verification of a rounded leaf-end MLC model used in a radiotherapy treatment planning system. Phys Med Biol 2006; 51:N65-78. [PMID: 16467576 DOI: 10.1088/0031-9155/51/4/n03] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new multileaf collimator (MLC) model has been incorporated into version 7.4 of the Pinnacle radiotherapy treatment planning system (Philips Radiation Oncology Systems, Milpitas, CA). The MLC model allows for rounded MLC leaf-ends and provides separate parameters for inter-leaf transmission, intra-leaf transmission and the tongue width of the MLC leaf. In this report we detail the method followed to commission the MLC model for a Varian 120-leaf Millennium MLC (Varian Medical Systems, Palo Alto, CA, USA) for both 6 and 10 MV photons, and test the validity of the model for an IMRT field. Dose profiles in water were measured for a range of square MLC field sizes and compared to the Pinnacle computed dose profiles; in addition, the dose distribution for a series of adjacent MLC fields was measured to observe the model's behaviour along match-lines. Based on these results intra-leaf transmissions of 1.5% for 6 MV and 1.8% for 10 MV, leaf-tip radius of 12.0 cm, an inter-leaf transmission of 0.5%, and a tongue width of 0.1 cm were chosen. Using these values to compute the planar dose distribution for a 6 MV IMRT field, the new version of Pinnacle displayed improved dosimetric agreement with the dose-to-water EPID image and ion chamber measurements when compared to the old version of Pinnacle, particularly along the MLC tongue edge and across match-lines. Discrepancies of up to 5% were observed between calculated and measured doses along match-lines for both 6 MV and 10 MV photons; however, the new MLC model did predict the presence of match-lines and was a significant improvement on the previous model.
Collapse
Affiliation(s)
- M J Williams
- Department of Medical Physics, Illawarra Cancer Care Centre, Crown St, Wollongong, NSW 2500, Australia
| | | |
Collapse
|
58
|
Pönisch F, Titt U, Kry SF, Vassiliev ON, Mohan R. MCNPX
simulation of a multileaf collimator. Med Phys 2006; 33:402-4. [PMID: 16532947 DOI: 10.1118/1.2163833] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Our purpose in this work was to validate a very detailed Monte Carlo model, developed in MCNPX, of a Millennium 120 multileaf collimator integrated into a Varian Clinac 21EX treatment head. The Monte Carlo results were compared with measurements for both the 6-MV and 18-MV photon modes. The following comparisons were performed: depth-dose curves, lateral profiles, multileaf collimator leakage, the tongue-and-grove test, and the round leaf-end test. The good agreement between the Monte Carlo simulations and measurements showed that our model is accurate. Consequently, the benchmarks provided by our study can be used in future Monte Carlo studies.
Collapse
Affiliation(s)
- Falk Pönisch
- Radiation Physics, University of Texas, M.D. Anderson Cancer Center 1515 Holcombe Blvd., Unit 94, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
59
|
Chow JCL, Seguin M, Alexander A. Dosimetric effect of collimating jaws for small multileaf collimated fields. Med Phys 2005; 32:759-65. [PMID: 15839348 DOI: 10.1118/1.1861413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dosimetric effects from the jaw positioned close to the small field (0.5 x 0.5, 1 x 1, and 2 x 2 cm2) side-edge generated by a single-focused multileaf collimator (MLC) were measured and studied. The measurement is important in intensity modulated radiotherapy (IMRT) because generally the jaw cannot perfectly cover all the leaf-ends in a segment of irregular field. This leads to additional dose contributed by (1) the end surface of the jaw, (2) the leaf-end, and (3) the inter- and intraleaf leakage/transmissions during the dosimetric measurement. Moreover, most of the conventional treatment planning systems ignore these effects in the dose calculation. In this study, measurements were made using a Varian 21 EX linear accelerator with 6 MV photon beam through a MLC containing 120 leaves. Percentage depth dose, beam profile, and output for small fields were measured by varying the jaw at different positions away from the leaf-ends in the field side-edge. Moving the jaw away from the leaf-ends increases the output and penumbra width for the small fields. Such increase is particularly significant when the field size is small (0.5 x 0.5 cm2) and the degree of increase changes quickly when the jaw-end is at about 1-2 cm from the leaf-end. It is suggested that measurements should be carried out in the IMRT commissioning to provide information to physicists in reviewing the treatment planning system's accuracy regarding leaf leakage/transmission and jaw effects.
Collapse
Affiliation(s)
- James C L Chow
- Medical Physics Department, Grand River Regional Cancer Center, Grand River Hospital, PO. Box 9056, 835 King Street West, Kitchener, Ontario N2G 1G3, Canada.
| | | | | |
Collapse
|
60
|
Wang L, Hoban P, Paskalev K, Yang J, Li J, Chen L, Xiong W, Ma CCM. Dosimetric advantage and clinical implication of a micro-multileaf collimator in the treatment of prostate with intensity-modulated radiotherapy. Med Dosim 2005; 30:97-103. [PMID: 15922176 DOI: 10.1016/j.meddos.2005.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 11/11/2004] [Indexed: 11/28/2022]
Abstract
This paper investigates the dosimetric benefits of a micro-multileaf (4-mm leaf width) collimator (mMLC) for intensity-modulated radiation therapy (IMRT) treatment planning of the prostate cancer and its potential application for dose escalation and hypofractionation. We compared treatment plans for IMRT delivery using 2 different multileaf collimator (MLC) leaf widths (4 vs. 10 mm) for 10 patients with prostate cancer. Treatment planning was performed on the XknifeRT2 treatment planning system. All beams and optimization parameters were identical for the mMLC and MLC plans. All of the plans were normalized to ensure that 95% of the planning target volume (PTV) received 100% of the prescribed dose (74 Gy). The differences in dose distribution between the 2 groups of plans using the mMLC and the MLC were assessed by dose-volume histogram (DVH) analysis of the target and critical organs. Significant reductions in the volume of rectum receiving medium to higher doses were achieved using the mMLC. The average decrease in the volume of the rectum receiving 40, 50, and 60 Gy using the mMLC plans was 40.2%, 33.4%, and 17.7%, respectively, with p-values less than 0.0001 for V40 and V50 and 0.012 for V60. The mean dose reductions for D17 and D35 for the rectum were 20.0% (p < 0.0001) and 18.3% (p < 0.0002), respectively, when compared to those with the MLC plans. There were consistent reductions in all dose indices studied for the bladder. The target dose inhomogeneity was improved in the mMLC plans by an average of 32%. In the high-dose range, there was no significant difference in the dose deposited in the "hottest" 1 cc of the rectum between the 2 MLC plans for all cases (p > 0.78). Because of the reduction of rectal volume receiving medium to higher doses, dose to the prostate target can be escalated by about 20 Gy to over 74 Gy, while keeping the rectal dose (either denoted by D17 or D35) the same as those with the use of the MLC. The maximum achievable dose, derived when the rectum is allowed to reach the tolerance level, was found to be in the range of 113-172 Gy (using the tolerance value of D17). We conclude that the use of the mMLC for IMRT of the prostate may facilitate dose hypofractionation due to its dosimetric advantage in significantly improving the DVH parameters of the prostate and critical organs. When used for conventional fractionation scheme, mMLC for IMRT of the prostate may reduce the toxicity to the critical organs.
Collapse
Affiliation(s)
- Lu Wang
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Dai J, Que W. Simultaneous minimization of leaf travel distance and tongue-and-groove effect for segmental intensity-modulated radiation therapy. Phys Med Biol 2005; 49:5319-31. [PMID: 15656280 DOI: 10.1088/0031-9155/49/23/009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper introduces a method to simultaneously minimize the leaf travel distance and the tongue-and-groove effect for IMRT leaf sequences to be delivered in segmental mode. The basic idea is to add a large enough number of openings through cutting or splitting existing openings for those leaf pairs with openings fewer than the number of segments so that all leaf pairs have the same number of openings. The cutting positions are optimally determined with a simulated annealing technique called adaptive simulated annealing. The optimization goal is set to minimize the weighted summation of the leaf travel distance and tongue-and-groove effect. Its performance was evaluated with 19 beams from three clinical cases; one brain, one head-and-neck and one prostate case. The results show that it can reduce the leaf travel distance and (or) tongue-and-groove effect; the reduction of the leaf travel distance reaches its maximum of about 50% when minimized alone; the reduction of the tongue-and-groove reaches its maximum of about 70% when minimized alone. The maximum reduction in the leaf travel distance translates to a 1 to 2 min reduction in treatment delivery time per fraction, depending on leaf speed. If the method is implemented clinically, it could result in significant savings in treatment delivery time, and also result in significant reduction in the wear-and-tear of MLC mechanics.
Collapse
Affiliation(s)
- Jianrong Dai
- Department of Radiation Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China.
| | | |
Collapse
|
62
|
Reynaert N, Coghe M, De Smedt B, Paelinck L, Vanderstraeten B, De Gersem W, Van Duyse B, De Wagter C, De Neve W, Thierens H. The importance of accurate linear accelerator head modelling for IMRT Monte Carlo calculations. Phys Med Biol 2005; 50:831-46. [PMID: 15798258 DOI: 10.1088/0031-9155/50/5/008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two Monte Carlo dose engines for radiotherapy treatment planning, namely a beta release of Peregrine and MCDE (Monte Carlo dose engine), were compared with Helax-TMS (collapsed cone superposition convolution) for a head and neck patient for the Elekta SLi plus linear accelerator. Deviations between the beta release of Peregrine and MCDE up to 10% were obtained in the dose volume histogram of the optical chiasm. It was illustrated that the differences are not caused by the particle transport in the patient, but by the modelling of the Elekta SLi plus accelerator head and more specifically the multileaf collimator (MLC). In MCDE two MLC modules (MLCQ and MLCE) were introduced to study the influence of the tongue-and-groove geometry, leaf bank tilt and leakage on the actual dose volume histograms. Differences in integral dose in the optical chiasm up to 3% between the two modules have been obtained. For single small offset beams though the FWHM of lateral profiles obtained with MLCE can differ by more than 1.5 mm from profiles obtained with MLCQ. Therefore, and because the recent version of MLCE is as fast as MLCQ, we advise to use MLCE for modelling the Elekta MLC. Nevertheless there still remains a large difference (up to 10%) between Peregrine and MCDE. By studying small offset beams we have shown that the profiles obtained with Peregrine are shifted, too wide and too flat compared with MCDE and phantom measurements. The overestimated integral doses for small beam segments explain the deviations observed in the dose volume histograms. The Helax-TMS results are in better agreement with MCDE, although deviations exceeding 5% have been observed in the optical chiasm. Monte Carlo dose deviations of more than 10% as found with Peregrine are unacceptable as an influence on the clinical outcome is possible and as the purpose of Monte Carlo treatment planning is to obtain an accuracy of 2%. We would like to emphasize that only the Elekta MLC has been tested in this work, so it is certainly possible that alpha releases of Peregrine provide more accurate results for other accelerators.
Collapse
Affiliation(s)
- N Reynaert
- Department of Medical Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
|
64
|
Kamath S, Sahni S, Ranka S, Li J, Palta J. A comparison of step-and-shoot leaf sequencing algorithms that eliminate tongue-and-groove effects. Phys Med Biol 2004; 49:3137-43. [PMID: 15357187 DOI: 10.1088/0031-9155/49/14/008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The performances of three recently published leaf sequencing algorithms for step-and-shoot intensity-modulated radiation therapy delivery that eliminates tongue-and-groove underdosage are evaluated. Proofs are given to show that the algorithm of Que et al (2004 Phys. Med. Biol. 49 399-405) generates leaf sequences free of tongue-and-groove underdosage and interdigitation. However, the total beam-on times could be up to n times those of the sequences generated by the algorithms of Kamath et al (2004 Phys. Med. Biol. 49 N7-N19), which are optimal in beam-on time for unidirectional leaf movement under the same constraints, where n is the total number of involved leaf pairs. Using 19 clinical fluence matrices and 100000 randomly generated 15 x 15 matrices, the average monitor units and number of segments of the leaf sequences generated using the algorithm of Que et al are about two to four times those generated by the algorithm of Kamath et al.
Collapse
Affiliation(s)
- Srijit Kamath
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
65
|
Sastre-Padro M, van der Heide UA, Welleweerd H. An accurate calibration method of the multileaf collimator valid for conformal and intensity modulated radiation treatments. Phys Med Biol 2004; 49:2631-43. [PMID: 15272678 DOI: 10.1088/0031-9155/49/12/011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Because for IMRT treatments the required accuracy on leaf positioning is high, conventional calibration methods may not be appropriate. The aim of this study was to develop the tools for an accurate MLC calibration valid for conventional and IMRT treatments and to investigate the stability of the MLC. A strip test consisting of nine adjacent segments 2 cm wide, separated by 1 mm and exposed on Kodak X-Omat V films at Dmax depth, was used for detecting leaf-positioning errors. Dose profiles along the leaf-axis were taken for each leaf-pair. We measured the dose variation on each abutment to quantify the relative positioning error (RPE) and the absolute position of the abutment to quantify the absolute positioning error (APE). The accuracy of determining the APE and RPE was 0.15 and 0.04 mm, respectively. Using the RPE and the APE the MLC calibration parameters were calculated in order to obtain a flat profile on the abutment at the correct position. A conventionally calibrated Elekta MLC was re-calibrated using the strip test. The stability of the MLC and leaf-positioning reproducibility was investigated exposing films with 25 adjacent segments 1 cm wide during three months and measuring the standard deviation of the RPE values. A maximum shift over the three months of 0.27 mm was observed and the standard deviation of the RPE values was 0.11 mm.
Collapse
Affiliation(s)
- Maria Sastre-Padro
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | |
Collapse
|
66
|
Wang L, Movsas B, Jacob R, Fourkal E, Chen L, Price R, Feigenberg S, Konski A, Pollack A, Ma C. Stereotactic IMRT for prostate cancer: dosimetric impact of multileaf collimator leaf width in the treatment of prostate cancer with IMRT. J Appl Clin Med Phys 2004; 5:29-41. [PMID: 15738911 PMCID: PMC5723465 DOI: 10.1120/jacmp.v5i2.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The focus of this work is the dosimetric impact of multileaf collimator (MLC) leaf width on the treatment of prostate cancer with intensity-modulated radiation therapy (IMRT). Ten patients with prostate cancer were planned for IMRT delivery using two different MLC leaf widths--4mm and 10mm--representing the Radionics micro-multileaf collimator (mMLC) and Siemens MLC, respectively. Treatment planning was performed on the XKnifeRT2 treatment-planning system (Radionics, Burlington, MA). All beams and optimization parameters were identical for the mMLC and MLC plans. All the plans were normalized to ensure that 95% of the planning target volume (PTV) received 100% of the prescribed dose. The differences in dose distribution between the two different plans were assessed by dose-volume histogram (DVH) analysis of the target and critical organs. We specifically compared the volume of rectum receiving 40 Gy (V40), 50 Gy (V50), 60 Gy (V60), the dose received by 17% and 35% of rectum (D17 and D35), and the maximum dose to 1 cm3 of the rectum for a prescription dose of 74 Gy. For the urinary bladder, the dose received by 25% of bladder (D25), V40, and the maximum dose to 1 cm3 of the organ were recorded. For PTV we compared the maximum dose to the "hottest" 1 cm3 (Dmax1 cm3) and the dose to 99% of the PTV (D99). The dose inhomogeneity in the target, defined as the ratio of the difference in Dmax1 cm3 and D99 to the prescribed dose, was also compared between the two plans. In all cases studied, significant reductions in the volume of rectum receiving doses less than 65 Gy were seen using the mMLC. The average decrease in the volume of the rectum receiving 40 Gy, 50 Gy, and 60 Gy using the mMLC plans was 40.2%, 33.4%, and 17.7%, respectively, with p < 0.0001 for V40 and V50 and p < 0.012 for V60. The mean dose reductions for D17 and D35 for the rectum using the mMLC were 20.4% (p < 0.0001) and 18.3% (p < 0.0002), respectively. There were consistent reductions in all dose indices studied for the bladder. The target dose inhomogeneity was improved in the mMLC plans by an average of 29%. In the high-dose range, there was no significant difference in the dose deposited in the "hottest" 1 cm3 of the rectum between the two plans for all cases (p > 0.78). In conclusion, the use of the mMLC for IMRT of the prostate resulted in significant improvement in the DVH parameters of the prostate and critical organs, which may improve the therapeutic ratio.
Collapse
Affiliation(s)
- L Wang
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Kamath S, Sahni S, Palta J, Ranka S, Li J. Optimal leaf sequencing with elimination of tongue-and-groove underdosage. Phys Med Biol 2004; 49:N7-19. [PMID: 15012015 DOI: 10.1088/0031-9155/49/3/n01] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules.
Collapse
Affiliation(s)
- Srijit Kamath
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
68
|
Que W, Kung J, Dai J. Tongue-and-groove effect in intensity modulated radiotherapy with static multileaf collimator fields. Phys Med Biol 2004; 49:399-405. [PMID: 15012009 DOI: 10.1088/0031-9155/49/3/004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 'tongue-and-groove problem' in step-and-shoot delivery of intensity modulated radiotherapy is investigated. A 'tongue-and-groove' index (TGI) is introduced to quantify the 'tongue-and-groove' effect in step-and-shoot delivery. Four different types of leaf sequencing methods are compared. The sliding window method and the reducing level method use the same number of field segments to deliver the same intensity map, but the TGI is much less for the reducing level method. The leaf synchronization method of Van Santvoort and Heijmen fails in step-and-shoot delivery, but a new method inspired by the method of Van Santvoort and Heijmen is shown to eliminate 'tongue-and-groove' underdosage completely.
Collapse
Affiliation(s)
- W Que
- MPCS, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | | | | |
Collapse
|
69
|
Chen DZ, Hu XS, Luan S, Naqvi SA, Wang C, Yu CX. Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy. ALGORITHMS AND COMPUTATION 2004. [DOI: 10.1007/978-3-540-30551-4_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
70
|
Adams EJ, Convery DJ, Cosgrove VP, McNair HA, Staffurth JN, Vaarkamp J, Nutting CM, Warrington AP, Webb S, Balyckyi J, Dearnaley DP. Clinical implementation of dynamic and step-and-shoot IMRT to treat prostate cancer with high risk of pelvic lymph node involvement. Radiother Oncol 2004; 70:1-10. [PMID: 15036846 DOI: 10.1016/j.radonc.2003.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 08/12/2003] [Accepted: 09/03/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE Two systems have been developed for treating patients with locally advanced prostate cancer using intensity-modulated radiotherapy (IMRT): one using dynamic multi-leaf collimator delivery and the other using step-and-shoot. This paper describes the clinical implementation of these two techniques, and presents results from the first 14 patients treated in a clinical setting (nine dynamic, five step-and-shoot). PATIENTS AND METHODS Dynamic treatments were planned using Corvus, and step-and-shoot using Helax-TMS; all were delivered using Elekta accelerators. Prior to the first clinical treatments, validation measurements were carried out for each system, including measurements for a complete IMRT treatment. The reproducibility of dynamic delivery and the characteristics of the accelerator for low-monitor-unit (MU) deliveries were also assessed. An extensive quality assurance (QA) program was performed for each of the patients. Additionally, timing measurements were carried out to assess the practicalities of the technique. RESULTS The planning objectives were met in most cases. Absolute doses for complete IMRT treatments were within 2%, on average, with dose distributions generally showing agreement within 3% or 3 mm. Beam modulation measurements made throughout each patient's treatment indicated that both delivery methods were reproducible. The dynamic plans required an average of 765 MU per beam, with a treatment delivery time of 14 min; corresponding results for step-and-shoot plans were 105 MU and 10 min. CONCLUSIONS Two IMRT techniques for this group of patients have been successfully implemented in the clinic. The more complex dynamic treatments showed no advantages over the step-and-shoot approach. QA results have shown accurate and reproducible delivery for both techniques, giving increased confidence in the techniques and allowing a reduction in the QA program.
Collapse
Affiliation(s)
- Elizabeth J Adams
- Joint Department of Physics, The Royal Marsden NHS Trust, Downs Road, Sutton, Surrey SM2 5PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kamath S, Sahni S, Palta J, Ranka S. Algorithms for optimal sequencing of dynamic multileaf collimators. Phys Med Biol 2003; 49:33-54. [PMID: 14971771 DOI: 10.1088/0031-9155/49/1/003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is used to deliver intensity modulated beams using a multileaf collimator (MLC), with the leaves in motion. DMLC-IMRT requires the conversion of a radiation intensity map into a leaf sequence file that controls the movement of the MLC while the beam is on. It is imperative that the intensity map delivered using the leaf sequence file be as close as possible to the intensity map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf-sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf-sequencing algorithms for dynamic multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under the most common leaf movement constraints that include leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bi-directional movement of the MLC leaves.
Collapse
Affiliation(s)
- Srijit Kamath
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA.
| | | | | | | |
Collapse
|
72
|
Heath E, Seuntjens J. Development and validation of a BEAMnrc component module for accurate Monte Carlo modelling of the Varian dynamic Millennium multileaf collimator. Phys Med Biol 2003; 48:4045-63. [PMID: 14727750 DOI: 10.1088/0031-9155/48/24/004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new component module (CM), designated DYNVMLC, was developed to fully model the geometry of the Varian Millennium 120 leaf collimator using the BEAMnrc Monte Carlo code. The model includes details such as the leaf driving screw hole, support railing groove and leaf tips. Further modifications also allow sampling of leaf sequence files to simulate the movement of the multileaf collimator (MLC) leaves during an intensity modulated radiation therapy (IMRT) delivery. As an initial validation of the code, the individual leaf geometries were visualized by tracing particles through the component module and recording their position each time a leaf boundary was crossed. A model of the Varian CL21EX linear accelerator 6 MV photon beam incorporating the new CM was built with the BEAMnrc user code. The leaf material density and abutting leaf air gap were chosen to match simulated leaf leakage profiles with film measurements in a solid water phantom. Simulated depth dose and off-axis profiles for a variety of MLC defined static fields agreed to within 2% with ion chamber and diode measurements in a water phantom. Simulated dose distributions for IMRT intensity patterns delivered using both static and dynamic techniques were found to agree with film measurements to within 4%. A comparison of interleaf leakage profiles for the new CM and an equivalent leaf model using the existing VARMLC CM demonstrated that the simplified geometry of VARMLC is not able to accurately predict the details of the MLC leakage for the 120 leaf collimator.
Collapse
Affiliation(s)
- Emily Heath
- Medical Physics Unit, McGill University, 1650 Cedar Ave, Montreal H3G1A4, Canada.
| | | |
Collapse
|
73
|
Abstract
An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. An important component in the treatment planning process is the accurate calculation of dose distributions. The most accurate way to do this is by Monte Carlo calculation of particle transport, first in the geometry of the external or internal source followed by tracking the transport and energy deposition in the tissues of interest. Additionally, Monte Carlo simulations allow one to investigate the influence of source components on beams of a particular type and their contaminant particles. Since the mid 1990s, there has been an enormous increase in Monte Carlo studies dealing specifically with the subject of the present review, i.e., external photon beam Monte Carlo calculations, aided by the advent of new codes and fast computers. The foundations for this work were laid from the late 1970s until the early 1990s. In this paper we will review the progress made in this field over the last 25 years. The review will be focused mainly on Monte Carlo modelling of linear accelerator treatment heads but sections will also be devoted to kilovoltage x-ray units and 60Co teletherapy sources.
Collapse
Affiliation(s)
- Frank Verhaegen
- Medical Physics Unit, McGill University, 1650 Cedar Av Montreal, Québec, H3G1A4, Canada.
| | | |
Collapse
|
74
|
Sohn JW, Dempsey JF, Suh TS, Low DA. Analysis of various beamlet sizes for IMRT with 6 MV Photons. Med Phys 2003; 30:2432-9. [PMID: 14528965 DOI: 10.1118/1.1596785] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Application of intensity modulated radiation therapy (IMRT) using multileaf collimation often requires the use of small beamlets to optimize the delivered radiation distribution. Small-beam dose distribution measurements were compared to dose distributions calculated using a commercial treatment planning system that models its data acquired using measurements from relatively large fields. We wanted to evaluate only the penumbra, percent depth-dose (PDD) and output model, so we avoided dose distribution features caused by rounded leaf ends and interleaf leakage by making measurements using the secondary collimators. We used a validated radiochromic film dosimetry system to measure high-resolution dose distributions of 6 MV photon beams. A commercial treatment planning system using the finite size pencil beam (FSPB) dose calculation algorithm was commissioned using measured central axis outputs from 4.0x4.0 to 40.0x40.0 cm2 beams and radiographic-film profile measurements of a 4.0x4.0 cm2 beam at twice the depth of maximum dose (dmax). Calculated dose distributions for square fields of 0.5x0.5 cm2, and 1.0x1.0 cm2, to 6.0x6.0 cm2, in 1.0x1.0 cm2, increments were compared against radiochromic film measurements taken with the film oriented parallel to the beam central axis in a water equivalent phantom. The PDD of the smaller field sizes exhibited behavior typical of small fields, namely a decrease in dmax with decreasing field size. The FSPB accurately modeled the depth-dose and central axis output for depths deeper than the nominal dmax of 1.5 cm plus 0.5 cm. The dose distribution in the build-up and penumbra regions was not accurately modeled for depths less than 2 cm, especially for the fields of 2.0x2.0 cm2 and smaller. Using the gamma function with 2 mm and 2% criteria, the dose model was shown to accurately predict the penumbra. While for single small beams the compared dose distributions passed the gamma function criteria, the clinical appropriateness of these criteria is not clear for a composite IMRT plan. Further investigation of the cumulative impact of the observed dose discrepancies is warranted. We speculate that the observed differences in the penumbra regions arise from some energy dependent artifact in the radiographic-film profiles used for commissioning. In the future, radiochromic film based commissioning might provide a more accurate data set for dose modeling.
Collapse
Affiliation(s)
- Jason W Sohn
- Radiation Oncology Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63145, USA.
| | | | | | | |
Collapse
|
75
|
Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Xia P, Xiao Y, Xing L, Yu CX. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 2003; 30:2089-115. [PMID: 12945975 DOI: 10.1118/1.1591194] [Citation(s) in RCA: 572] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy since the advent of the medical linear accelerator. It allows the clinical implementation of highly conformal nonconvex dose distributions. This complex but promising treatment modality is rapidly proliferating in both academic and community practice settings. However, these advances do not come without a risk. IMRT is not just an add-on to the current radiation therapy process; it represents a new paradigm that requires the knowledge of multimodality imaging, setup uncertainties and internal organ motion, tumor control probabilities, normal tissue complication probabilities, three-dimensional (3-D) dose calculation and optimization, and dynamic beam delivery of nonuniform beam intensities. Therefore, the purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a viable and safe IMRT program. The scope of the IMRT program is quite broad, encompassing multileaf-collimator-based IMRT delivery systems, goal-based inverse treatment planning, and clinical implementation of IMRT with patient-specific quality assurance. This report, while not prescribing specific procedures, provides the framework and guidance to allow clinical radiation oncology physicists to make judicious decisions in implementing a safe and efficient IMRT program in their clinics.
Collapse
|
76
|
Agazaryan N, Solberg TD. Segmental and dynamic intensity-modulated radiotherapy delivery techniques for micro-multileaf collimator. Med Phys 2003; 30:1758-67. [PMID: 12906193 DOI: 10.1118/1.1578791] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A leaf sequencing algorithm has been implemented to deliver segmental and dynamic multileaf collimated intensity-modulated radiotherapy (SMLC-IMRT and DMLC-IMRT, respectively) using a linear accelerator equipped with a micro-multileaf collimator (mMLC). The implementation extends a previously published algorithm for the SMLC-IMRT to include the dynamic MLC-IMRT method and several dosimetric considerations. The algorithm has been extended to account for the transmitted radiation and minimize the leakage between opposing and neighboring leaves. The underdosage problem associated with the tongue-and-groove design of the MLC is significantly reduced by synchronizing the MLC leaf movements. The workings of the leaf sequencing parameters have been investigated and the results of the planar dosimetric investigations show that the sequencing parameters affect the measured dose distributions as intended. Investigations of clinical cases suggest that SMLC and DMLC delivery methods produce comparable results with leaf sequences obtained by root-mean-square (RMS) errors specification of 1.5% and lower, approximately corresponding to 20 or more segments. For SMLC-IMRT, there is little to be gained by using an RMS error specification smaller than 2%, approximately corresponding to 15 segments; however, more segments directly translate to longer treatment time and more strain on the MLC. The implemented leaf synchronization method does not increase the required monitor units while it reduces the measured TG underdoses from a maximum of 12% to a maximum of 3% observed with single field measurements of representative clinical cases studied.
Collapse
Affiliation(s)
- Nzhde Agazaryan
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-6951, USA.
| | | |
Collapse
|
77
|
Aaronson RF, DeMarco JJ, Chetty IJ, Solberg TD. A Monte Carlo based phase space model for quality assurance of intensity modulated radiotherapy incorporating leaf specific characteristics. Med Phys 2002; 29:2952-8. [PMID: 12512732 DOI: 10.1118/1.1523409] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dose calculations for intensity modulated radiation therapy (IMRT) require an accurate description of the radiation field defined by the multileaf collimator. A previously developed Monte Carlo phase space model has been modified to provide accurate dose verification for IMRT treatments on a Novalis linear accelerator. We have incorporated into the model the effects of the multileaf collimator geometry, including leaf transmission, interleaf leakage, the rounded leaf tips and the effects of leaf sequencing, as well as the beam divergence and energy variation across the field. The modified source model was benchmarked against standard depth dose and profile measurements, and the agreement between the calculation and measurement is within the AAPM Task Group No. 53 criteria for all benchmark fields used. Film dosimetry was used to evaluate the model for IMRT sequences and plans, and the ability of the model to account for leaf sequencing effects is also demonstrated.
Collapse
Affiliation(s)
- Randi F Aaronson
- Department of Radiation Oncology, University of California, Los Angeles, California 90095-6951, USA.
| | | | | | | |
Collapse
|
78
|
Abstract
Multileaf collimator (MLC) based intensity modulated radiation therapy (IMRT) techniques are well established but suffer several physical limitations. Dosimetric spatial resolution is limited by the MLC leaf width; interleaf leakage and tongue-and-groove effects degrade dosimetric accuracy and the range of leaf motion limits the maximum deliverable field size. Collimator rotation is used in standard radiation therapy to improve the conformity of the MLC shape to the target volume. Except for opposed orthogonal fields, collimator rotation has not been exploited in IMRT due to the complexity of deriving the MLC leaf configurations for rotated sub-fields. Here we report on a new way that MLC-based IMRT is delivered which incorporates collimator rotation, providing an extra degree of freedom in deriving leaf sequences for a desired fluence map. Specifically, we have developed a series of unique algorithms that are capable of determining rotated MLC segments. These IMRT fields may be delivered statically (with the collimator rotating to a new position in between sub-fields) or dynamically (with the collimator rotating and leaves moving simultaneously during irradiation). This introductory study provides an analysis of the rotating leaf motion calculation algorithms with focus on radiation efficiency, the range of collimator rotation and number of segments. We then evaluate the technique by characterizing the ability of the algorithms to generate rotating leaf sequences for desired fluence maps. Comparisons are also made between our method and conventional sliding window and step-and-shoot techniques. Results show improvements in spatial resolution, reduced interleaf effects and maximum deliverable field size over conventional techniques. Clinical application of these enhancements can be realized immediately with static rotational delivery although improved dosimetric modelling of the MLC will be required for dynamic delivery.
Collapse
Affiliation(s)
- Karl Otto
- British Columbia Cancer Agency/University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
79
|
Siebers JV, Keall PJ, Kim JO, Mohan R. A method for photon beam Monte Carlo multileaf collimator particle transport. Phys Med Biol 2002; 47:3225-49. [PMID: 12361220 DOI: 10.1088/0031-9155/47/17/312] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/- 1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/- 1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/- 1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.
Collapse
Affiliation(s)
- Jeffrey V Siebers
- Department of Radiation Oncology, Medical College of Virginia Hospitals, Virginia Commonwealth University, Richmond, USA.
| | | | | | | |
Collapse
|
80
|
Abstract
The dosimetrical characteristics of a new miniature multileaf collimator (ModuLeaf MLC, MRC Systems GmbH, Heidelberg, Germany) attached to the accessory holder of a Siemens accelerator with 6 MV x-rays (PRIMUS, Siemens OCS, Concord, California, USA) have been investigated. In particular, those parameters which are important for the accuracy of the treatment such as output factors, penumbra, field edge precision and transmission/leakage were determined. These data can now be used to implement specific dose calculation procedures for this miniature multileaf collimator in treatment planning systems.
Collapse
Affiliation(s)
- G H Hartmann
- German Cancer Research Center, Division Medical Physics, Heidelberg
| | | |
Collapse
|
81
|
Kawamorita R, Iwai K, Takeuchi Y, Kuroda D, Iguchi S, Satou K. [Examination of dose verification in intensity modulated radiation therapy (IMRT) treatment planning using averaging dose in chamber volume]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2002; 58:783-92. [PMID: 12518099 DOI: 10.6009/jjrt.kj00001364470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the year 2000, our hospital has been equipped with an intensity modulated radiation therapy (IMRT) facility. Before IMRT is administered, the absorbed dose is measured by the ionization chamber to provide verification for the IMRT procedure. In utilizing the current point dose evaluation, large discrepancies have been experienced when the measured dose is compared with the calculated dose. This discrepancy is due to the lack of uniformity in IMRT irradiation in comparison with that of the present method of dose distribution. In order to reduce the margin of error, the average dose of the ionization chamber calculated on a dose-volume histogram was compared with the measured dose. As a result, the margin of error was minimized to <2% in uniform areas and <4% in non-uniform areas.
Collapse
Affiliation(s)
- Ryu Kawamorita
- Department of Radiology, Tenri Yorozu Soudansho Hospital, Japan
| | | | | | | | | | | |
Collapse
|
82
|
Ma CM, Li JS, Pawlicki T, Jiang SB, Deng J, Lee MC, Koumrian T, Luxton M, Brain S. A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 2002; 47:1671-89. [PMID: 12069086 DOI: 10.1088/0031-9155/47/10/305] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ.
Collapse
Affiliation(s)
- C M Ma
- Radiation Oncology Department, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Spezi E, Lewis DG. Full forward Monte Carlo calculation of portal dose from MLC collimated treatment beams. Phys Med Biol 2002; 47:377-90. [PMID: 11848118 DOI: 10.1088/0031-9155/47/3/302] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work deals with a full Monte Carlo (MC) simulation of a radiotherapy treatment facility including a multi-leaf collimator (MLC) and electronic portal imaging device (EPID). A method for a planar calibration of the EPID response in terms of dose using the MC technique is presented. Calibration measurements and simulations with several blocks of attenuating material are carried out down to approximatively 5% of the open field transmitted dose. A linear relationship is shown between the squared EPID signal and the MC calculated dose. The calibrated EPID was used as a dosimetric system to validate a MC model for the MLC. Computations and measurements agreed within 2% of dose difference (or 2 mm in regions of high dose gradient). The technique described herein is not significantly limited by physics transport model constraints. Therefore it can potentially provide a more accurate verification of dose delivery to inhomogeneous anatomical regions in patients undergoing complex multi-field conformal or intensity-modulated radiation therapy.
Collapse
Affiliation(s)
- E Spezi
- Department of Medical Physics, Velindre Hospital, Cardiff, UK.
| | | |
Collapse
|
84
|
Liu HH, Verhaegen F, Dong L. A method of simulating dynamic multileaf collimators using Monte Carlo techniques for intensity-modulated radiation therapy. Phys Med Biol 2001; 46:2283-98. [PMID: 11580169 DOI: 10.1088/0031-9155/46/9/302] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method of modelling the dynamic motion of multileaf collimators (MLCs) for intensity-modulated radiation therapy (IMRT) was developed and implemented into the Monte Carlo simulation. The simulation of the dynamic MLCs (DMLCs) was based on randomizing leaf positions during a simulation so that the number of particle histories being simulated for each possible leaf position was proportional to the monitor units delivered to that position. This approach was incorporated into an EGS4 Monte Carlo program, and was evaluated in simulating the DMLCs for Varian accelerators (Varian Medical Systems, Palo Alto. CA, USA). The MU index of each segment, which was specified in the DMLC-control data, was used to compute the cumulative probability distribution function (CPDF) for the leaf positions. This CPDF was then used to sample the leaf positions during a real-time simulation, which allowed for either the step-shoot or sweeping-leaf motion in the beam delivery. Dose intensity maps for IMRT fields were computed using the above Monte Carlo method, with its accuracy verified by film measurements. The DMLC simulation improved the operational efficiency by eliminating the need to simulate multiple segments individually. More importantly, the dynamic motion of the leaves could be simulated more faithfully by using the above leaf-position sampling technique in the Monte Carlo simulation.
Collapse
Affiliation(s)
- H H Liu
- Department of Radiation Physics. The University of Texas MD Anderson Cancer Center, Houston, USA.
| | | | | |
Collapse
|
85
|
Bär W, Alber M, Nüsslin F. A variable fluence step clustering and segmentation algorithm for step and shoot IMRT. Phys Med Biol 2001; 46:1997-2007. [PMID: 11474940 DOI: 10.1088/0031-9155/46/7/319] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A step and shoot sequencer was developed that can be integrated into an IMRT optimization algorithm. The method uses non-uniform fluence steps and is adopted to the constraints of an MLC. It consists of a clustering, a smoothing and a segmentation routine. The performance of the algorithm is demonstrated for eight mathematical profiles of differing complexity and two optimized profiles of a clinical prostate case. The results in terms of stability, flexibility, speed and conformity fulfil the criteria for the integration into the optimization concept. The performance of the clustering routine is compared with another previously published one (Bortfeld et al 1994 Int. J. Radiat. Oncol. Biol. Ph.vs. 28 723-30) and yields slightly better results in terms of mean and maximum deviation between the optimized and the clustered protile. We discuss the specific attributes of the algorithm concerning its integration into the optimization concept.
Collapse
Affiliation(s)
- W Bär
- Abteilung für Medizinische Physik, Radiologische Universitätsklinik, Tübingen, Germany.
| | | | | |
Collapse
|