51
|
Kim HS, Hur SJ. Changes of sodium nitrate, nitrite, and N-nitrosodiethylamine during in vitro human digestion. Food Chem 2017; 225:197-201. [DOI: 10.1016/j.foodchem.2017.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/09/2016] [Accepted: 01/08/2017] [Indexed: 11/26/2022]
|
52
|
Misra N, Jo C. Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
53
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
54
|
Liu ZZ, Mathia S, Pahlitzsch T, Wennysia IC, Persson PB, Lai EY, Högner A, Xu MZ, Schubert R, Rosenberger C, Patzak A. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles. Am J Physiol Renal Physiol 2017; 312:F908-F916. [DOI: 10.1152/ajprenal.00394.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 01/04/2023] Open
Abstract
Vasoconstriction plays an important role in the development of acute kidney injury in rhabdomyolysis. We hypothesized that myoglobin enhances the angiotensin II (ANG II) response in afferent arterioles by increasing superoxide and reducing nitric oxide (NO) bioavailability. Afferent arterioles of C57Bl6 mice were isolated perfused, and vasoreactivity was analyzed using video microscopy. NO bioavailability, superoxide concentration in the vessel wall, and changes in cytosolic calcium were measured using fluorescence techniques. Myoglobin treatment (10−5 M) did not change the basal arteriolar diameter during a 20-min period compared with control conditions. NG-nitro-l-arginine methyl ester (l-NAME, 10−4 M) and l-NAME + myoglobin reduced diameters to 94.7 and 97.9% of the initial diameter, respectively. Myoglobin or l-NAME enhanced the ANG II-induced constriction of arterioles compared with control (36.6 and 34.2%, respectively, vs. 65.9%). Norepinephrine responses were not influenced by myoglobin. Combined application of myoglobin and l-NAME further facilitated the ANG II response (7.0%). Myoglobin or l-NAME decreased the NO-related fluorescence in arterioles similarly. Myoglobin enhanced the superoxide-related fluorescence, and tempol prevented this enhancement. Tempol also partly prevented the myoglobin effect on the ANG II response. Myoglobin increased the fura 2 fluorescence ratio (cytosolic calcium) during ANG II application (10−12 to 10−6 M). The results suggest that the enhanced afferent arteriolar reactivity to ANG II is mainly due to a myoglobin-induced increase in superoxide and associated reduction in the NO bioavailability. Signaling pathways for the augmented ANG II response include enhanced cytosolic calcium transients. In conclusion, myoglobin may contribute to the afferent arteriolar vasoconstriction in this rhabdomyolysis model.
Collapse
Affiliation(s)
- Z. Z. Liu
- Institute of Vegetative Physiology, Berlin, Germany
| | - S. Mathia
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - E. Y. Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China; and
| | - A. Högner
- Institute of Vegetative Physiology, Berlin, Germany
| | - M. Z. Xu
- Institute of Vegetative Physiology, Berlin, Germany
| | - R. Schubert
- Medical Faculty Mannheim, Research Division Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | - C. Rosenberger
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - A. Patzak
- Institute of Vegetative Physiology, Berlin, Germany
| |
Collapse
|
55
|
Galardon E, Huguet F, Herrero C, Ricoux R, Artaud I, Padovani D. Reactions of persulfides with the heme cofactor of oxidized myoglobin and microperoxidase 11: reduction or coordination. Dalton Trans 2017; 46:7939-7946. [DOI: 10.1039/c7dt01638g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Persulfides reduce both met- and ferryl-oxidized forms of myoglobin, and coordinate to N-acetylated microperoxidase-11.
Collapse
Affiliation(s)
- Erwan Galardon
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | - Florian Huguet
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | - Christian Herrero
- UMR 8182
- ICMMO
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris-Sud
- 91405 Orsay Cedex
| | - Rémy Ricoux
- UMR 8182
- ICMMO
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris-Sud
- 91405 Orsay Cedex
| | - Isabelle Artaud
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | | |
Collapse
|
56
|
Nuchuchua O, Every H, Jiskoot W. Critical processing parameters of carbon dioxide spray drying for the production of dried protein formulations: A study with myoglobin. Eur J Pharm Biopharm 2016; 103:200-209. [DOI: 10.1016/j.ejpb.2016.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/29/2016] [Accepted: 04/10/2016] [Indexed: 12/23/2022]
|
57
|
Bedale W, Sindelar JJ, Milkowski AL. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci 2016; 120:85-92. [PMID: 26994928 DOI: 10.1016/j.meatsci.2016.03.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
Consumers have an illogical relationship with nitrite (and its precursor, nitrate) in food. Despite a long history of use, nitrite was nearly banned from use in foods in the 1970s due to health concerns related to the potential for carcinogenic nitrosamine formation. Changes in meat processing methods reduced those potential risks, and nitrite continued to be used in foods. Since then, two opposing movements continue to shape how consumers view dietary nitrate and nitrite. The discovery of the profound physiological importance of nitric oxide led to the realization that dietary nitrate contributes significantly to the nitrogen reservoir for nitric oxide formation. Numerous clinical studies have also demonstrated beneficial effects from dietary nitrate consumption, especially in vascular and metabolic health. However, the latest wave of consumer sentiment against food additives, the clean-label movement, has renewed consumer fear and avoidance of preservatives, including nitrite. Education is necessary but may not be sufficient to resolve this disconnect in consumer perception.
Collapse
Affiliation(s)
- Wendy Bedale
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey J Sindelar
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew L Milkowski
- Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
58
|
Myoglobin microplate assay to evaluate prevention of protein peroxidation. J Pharm Biomed Anal 2015; 114:305-11. [DOI: 10.1016/j.jpba.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 11/21/2022]
|
59
|
Roles of multiple-proton transfer pathways and proton-coupled electron transfer in the reactivity of the bis-FeIV state of MauG. Proc Natl Acad Sci U S A 2015; 112:10896-901. [PMID: 26283395 DOI: 10.1073/pnas.1510986112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high-valent state of the diheme enzyme MauG exhibits charge-resonance (CR) stabilization in which the major species is a bis-Fe(IV) state with one heme present as Fe(IV)=O and the other as Fe(IV) with axial heme ligands provided by His and Tyr side chains. In the absence of its substrate, the high-valent state is relatively stable and returns to the diferric state over several minutes. It is shown that this process occurs in two phases. The first phase is redistribution of the resonance species that support the CR. The second phase is the loss of CR and reduction to the diferric state. Thermodynamic analysis revealed that the rates of the two phases exhibited different temperature dependencies and activation energies of 8.9 and 19.6 kcal/mol. The two phases exhibited kinetic solvent isotope effects of 2.5 and 2.3. Proton inventory plots of each reaction phase exhibited extreme curvature that could not be fit to models for one- or multiple-proton transfers in the transition state. Each did fit well to a model for two alternative pathways for proton transfer, each involving multiple protons. In each case the experimentally determined fractionation factors were consistent with one of the pathways involving tunneling. The percent of the reaction that involved the tunneling pathway differed for the two reaction phases. Using the crystal structure of MauG it was possible to propose proton-transfer pathways consistent with the experimental data using water molecules and amino acid side chains in the distal pocket of the high-spin heme.
Collapse
|
60
|
In vitro heme and non-heme iron capture from hemoglobin, myoglobin and ferritin by bovine lactoferrin and implications for suppression of reactive oxygen species in vivo. Biometals 2014; 27:1371-82. [PMID: 25280951 DOI: 10.1007/s10534-014-9798-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/28/2014] [Indexed: 01/18/2023]
Abstract
Lactoferrin (Lf), present in colostrum and milk is a member of the transferrin family of iron-binding glyco-proteins, with stronger binding capacity to ferric iron than hemoglobin, myoglobin or transferrin. Unlike hemoglobin and myoglobin, iron-bound Lf is reasonably stable to gastric and duodenal digestive conditions. Unlike ferrous iron, ferric iron is not directly reactive with oxygen supporting the capacity of Lf capture of heme iron to suppress reactive oxygen species (ROS) production. We therefore hypothesized that bovine Lf could capture and thereby terminate the cycle of ROS production by heme iron. The transfer of heme iron from either intact or digested forms of hemoglobin and myoglobin and from intact ferritin was demonstrated by in vitro methods, monitoring Fe-saturation status of Lf by changes in absorptivity at 465 nm. The results are discussed in the context of new proposed opportunities for orally administered Lf to regulate oxidative damage associated with heme iron. In addition to potentially suppressing oxidative heme-iron-mediated tissue damage in the lumen, Lf is expected to also reverse the overload of ferritin-bound iron, that accompanies chronic inflammation and aging. These new proposed uses of Lf are additional to known host defense functions that include anti-microbial, anti-viral properties, immune and cancer cell growth regulation. The findings and interpretations presented require clinical substantiation and may support important additional protective and therapeutic uses for Lf in the future.
Collapse
|
61
|
Lee SK, Tatiyaborworntham N, Grunwald EW, Richards MP. Myoglobin and haemoglobin-mediated lipid oxidation in washed muscle: observations on crosslinking, ferryl formation, porphyrin degradation, and haemin loss rate. Food Chem 2014; 167:258-63. [PMID: 25148987 DOI: 10.1016/j.foodchem.2014.06.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/23/2014] [Accepted: 06/24/2014] [Indexed: 11/15/2022]
Abstract
Reduced trout haemoglobin (Hb) is a mixture of oxy- and deoxy-Hb at pH 6.3. Addition of oxy/deoxyHb to washed muscle resulted in detectable ferryl Hb while adding bovine oxyHb, trout metHb, or bovine metHb did not. Trout metHb promoted lipid oxidation more rapidly than bovine metHb, attributable to lower haemin affinity in fish Hbs. Protoporphyrin IX degradation was prevalent during trout and bovine Hb-mediated lipid oxidation. Caffeic acid prevented porphyrin degradation and lipid oxidation. Crosslinked myoglobin (Mb) promoted lipid oxidation more effectively than metMb. Fish metMb released haemin more readily than mammalian metMb at pH 5.5. These studies suggest haemin dissociation from metHb causes formation of free radicals that degrade protoporphyrin and cause lipid oxidation, and appreciable quantities of deoxyHb are needed to generate ferryl Hb oxidant. Crosslinking appears to facilitate Mb-mediated lipid oxidation in washed muscle yet haemin release can occur from fish metMb at low pH.
Collapse
Affiliation(s)
- Sung Ki Lee
- Kangwon National University, Department of Animal Products & Food Science, Meat Science Laboratory, KNU Ave 1, Chuncheon, Gangwon 200-701, South Korea
| | - Nantawat Tatiyaborworntham
- Department of Animal Sciences, Meat Science and Muscle Biology Laboratory, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Eric W Grunwald
- Department of Animal Sciences, Meat Science and Muscle Biology Laboratory, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mark P Richards
- Department of Animal Sciences, Meat Science and Muscle Biology Laboratory, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
62
|
Cerda JF, Roeder MH, Houchins DN, Guzman CX, Amendola EJ, Castorino JD, Fritz AL. Electrochemical determination of heme-linked pKa values and the importance of using fluoride binding in heme proteins. Anal Biochem 2013; 443:75-7. [DOI: 10.1016/j.ab.2013.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/14/2013] [Indexed: 11/25/2022]
|