51
|
Central Nervous System Responses to Simulated Galactic Cosmic Rays. Int J Mol Sci 2018; 19:ijms19113669. [PMID: 30463349 PMCID: PMC6275046 DOI: 10.3390/ijms19113669] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
In preparation for lunar and Mars missions it is essential to consider the challenges to human health that are posed by long-duration deep space habitation via multiple stressors, including ionizing radiation, gravitational changes during flight and in orbit, other aspects of the space environment such as high level of carbon dioxide, and psychological stress from confined environment and social isolation. It remains unclear how these stressors individually or in combination impact the central nervous system (CNS), presenting potential obstacles for astronauts engaged in deep space travel. Although human spaceflight research only within the last decade has started to include the effects of radiation transmitted by galactic cosmic rays to the CNS, radiation is currently considered to be one of the main stressors for prolonged spaceflight and deep space exploration. Here we will review the current knowledge of CNS damage caused by simulated space radiation with an emphasis on neuronal and glial responses along with cognitive functions. Furthermore, we will present novel experimental approaches to integrate the knowledge into more comprehensive studies, including multiple stressors at once and potential translation to human functions. Finally, we will discuss the need for developing biomarkers as predictors for cognitive decline and therapeutic countermeasures to prevent CNS damage and the loss of cognitive abilities.
Collapse
|
52
|
Female mice are protected from space radiation-induced maladaptive responses. Brain Behav Immun 2018; 74:106-120. [PMID: 30107198 PMCID: PMC8715721 DOI: 10.1016/j.bbi.2018.08.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/15/2023] Open
Abstract
Interplanetary exploration will be humankind's most ambitious expedition and the journey required to do so, is as intimidating as it is intrepid. One major obstacle for successful deep space travel is the possible negative effects of galactic cosmic radiation (GCR) exposure. Here, we investigate for the first time how combined GCR impacts long-term behavioral and cellular responses in male and female mice. We find that a single exposure to simulated GCR induces long-term cognitive and behavioral deficits only in the male cohorts. GCR exposed male animals have diminished social interaction, increased anxiety-like phenotype and impaired recognition memory. Remarkably, we find that the female cohorts did not display any cognitive or behavioral deficits after GCR exposure. Mechanistically, the maladaptive behavioral responses observed only in the male cohorts correspond with microglia activation and synaptic loss in the hippocampus, a brain region involved in the cognitive domains reported here. Furthermore, we measured reductions in AMPA expressing synaptic terminals in the hippocampus. No changes in any of the molecular markers measured here are observed in the females. Taken together these findings suggest that GCR exposure can regulate microglia activity and alter synaptic architecture, which in turn leads to a range of cognitive alterations in a sex dependent manner. These results identify sex-dependent differences in behavioral and cognitive domains revealing promising cellular and molecular intervention targets to reduce GCR-induced chronic cognitive deficits thereby boosting chances of success for humans in deep space missions such as the upcoming Mars voyage.
Collapse
|
53
|
Pavlakou P, Dounousi E, Roumeliotis S, Eleftheriadis T, Liakopoulos V. Oxidative Stress and the Kidney in the Space Environment. Int J Mol Sci 2018; 19:ijms19103176. [PMID: 30326648 PMCID: PMC6214023 DOI: 10.3390/ijms19103176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
In space, the special conditions of hypogravity and exposure to cosmic radiation have substantial differences compared to terrestrial circumstances, and a multidimensional impact on the human body and human organ functions. Cosmic radiation provokes cellular and gene damage, and the generation of reactive oxygen species (ROS), leading to a dysregulation in the oxidants–antioxidants balance, and to the inflammatory response. Other practical factors contributing to these dysregulations in space environment include increased bone resorption, impaired anabolic response, and even difficulties in detecting oxidative stress in blood and urine samples. Enhanced oxidative stress affects mitochondrial and endothelial functions, contributes to reduced natriuresis and the development of hypertension, and may play an additive role in the formation of kidney stones. Finally, the composition of urine protein excretion is significantly altered, depicting possible tubular dysfunction.
Collapse
Affiliation(s)
- Paraskevi Pavlakou
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | - Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| | - Theodoros Eleftheriadis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
| |
Collapse
|
54
|
Hinzman CP, Baulch JE, Mehta KY, Gill K, Limoli CL, Cheema AK. Exposure to Ionizing Radiation Causes Endoplasmic Reticulum Stress in the Mouse Hippocampus. Radiat Res 2018; 190:483-493. [PMID: 30084740 DOI: 10.1667/rr15061.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well known that ionizing radiation-induced toxicity to normal tissue has functional consequences in the brain. However, the underlying molecular alterations have yet to be elucidated. We have previously reported cognitive impairments with concomitant changes in dendritic complexity, spine density and inflammation in mice at 6-24 weeks postirradiation. The goal of this study was to determine whether metabolic changes in the mouse hippocampus after whole-body (4 Gy) or cranial (9 Gy) X-ray irradiation might trigger some of the incipient changes contributing to the persisting pathology in the radiation-injured brain. Metabolomic and lipidomic profiling of hippocampal tissue revealed that radiation induced dyslipidemia in mice at two days and two weeks postirradiation. Strikingly, significant changes were also observed in metabolites of the hexosamine biosynthesis pathway, a finding that was further confirmed using orthogonal methodologies. We hypothesize that these changes in hexosamine metabolism could induce endoplasmic reticulum stress and contribute to radiation-induced cognitive impairments. Taken together, our results show that molecular phenotyping is a valuable approach to identify potentially detrimental pathway perturbations that manifest significantly earlier than gross structural and functional changes in the irradiated brain.
Collapse
Affiliation(s)
- Charles P Hinzman
- a Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Janet E Baulch
- c Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Khyati Y Mehta
- b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Kirandeep Gill
- b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Charles L Limoli
- c Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Amrita K Cheema
- a Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057.,b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
55
|
Jafari E, Alavi M, Zal F. The evaluation of protective and mitigating effects of vitamin C against side effects induced by radioiodine therapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:233-240. [PMID: 29860661 DOI: 10.1007/s00411-018-0744-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
The goal of this study was to evaluate the protective and mitigative effect of vitamin C on oxidative stress in differentiated thyroid cancer (DTC) patients ablated with radioiodine. 58 DTC patients selected for radioactive iodine therapy (RAIT) with 5550 MBq 131Iodine were divided into four groups. Group 1 (control group) consisted of patients who underwent RAIT routinely. Other patients received 1500 mg vitamin C daily 2 days after (group 2), 2 days before to 2 days after (group 3) and 2 days before RAIT (group 4). Serum oxidative stress markers including malondialdehyde (MDA), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) were measured immediately before and 2 days after RAIT. A significant increase in MDA after RAIT was observed in all groups (p < 0.05). The concentrations of MDA were significantly higher in the control group compared to the intervention groups (p < 0.05). A significant decrease in the control group (p < 0.05) and increase in group 4 (p < 0.05) were observed in GSH level after RAIT (p < 0.05). Mean variation of GSH was significant between control group with groups 3 (p < 0.01) and 4 (p < 0.01). The results indicate that activity of SOD remained unchanged in all groups (p > 0.05). A significant increase was observed in CAT activity after RAIT in all groups (p < 0.05), which was higher in control group than intervention groups. In groups 3 (p < 0.05) and 4 (p < 0.05), this increase in CAT activity was significantly lower than the control group. RAIT causes serum oxidative stress, which can be ameliorated using vitamin C as an antioxidant. These results indicate that radioprotective effect of vitamin C is preferable to its mitigative effect.
Collapse
Affiliation(s)
- Esmail Jafari
- Department of Medical Physics, Medicine School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrosadat Alavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Nuclear Medicine, Medicine School, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Nuclear Medicine, Namazi Hospital, Zand Street, Shiraz, Iran.
| | - Fatemeh Zal
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
56
|
Parihar VK, Maroso M, Syage A, Allen BD, Angulo MC, Soltesz I, Limoli CL. Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice. Exp Neurol 2018. [DOI: 10.1016/j.expneurol.2018.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
57
|
Krukowski K, Feng X, Paladini MS, Chou A, Sacramento K, Grue K, Riparip LK, Jones T, Campbell-Beachler M, Nelson G, Rosi S. Temporary microglia-depletion after cosmic radiation modifies phagocytic activity and prevents cognitive deficits. Sci Rep 2018; 8:7857. [PMID: 29777152 PMCID: PMC5959907 DOI: 10.1038/s41598-018-26039-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Microglia are the main immune component in the brain that can regulate neuronal health and synapse function. Exposure to cosmic radiation can cause long-term cognitive impairments in rodent models thereby presenting potential obstacles for astronauts engaged in deep space travel. The mechanism/s for how cosmic radiation induces cognitive deficits are currently unknown. We find that temporary microglia depletion, one week after cosmic radiation, prevents the development of long-term memory deficits. Gene array profiling reveals that acute microglia depletion alters the late neuroinflammatory response to cosmic radiation. The repopulated microglia present a modified functional phenotype with reduced expression of scavenger receptors, lysosome membrane protein and complement receptor, all shown to be involved in microglia-synapses interaction. The lower phagocytic activity observed in the repopulated microglia is paralleled by improved synaptic protein expression. Our data provide mechanistic evidence for the role of microglia in the development of cognitive deficits after cosmic radiation exposure.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Xi Feng
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Maria Serena Paladini
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Austin Chou
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Kristen Sacramento
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Lara-Kirstie Riparip
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Mary Campbell-Beachler
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Gregory Nelson
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Brain and Spinal Injury Center, University of California, San Francisco, CA, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA. .,Kavli Institute of Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
58
|
Sharma NK, Sharma R, Mathur D, Sharad S, Minhas G, Bhatia K, Anand A, Ghosh SP. Role of Ionizing Radiation in Neurodegenerative Diseases. Front Aging Neurosci 2018; 10:134. [PMID: 29867445 PMCID: PMC5963202 DOI: 10.3389/fnagi.2018.00134] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/23/2018] [Indexed: 02/03/2023] Open
Abstract
Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR.
Collapse
Affiliation(s)
- Neel K. Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rupali Sharma
- Center for Neuroscience and Regenerative Medicine, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deepali Mathur
- Neurobiology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
59
|
Smart D. Radiation Toxicity in the Central Nervous System: Mechanisms and Strategies for Injury Reduction. Semin Radiat Oncol 2018; 27:332-339. [PMID: 28865516 DOI: 10.1016/j.semradonc.2017.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The potential for radiation-induced toxicities in the brain produces significant anxiety, both among patients receiving radiation therapy and those radiation oncologists providing treatment. These concerns often play a significant role in the medical decision-making process for most patients with diseases in which radiotherapy may be a treatment consideration. Although the precise mechanisms of neurotoxicity and neurodegeneration after ionizing radiation exposure continue to be poorly understood from a biological perspective, there is an increasing body of scientific and clinical literature that is producing a better understanding of how radiation causes brain injury; factors that determine whether toxicities occur; and potential preventative, treatment, and mitigation strategies for patients at high risk or with symptoms of injury. This review will focus primarily on injuries and biological processes described in mature brain.
Collapse
Affiliation(s)
- DeeDee Smart
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
60
|
Pietraforte D, Paulicelli E, Patrono C, Gambardella L, Scorza G, Testa A, Fattibene P. Protein oxidative damage and redox imbalance induced by ionising radiation in CHO cells. Free Radic Res 2018; 52:465-479. [DOI: 10.1080/10715762.2018.1446529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Donatella Pietraforte
- Core Facilities, EPR Area, Italian Institute of Health, Rome, Italy
- Center for Gender-Specific Medicine, Biomarkers Unit, Italian Institute of Health, Rome, Italy
| | | | - Clarice Patrono
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Lucrezia Gambardella
- Center for Gender-Specific Medicine, Biomarkers Unit, Italian Institute of Health, Rome, Italy
| | - Giuseppe Scorza
- Core Facilities, EPR Area, Italian Institute of Health, Rome, Italy
| | - Antonella Testa
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Paola Fattibene
- Core Facilities, EPR Area, Italian Institute of Health, Rome, Italy
| |
Collapse
|
61
|
Britten RA, Jewell JS, Duncan VD, Hadley MM, Macadat E, Musto AE, Tessa CL. Impaired Attentional Set-Shifting Performance after Exposure to 5 cGy of 600 MeV/n28Si Particles. Radiat Res 2018; 189:273-282. [DOI: 10.1667/rr14627.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Richard A. Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica S. Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D. Duncan
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Melissa M. Hadley
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Evangeline Macadat
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Alberto E. Musto
- Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Chiara La Tessa
- NSRL Brookhaven National Laboratories, Upton, New York 11973
- University of Trento, Povo Trento 38122, Italy
| |
Collapse
|
62
|
Mange A, Cao Y, Zhang S, Hienz RD, Davis CM. Whole-Body Oxygen (16O) Ion-Exposure-Induced Impairments in Social Odor Recognition Memory in Rats are Dose and Time Dependent. Radiat Res 2018; 189:292-299. [DOI: 10.1667/rr14849.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ami Mange
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuqing Cao
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sandy Spring Friends School, Sandy Spring, Maryland
| | - SiYuan Zhang
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sandy Spring Friends School, Sandy Spring, Maryland
| | - Robert D. Hienz
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institutes for Behavior Resources, Baltimore, Maryland
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
63
|
Allen BD, Acharya MM, Lu C, Giedzinski E, Chmielewski NN, Quach D, Hefferan M, Johe KK, Limoli CL. Remediation of Radiation-Induced Cognitive Dysfunction through Oral Administration of the Neuroprotective Compound NSI-189. Radiat Res 2018; 189:345-353. [PMID: 29351056 DOI: 10.1667/rr14879.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical management of primary and secondary central nervous system (CNS) malignancies frequently includes radiotherapy to forestall tumor growth and recurrence after surgical resection. While cranial radiotherapy remains beneficial, adult and pediatric brain tumor survivors suffer from a wide range of debilitating and progressive cognitive deficits. Although this has been recognized as a significant problem for decades, there remains no clinical recourse for the unintended neurocognitive sequelae associated with these types of cancer treatments. In previous work, multiple mechanisms have been identified that contribute to radiation-induced cognitive dysfunction, including the inhibition of neurogenesis caused by the depletion of radiosensitive populations of stem and progenitor cells in the hippocampus. To explore the potential neuroprotective properties of a pro-neurogenic compound NSI-189, Long-Evans rats were subjected to a clinically relevant fractionated irradiation protocol followed by four weeks of NSI-189 administered daily by oral gavage. Animals were then subjected to five different behavioral tasks followed by an analysis of neurogenesis, hippocampal volume and neuroinflammation. Irradiated cohorts manifested significant behavioral decrements on all four spontaneous exploration tasks. Importantly, NSI-189 treatment resulted in significantly improved performance in four of these tasks: novel place recognition, novel object recognition, object in place and temporal order. In addition, there was a trend of improved performance in the contextual phase of the fear conditioning task. Importantly, enhanced cognition in the NSI-189-treated cohort was found to persist one month after the cessation of drug treatment. These neurocognitive benefits of NSI-189 coincided with a significant increase in neurogenesis and a significant decrease in the numbers of activated microglia compared to the irradiated cohort that was given vehicle alone. The foregoing changes were not accompanied by major changes in hippocampal volume. These data demonstrate that oral administration of a pro-neurogenic compound exhibiting anti-inflammatory indications could impart long-term neurocognitive benefits in the irradiated brain.
Collapse
Affiliation(s)
- Barrett D Allen
- a Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Munjal M Acharya
- a Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Celine Lu
- a Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Erich Giedzinski
- a Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - Nicole N Chmielewski
- a Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| | - David Quach
- b Neuralstem, Inc., Germantown, Maryland 20876
| | | | - Karl K Johe
- b Neuralstem, Inc., Germantown, Maryland 20876
| | - Charles L Limoli
- a Department of Radiation Oncology, University of California, Irvine, Irvine, California 92697-2695
| |
Collapse
|
64
|
Age-related effects of X-ray irradiation on mouse hippocampus. Oncotarget 2018; 7:28040-58. [PMID: 27057631 PMCID: PMC5053708 DOI: 10.18632/oncotarget.8575] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/27/2016] [Indexed: 12/31/2022] Open
Abstract
Therapeutic irradiation of pediatric and adult patients can profoundly affect adult neurogenesis, and cognitive impairment manifests as a deficit in hippocampal-dependent functions. Age plays a major role in susceptibility to radiation, and younger children are at higher risk of cognitive decay when compared to adults. Cranial irradiation affects hippocampal neurogenesis by induction of DNA damage in neural progenitors, through the disruption of the neurogenic microenvironment, and defective integration of newborn neurons into the neuronal network. Our goal here was to assess cellular and molecular alterations induced by cranial X-ray exposure to low/moderate doses (0.1 and 2 Gy) in the hippocampus of mice irradiated at the postnatal ages of day 10 or week 10, as well as the dependency of these phenomena on age at irradiation. To this aim, changes in the cellular composition of the dentate gyrus, mitochondrial functionality, proteomic profile in the hippocampus, as well as cognitive performance were evaluated by a multidisciplinary approach. Our results suggest the induction of specific alterations in hippocampal neurogenesis, microvascular density and mitochondrial functions, depending on age at irradiation. A better understanding of how irradiation impairs hippocampal neurogenesis at low and moderate doses is crucial to minimize adverse effects of therapeutic irradiation, contributing also to radiation safety regulations.
Collapse
|
65
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
66
|
Dutta SM, Hadley MM, Peterman S, Jewell JS, Duncan VD, Britten RA. Quantitative Proteomic Analysis of the Hippocampus of Rats with GCR-Induced Spatial Memory Impairment. Radiat Res 2017; 189:136-145. [PMID: 29206597 DOI: 10.1667/rr14822.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
NASA is planning future missions to Mars, which will result in astronauts being exposed to ∼13 cGy/year of galactic cosmic radiation (GCR). Previous ground-based experiments have demonstrated that low (15 cGy) doses of 1 GeV/n 56Fe ions impair hippocampus-dependent spatial memory in rats. However, some irradiated rats maintain a spatial memory performance comparable to that seen in the sham-irradiated rats, suggesting that some of these animals are able to ameliorate the deleterious effects of the GCR, while others are not. This rat model provides a unique opportunity to increase our understanding of how GCR affects neurophysiology, what adaptive responses can be invoked to prevent the emergence of GCR-induced spatial memory impairment, as well as the pathways that are altered when spatial memory impairment occurs. A label-free, unbiased proteomic profiling approach involving quantitative protein/peptide profiling followed by Cytoscape analysis has established the composition of the hippocampal proteome in male Wistar rats after exposure to 15 cGy of 1 GeV/n 56Fe, and identified proteins whose expression is altered with respect to: 1. radiation exposure and 2. impaired spatial memory performance. We identified 30 proteins that were classified as "GCR exposure marker" (GEM) proteins (expressed solely or at higher levels in the irradiated rats but not related to spatial memory performance), most notably CD98, Cadps and GMFB. Conversely, there were 252 proteins that were detected only in the sham-irradiated samples, i.e., they were not detected in either of the irradiated cohorts; of these 10% have well-documented roles in neurotransmission. The second aspect of our data mining was to identify proteins whose expression was associated with either impaired or functional spatial memory. While there are multiple changes in the hippocampal proteome in the irradiated rats that have impaired spatial memory performance, with 203 proteins being detected (or upregulated) only in these rats, it would appear that spatial memory impairment may also arise from an inability of these rats to express "good spatial memory" (GSM) proteins, many of which play an important role in neuronal homeostasis and function, axonogenesis, presynaptic membrane organization and G-protein coupled receptor (GCPR) signaling. It may be possible to use this knowledge to develop two alternative countermeasure strategies, one that preserves critical pathways prophylactically and one that invokes restorative pathways after GCR exposure.
Collapse
Affiliation(s)
- Sucharita M Dutta
- a Leroy T. Canoles Jr. Cancer Research Center and.,b Departments of Microbiology and Molecular Cell Biology and
| | - Melissa M Hadley
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Scott Peterman
- d BRIMS, Thermo Fisher Scientific, Cambridge, Massachusetts 02139
| | - Jessica S Jewell
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Vania D Duncan
- c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| | - Richard A Britten
- a Leroy T. Canoles Jr. Cancer Research Center and.,b Departments of Microbiology and Molecular Cell Biology and.,c Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507; and
| |
Collapse
|
67
|
Rudobeck E, Bellone JA, Szücs A, Bonnick K, Mehrotra-Carter S, Badaut J, Nelson GA, Hartman RE, Vlkolinský R. Low-dose proton radiation effects in a transgenic mouse model of Alzheimer's disease - Implications for space travel. PLoS One 2017; 12:e0186168. [PMID: 29186131 PMCID: PMC5706673 DOI: 10.1371/journal.pone.0186168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Space radiation represents a significant health risk for astronauts. Ground-based animal studies indicate that space radiation affects neuronal functions such as excitability, synaptic transmission, and plasticity, and it may accelerate the onset of Alzheimer's disease (AD). Although protons represent the main constituent in the space radiation spectrum, their effects on AD-related pathology have not been tested. We irradiated 3 month-old APP/PSEN1 transgenic (TG) and wild type (WT) mice with protons (150 MeV; 0.1-1.0 Gy; whole body) and evaluated functional and biochemical hallmarks of AD. We performed behavioral tests in the water maze (WM) before irradiation and in the WM and Barnes maze at 3 and 6 months post-irradiation to evaluate spatial learning and memory. We also performed electrophysiological recordings in vitro in hippocampal slices prepared 6 and 9 months post-irradiation to evaluate excitatory synaptic transmission and plasticity. Next, we evaluated amyloid β (Aβ) deposition in the contralateral hippocampus and adjacent cortex using immunohistochemistry. In cortical homogenates, we analyzed the levels of the presynaptic marker synaptophysin by Western blotting and measured pro-inflammatory cytokine levels (TNFα, IL-1β, IL-6, CXCL10 and CCL2) by bead-based multiplex assay. TG mice performed significantly worse than WT mice in the WM. Irradiation of TG mice did not affect their behavioral performance, but reduced the amplitudes of population spikes and inhibited paired-pulse facilitation in CA1 neurons. These electrophysiological alterations in the TG mice were qualitatively different from those observed in WT mice, in which irradiation increased excitability and synaptic efficacy. Irradiation increased Aβ deposition in the cortex of TG mice without affecting cytokine levels and increased synaptophysin expression in WT mice (but not in the TG mice). Although irradiation with protons increased Aβ deposition, the complex functional and biochemical results indicate that irradiation effects are not synergistic to AD pathology.
Collapse
Affiliation(s)
- Emil Rudobeck
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - John A. Bellone
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States of America
| | - Attila Szücs
- BioCircuits Institute, University of California San Diego, La Jolla, CA, United States of America
| | - Kristine Bonnick
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Shalini Mehrotra-Carter
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Jerome Badaut
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Gregory A. Nelson
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Richard E. Hartman
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States of America
| | - Roman Vlkolinský
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| |
Collapse
|
68
|
Dewe JM, Fuller BL, Lentini JM, Kellner SM, Fu D. TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival. Mol Cell Biol 2017; 37:e00214-17. [PMID: 28784718 PMCID: PMC5640816 DOI: 10.1128/mcb.00214-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.
Collapse
Affiliation(s)
- Joshua M Dewe
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin L Fuller
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | | | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
69
|
Abstract
Purpose of review To encapsulate past and current research efforts focused on stem cell transplantation strategies to resolve radiation-induced cognitive dysfunction. Recent Findings Transplantation of human stem cells in the irradiated brain was first shown to resolve radiation-induced cognitive dysfunction in a landmark paper by Acharya et al., appearing in PNAS in 2009. Since that time, work from the same laboratory as well as other groups have reported on the beneficial (as well as detrimental) effects of stem cell grafting after cranial radiation exposure. Improved learning and memory found many months after engraftment has since been associated with a preservation of host neuronal morphology, a suppression of neuroinflammation, improved myelination and increased cerebral blood flow. Interestingly, many (if not all) of these beneficial effects can be demonstrated by substituting stem cells with microvesicles derived from human stem cells during transplantation, thereby eliminating many of the more long-standing concerns related to immunorejection and teratoma formation. Summary Stem cell and microvesicle transplantation into the irradiated brain of rodents has uncovered some unexpected benefits that hold promise for ameliorating many of adverse neurocognitive complications associated with major cancer treatments. Properly developed, such approaches may provide much needed clinical recourse to millions of cancer survivors suffering from the unintended side effects of their cancer therapies.
Collapse
|
70
|
Alwood JS, Tran LH, Schreurs AS, Shirazi-Fard Y, Kumar A, Hilton D, Tahimic CGT, Globus RK. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System. Int J Mol Sci 2017; 18:ijms18102117. [PMID: 28994728 PMCID: PMC5666799 DOI: 10.3390/ijms18102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 12/12/2022] Open
Abstract
Space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized that ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-weeks old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 MeV/n) or high-LET 56Fe ions (600 MeV/n) using either low (5 or 10 cGy) or high (50 or 200 cGy) doses at NASA's Space Radiation Lab. Five weeks or one year after irradiation, tissues were harvested and analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed by RT-PCR during the proliferative or mineralizing phase of growth, and differentiation was analyzed by imaging mineralized nodules. As expected, a high dose (200 cGy), but not lower doses, of either 56Fe or protons caused a loss of cancellous bone volume/total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; 56Fe (200 cGy) inhibited osteoblastogenesis by more than 90% (5 weeks and 1 year post-IR). After 5 weeks, irradiation (protons or 56Fe) caused few changes in gene expression levels during osteoblastogenesis, although a high dose 56Fe (200 cGy) increased Catalase and Gadd45. The addition of exogenous superoxide dismutase (SOD) protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET (137Cs γ) when irradiated in vitro, but had limited protective effects on high-LET 56Fe-exposed cells. In sum, either protons or 56Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET 56Fe increased redox-related gene expression, albeit to a limited extent, and inhibited osteoblastogenesis. Doses below 50 cGy did not elicit widespread responses in any parameter measured. We conclude that high-LET irradiation at 200 cGy impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss.
Collapse
Affiliation(s)
- Joshua S Alwood
- Bone and Signaling Laboratory, Space BioSciences Division, NASA Ames Research Center, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
| | - Luan H Tran
- Bone and Signaling Laboratory, Space BioSciences Division, NASA Ames Research Center, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
| | - Ann-Sofie Schreurs
- Bone and Signaling Laboratory, Space BioSciences Division, NASA Ames Research Center, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
| | - Yasaman Shirazi-Fard
- Bone and Signaling Laboratory, Space BioSciences Division, NASA Ames Research Center, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
| | - Akhilesh Kumar
- Bone and Signaling Laboratory, Space BioSciences Division, NASA Ames Research Center, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
| | - Diane Hilton
- Bone and Signaling Laboratory, Space BioSciences Division, NASA Ames Research Center, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
| | - Candice G T Tahimic
- Bone and Signaling Laboratory, Space BioSciences Division, NASA Ames Research Center, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
- Wyle Laboratories, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
| | - Ruth K Globus
- Bone and Signaling Laboratory, Space BioSciences Division, NASA Ames Research Center, Mail-Stop 236-7, Moffett Field, CA 94035, USA.
| |
Collapse
|
71
|
Tang FR, Loke WK, Khoo BC. Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. JOURNAL OF RADIATION RESEARCH 2017; 58:165-182. [PMID: 28077626 PMCID: PMC5439383 DOI: 10.1093/jrr/rrw120] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/22/2016] [Indexed: 05/13/2023]
Abstract
Animal experimental studies indicate that acute or chronic low-dose ionizing radiation (LDIR) (≤100 mSv) or low-dose-rate ionizing radiation (LDRIR) (<6 mSv/h) exposures may be harmful. It induces genetic and epigenetic changes and is associated with a range of physiological disturbances that includes altered immune system, abnormal brain development with resultant cognitive impairment, cataractogenesis, abnormal embryonic development, circulatory diseases, weight gain, premature menopause in female animals, tumorigenesis and shortened lifespan. Paternal or prenatal LDIR/LDRIR exposure is associated with reduced fertility and number of live fetuses, and transgenerational genomic aberrations. On the other hand, in some experimental studies, LDIR/LDRIR exposure has also been reported to bring about beneficial effects such as reduction in tumorigenesis, prolonged lifespan and enhanced fertility. The differences in reported effects of LDIR/LDRIR exposure are dependent on animal genetic background (susceptibility), age (prenatal or postnatal days), sex, nature of radiation exposure (i.e. acute, fractionated or chronic radiation exposure), type of radiation, combination of radiation with other toxic agents (such as smoking, pesticides or other chemical toxins) or animal experimental designs. In this review paper, we aimed to update radiation researchers and radiologists on the current progress achieved in understanding the LDIR/LDRIR-induced bionegative and biopositive effects reported in the various animal models. The roles played by a variety of molecules that are implicated in LDIR/LDRIR-induced health effects will be elaborated. The review will help in future investigations of LDIR/LDRIR-induced health effects by providing clues for designing improved animal research models in order to clarify the current controversial/contradictory findings from existing studies.
Collapse
Affiliation(s)
- Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, 138602, Singapore
| | - Weng Keong Loke
- Temasek Laboratories, National University of Singapore, 5A, Engineering Drive 1, 117411,Singapore
| | - Boo Cheong Khoo
- DSO National Laboratories,Defence Medical and Environmental Research Institute, 11 Stockport Road,117605,Singapore
| |
Collapse
|
72
|
Britten RA, Jewell JS, Davis LK, Miller VD, Hadley MM, Semmes OJ, Lonart G, Dutta SM. Changes in the Hippocampal Proteome Associated with Spatial Memory Impairment after Exposure to Low (20 cGy) Doses of 1 GeV/n 56Fe Radiation. Radiat Res 2017; 187:287-297. [PMID: 28156212 DOI: 10.1667/rr14067.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to low (∼20 cGy) doses of high-energy charged (HZE) particles, such as 1 GeV/n 56Fe, results in impaired hippocampal-dependent learning and memory (e.g., novel object recognition and spatial memory) in rodents. While these findings raise the possibility that astronauts on deep-space missions may develop cognitive deficits, not all rats develop HZE-induced cognitive impairments, even after exposure to high (200 cGy) HZE doses. The reasons for this differential sensitivity in some animals that develop HZE-induced cognitive failure remain speculative. We employed a robust quantitative mass spectrometry-based workflow, which links early-stage discovery to next-stage quantitative verification, to identify differentially active proteins/pathways in rats that developed spatial memory impairment at three months after exposure to 20 cGy of 1 GeV/n 56Fe (20/impaired), and in those rats that managed to maintain normal cognitive performance (20/functional). Quantitative data were obtained on 665-828 hippocampal proteins in the various cohorts of rats studied, of which 580 were expressed in all groups. A total of 107 proteins were upregulated in the irradiated rats irrespective of their spatial memory performance status, which included proteins involved in oxidative damage response, calcium transport and signaling. Thirty percent (37/107) of these "radiation biomarkers" formed a functional interactome of the proteasome and the COP9 signalosome. These data suggest that there is persistent oxidative stress, ongoing autophagy and altered synaptic plasticity in the irradiated hippocampus, irrespective of the spatial memory performance status, suggesting that the ultimate phenotype may be determined by how well the hippocampal neurons compensate to the ongoing oxidative stress and associated side effects. There were 67 proteins with expression that correlated with impaired spatial memory performance. Several of the "impaired biomarkers" have been implicated in poor spatial memory performance, neurodegeneration, neuronal loss or neuronal susceptibility to apoptosis, or neuronal synaptic or structural plasticity. Therefore, in addition to the baseline oxidative stress and altered adenosine metabolism observed in all irradiated rats, the 20/impaired rats expressed proteins that led to poor spatial memory performance, enhanced neuronal loss and apoptosis, changes in synaptic plasticity and dendritic remodeling. A total of 46 proteins, which were differentially upregulated in the sham-irradiated and 20/functional rat cohorts, can thus be considered as markers of good spatial memory, while another 95 proteins are associated with the maintenance of good spatial memory in the 20/functional rats. The loss or downregulation of these "good spatial memory" proteins would most likely exacerbate the situation in the 20/impaired rats, having a major impact on their neurocognitive status, given that many of those proteins play an important role in neuronal homeostasis and function. Our large-scale comprehensive proteomic analysis has provided some insight into the processes that are altered after exposure, and the collective data suggests that there are multiple problems with the functionality of the neurons and astrocytes in the irradiated hippocampi, which appear to be further exacerbated in the rats that have impaired spatial memory performance or partially compensated for in the rats with good spatial memory.
Collapse
Affiliation(s)
- Richard A Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica S Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Leslie K Davis
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D Miller
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Melissa M Hadley
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - O John Semmes
- b Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507.,c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507.,d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - György Lonart
- d Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Sucharita M Dutta
- c Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
73
|
Revenco T, Lapouge G, Moers V, Brohée S, Sotiropoulou PA. Low Dose Radiation Causes Skin Cancer in Mice and Has a Differential Effect on Distinct Epidermal Stem Cells. Stem Cells 2017; 35:1355-1364. [PMID: 28100039 DOI: 10.1002/stem.2571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/02/2017] [Indexed: 12/22/2022]
Abstract
The carcinogenic effect of ionizing radiation has been evaluated based on limited populations accidently exposed to high dose radiation. In contrast, insufficient data are available on the effect of low dose radiation (LDR), such as radiation deriving from medical investigations and interventions, as well as occupational exposure that concern a large fraction of western populations. Using mouse skin epidermis as a model, we showed that LDR results in DNA damage in sebaceous gland (SG) and bulge epidermal stem cells (SCs). While the first commit apoptosis upon low dose irradiation, the latter survive. Bulge SC survival coincides with higher HIF-1α expression and a metabolic switch upon LDR. Knocking down HIF-1α sensitizes bulge SCs to LDR-induced apoptosis, while upregulation of HIF-1α in the epidermis, including SG SCs, rescues cell death. Most importantly, we show that LDR results in cancer formation with full penetrance in the radiation-sensitive Patched1 heterozygous mice. Overall, our results demonstrate for the first time that LDR can be a potent carcinogen in individuals predisposed to cancer. Stem Cells 2017;35:1355-1364.
Collapse
Affiliation(s)
| | - Gaelle Lapouge
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Virginie Moers
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvain Brohée
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
74
|
Britten RA, Jewell JS, Duncan VD, Davis LK, Hadley MM, Wyrobek AJ. Spatial Memory Performance of Socially Mature Wistar Rats is Impaired after Exposure to Low (5 cGy) Doses of 1 GeV/n48Ti Particles. Radiat Res 2017; 187:60-65. [DOI: 10.1667/rr14550.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
75
|
Raber J, Davis MJ, Pfankuch T, Rosenthal R, Doctrow SR, Moulder JE. Mitigating effect of EUK-207 on radiation-induced cognitive impairments. Behav Brain Res 2016; 320:457-463. [PMID: 27789343 DOI: 10.1016/j.bbr.2016.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
The brain could be exposed to irradiation as part of a nuclear accident, radiological terrorism (dirty bomb scenario) or a medical radiological procedure. In the context of accidents or terrorism, there is considerable interest in compounds that can mitigate radiation-induced injury when treatment is initiated a day or more after the radiation exposure. As it will be challenging to determine the radiation exposure an individual has received within a relatively short time frame, it is also critical that the mitigating agent does not negatively affect individuals, including emergency workers, who might be treated, but who were not exposed. Alterations in hippocampus-dependent cognition often characterize radiation-induced cognitive injury. The catalytic ROS scavenger EUK-207 is a member of the class of metal-containing salen manganese (Mn) complexes that suppress oxidative stress, including in the mitochondria, and have been shown to mitigate radiation dermatitis, promote wound healing in irradiated skin, and mitigate vascular injuries in irradiated lungs. As the effects of EUK-207 against radiation injury in the brain are not known, we assessed the effects of EUK-207 on sham-irradiated animals and the ability of EUK-207 to mitigate radiation-induced cognitive injury. The day following irradiation or sham-irradiation, the mice started to receive EUK-207 and were cognitively tested 3 months following exposure. Mice irradiated at a dose of 15Gy showed cognitive impairments in the water maze probe trial. EUK-207 mitigated these impairments while not affecting cognitive performance of sham-irradiated mice in the water maze probe trial. Thus, EUK-207 has attractive properties and should be considered an ideal candidate to mitigate radiation-induced cognitive injury.
Collapse
Affiliation(s)
- J Raber
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, L470, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | - M J Davis
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA
| | - T Pfankuch
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, Portland, OR 97239, USA
| | - R Rosenthal
- Pulmonary Center, Boston University School of Medicine, MA 02215, USA
| | - S R Doctrow
- Pulmonary Center, Boston University School of Medicine, MA 02215, USA
| | - J E Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
76
|
Effects of ionizing radiation on the mammalian brain. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:219-230. [DOI: 10.1016/j.mrrev.2016.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 11/21/2022]
|
77
|
Villasana LE, Weber S, Akinyeke T, Raber J. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species. J Neurochem 2016; 138:896-908. [PMID: 27412623 DOI: 10.1111/jnc.13737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice.
Collapse
Affiliation(s)
- Laura E Villasana
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney Weber
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Tunde Akinyeke
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | - Jacob Raber
- Division of Neuroscience, Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA. .,Division of Neuroscience, Departments of Neurology and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
78
|
Betlazar C, Middleton RJ, Banati RB, Liu GJ. The impact of high and low dose ionising radiation on the central nervous system. Redox Biol 2016; 9:144-156. [PMID: 27544883 PMCID: PMC4993858 DOI: 10.1016/j.redox.2016.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Responses of the central nervous system (CNS) to stressors and injuries, such as ionising radiation, are modulated by the concomitant responses of the brains innate immune effector cells, microglia. Exposure to high doses of ionising radiation in brain tissue leads to the expression and release of biochemical mediators of ‘neuroinflammation’, such as pro-inflammatory cytokines and reactive oxygen species (ROS), leading to tissue destruction. Contrastingly, low dose ionising radiation may reduce vulnerability to subsequent exposure of ionising radiation, largely through the stimulation of adaptive responses, such as antioxidant defences. These disparate responses may be reflective of non-linear differential microglial activation at low and high doses, manifesting as an anti-inflammatory or pro-inflammatory functional state. Biomarkers of pathology in the brain, such as the mitochondrial Translocator Protein 18 kDa (TSPO), have facilitated in vivo characterisation of microglial activation and ‘neuroinflammation’ in many pathological states of the CNS, though the exact function of TSPO in these responses remains elusive. Based on the known responsiveness of TSPO expression to a wide range of noxious stimuli, we discuss TSPO as a potential biomarker of radiation-induced effects. Ionising radiation can modulate responses of microglial cells in the CNS. High doses can induce ROS formation, oxidative stress and neuroinflammation. Low doses can mitigate tissue damage via antioxidant defences. TSPO as a potential biomarker and modulator of radiation induced effects in the CNS. Non-linear differential microglial activation to high and low doses is proposed.
Collapse
Affiliation(s)
- Calina Betlazar
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia
| | - Ryan J Middleton
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Richard B Banati
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia.
| | - Guo-Jun Liu
- Bioanalytics group, Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, 75 East Street, Lidcombe, NSW 2141, Australia.
| |
Collapse
|
79
|
Britten RA, Miller VD, Hadley MM, Jewell JS, Macadat E. Performance in hippocampus- and PFC-dependent cognitive domains are not concomitantly impaired in rats exposed to 20cGy of 1GeV/n (56)Fe particles. LIFE SCIENCES IN SPACE RESEARCH 2016; 10:17-22. [PMID: 27662783 DOI: 10.1016/j.lssr.2016.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20cGy 1GeV/n (56)Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States ; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, United States ; Leroy T Canoles Jr. Cancer Center; Eastern Virginia Medical School, Norfolk, VA 23507, United States .
| | - Vania D Miller
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States
| | - Melissa M Hadley
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States
| | - Jessica S Jewell
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States
| | - Evangeline Macadat
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, United States
| |
Collapse
|
80
|
Chmielewski NN, Caressi C, Giedzinski E, Parihar VK, Limoli CL. Contrasting the effects of proton irradiation on dendritic complexity of subiculum neurons in wild type and MCAT mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:364-371. [PMID: 26996825 DOI: 10.1002/em.22006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Growing evidence suggests that radiation-induced oxidative stress directly affects a wide range of biological changes with an overall negative impact on CNS function. In the past we have demonstrated that transgenic mice over-expressing human catalase targeted to the mitochondria (MCAT) exhibit a range of neuroprotective phenotypes following irradiation that include improved neurogenesis, dendritic complexity, and cognition. To determine the extent of the neuroprotective phenotype afforded by MCAT expression in different hippocampal regions, we analyzed subiculum neurons for changes in neuronal structure and synaptic integrity after exposure to low dose (0.5 Gy) 150 MeV proton irradiation. One month following irradiation of WT and MCAT mice, a range of morphometric parameters were quantified along Golgi-Cox impregnated neurons. Compared with WT mice, subiculum neurons from MCAT mice exhibited increased trends (albeit not statistically significant) toward increased dendritic complexity in both control and irradiated cohorts. However, Sholl analysis of MCAT mice revealed significantly increased arborization of the distal dendritic tree, indicating a protective effect on secondary and tertiary branching. Interestingly, radiation-induced increases in postsynaptic density protein (PSD-95) puncta were not as pronounced in MCAT compared with WT mice, and were significantly lower after the 0.5 Gy dose. As past data has linked radiation exposure to reduced dendritic complexity, elevated PSD-95 and impaired cognition, reductions in mitochondrial oxidative stress have proven useful in ameliorating many of these radiation-induced sequelae. Data presented here shows similar trends, and again points to the potential benefits of reducing oxidative stress in the brain to attenuate radiation injury. Environ. Mol. Mutagen. 57:364-371, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Chongshan Caressi
- Department of Radiation Oncology, University of California, Irvine, California
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, California
| | - Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|
81
|
Limoli CL. Understanding and targeting dynamic stress responses of the brain: What we have learned and how to improve neurocognitive outcome following neurotoxic insult. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:319-321. [PMID: 27208487 DOI: 10.1002/em.22022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|
82
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
83
|
Wyrobek AJ, Britten RA. Individual variations in dose response for spatial memory learning among outbred wistar rats exposed from 5 to 20 cGy of (56) Fe particles. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:331-340. [PMID: 27237589 DOI: 10.1002/em.22018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Exposures of brain tissue to ionizing radiation can lead to persistent deficits in cognitive functions and behaviors. However, little is known about the quantitative relationships between exposure dose and neurological risks, especially for lower doses and among genetically diverse individuals. We investigated the dose relationship for spatial memory learning among genetically outbred male Wistar rats exposed to graded doses of (56) Fe particles (sham, 5, 10, 15, and 20 cGy; 1 GeV/n). Spatial memory learning was assessed on a Barnes maze using REL3 ratios measured at three months after exposure. Irradiated animals showed dose-dependent declines in spatial memory learning that were fit by a linear regression (P for slope <0.0002). The irradiated animals showed significantly impaired learning at 10 cGy exposures, no detectable learning between 10 and 15 cGy, and worsened performances between 15 and 20 cGy. The proportions of poor learners and the magnitude of their impairment were fit by linear regressions with doubling doses of ∼10 cGy. In contrast, there were no detectable deficits in learning among the good learners in this dose range. Our findings suggest that genetically diverse individuals can vary substantially in their spatial memory learning, and that exposures at low doses appear to preferentially impact poor learners. This hypothesis invites future investigations of the genetic and physiological mechanisms of inter-individual variations in brain function related to spatial memory learning after low-dose HZE radiation exposures and to determine whether it also applies to physical trauma to brain tissue and exposures to chemical neurotoxicants. Environ. Mol. Mutagen. 57:331-340, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew J Wyrobek
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Richard A Britten
- Department of Radiation Oncology, and the Leroy T. Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
84
|
Mao XW, Nishiyama NC, Pecaut MJ, Campbell-Beachler M, Gifford P, Haynes KE, Becronis C, Gridley DS. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain. Radiat Res 2016; 185:647-57. [DOI: 10.1667/rr14267.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
85
|
Sharlow ER, Leimgruber S, Lira A, McConnell MJ, Norambuena A, Bloom GS, Epperly MW, Greenberger JS, Lazo JS. A Small Molecule Screen Exposes mTOR Signaling Pathway Involvement in Radiation-Induced Apoptosis. ACS Chem Biol 2016; 11:1428-37. [PMID: 26938669 DOI: 10.1021/acschembio.5b00909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Individuals are at risk of exposure to acute ionizing radiation (IR) from a nuclear accident or terrorism, but we lack effective therapies to mitigate the lethal IR effects. In the current study, we exploited an optimized, cell-based, high throughput screening assay to interrogate a small molecule library comprising 3437 known pharmacologically active compounds for mitigation against IR-induced apoptosis. Thirty-three library compounds significantly reduced apoptosis when administered 1 h after 4 Gy IR. Two- or three-dimensional computational structural analyses of the compounds indicated only one or two chemical clusters with most of the compounds being unique structures. The mechanistic target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, was the most potent compound, and it mitigated apoptosis by 50% at 200 ± 50 pM. Other mTOR inhibitors, namely everolimus, AZD8055, and torin 1, also suppressed apoptosis, providing additional pharmacological evidence for mTOR pathway involvement in regulating cell death after IR. Everolimus and torin 1 treatment after IR decreased the S phase population and enforced both G1 and G2 phase arrest. This prorogation of cell cycle progression was accompanied by decreased IR-induced DNA damage measured by γH2AX phosphorylation at Ser139. RNA interference-mediated knockdown of the respective mTORC1 and mTORC2 subunits, Raptor or Rictor, also mitigated IR-induced apoptosis. Collectively, this study suggests a central role for the mTOR signaling in the cytotoxic response to IR and offers a useful platform to probe for additional agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael W. Epperly
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S. Greenberger
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | |
Collapse
|
86
|
Britten RA, Jewell JS, Miller VD, Davis LK, Hadley MM, Wyrobek AJ. Impaired Spatial Memory Performance in Adult Wistar Rats Exposed to Low (5–20 cGy) Doses of 1 GeV/n56Fe Particles. Radiat Res 2016; 185:332-7. [DOI: 10.1667/rr14120.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
87
|
Hadley MM, Davis LK, Jewell JS, Miller VD, Britten RA. Exposure to Mission-Relevant Doses of 1 GeV/n48Ti Particles Impairs Attentional Set-Shifting Performance in Retired Breeder Rats. Radiat Res 2016; 185:13-9. [DOI: 10.1667/rr14086.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
88
|
Redox-based regulation of neural stem cell function and Nrf2. Biochem Soc Trans 2015; 43:627-31. [PMID: 26551703 DOI: 10.1042/bst20150016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/31/2022]
Abstract
Neural stem cells (NSCs) play vital roles in the development and maintenance of brain tissues throughout life. They can also potentially act as powerful sources of regeneration and repair during pathology to replace degenerating cells and counteract deleterious changes in the tissue microenvironment. However, both aging and neurodegeneration involve an up-regulation of processes, such as oxidative stress, inflammation, somatic mutations, and reduction in growth factors in neural tissues, which threaten the robust functioning of NSCs. Nevertheless, recent evidence also indicates that NSCs may possess the intrinsic capability to cope with such stressors in their microenvironment. Whereas the mechanisms governing the responses of NSCs to stress are diverse, a common theme that is emerging suggests that underlying changes in intracellular redox status are crucial. Here we discuss such redox-based regulation of NSCs, particularly in relation to nuclear erythroid factor 2-like 2 (Nrf2), which is a key cellular stress resistance factor, and its implications for successfully harnessing NSC therapeutic potential towards developing cell-based therapeutics for nervous system disorders.
Collapse
|
89
|
Bellone JA, Rudobeck E, Hartman RE, Szücs A, Vlkolinský R. A Single Low Dose of Proton Radiation Induces Long-Term Behavioral and Electrophysiological Changes in Mice. Radiat Res 2015. [DOI: 10.1667/rr13903.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
90
|
Acharya MM, Patel NH, Craver BM, Tran KK, Giedzinski E, Tseng BP, Parihar VK, Limoli CL. Consequences of low dose ionizing radiation exposure on the hippocampal microenvironment. PLoS One 2015; 10:e0128316. [PMID: 26042591 PMCID: PMC4456101 DOI: 10.1371/journal.pone.0128316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/24/2015] [Indexed: 01/24/2023] Open
Abstract
The response of the brain to irradiation is complex, involving a multitude of stress inducible pathways that regulate neurotransmission within a dynamic microenvironment. While significant past work has detailed the consequences of CNS radiotherapy following relatively high doses (≥ 45 Gy), few studies have been conducted at much lower doses (≤ 2 Gy), where the response of the CNS (like many other tissues) may differ substantially from that expected from linear extrapolations of high dose data. Low dose exposure could elicit radioadaptive modulation of critical CNS processes such as neurogenesis, that provide cellular input into hippocampal circuits known to impact learning and memory. Here we show that mice deficient for chemokine signaling through genetic disruption of the CCR2 receptor exhibit a neuroprotective phenotype. Compared to wild type (WT) animals, CCR2 deficiency spared reductions in hippocampal neural progenitor cell survival and stabilized neurogenesis following exposure to low dose irradiation. While radiation-induced changes in microglia levels were not found in WT or CCR2 deficient animals, the number of Iba1+ cells did differ between each genotype at the higher dosing paradigms, suggesting that blockade of this signaling axis could moderate the neuroinflammatory response. Interestingly, changes in proinflammatory gene expression were limited in WT animals, while irradiation caused significant elevations in these markers that were attenuated significantly after radioadaptive dosing paradigms in CCR2 deficient mice. These data point to the importance of chemokine signaling under low dose paradigms, findings of potential significance to those exposed to ionizing radiation under a variety of occupational and/or medical scenarios.
Collapse
Affiliation(s)
- Munjal M. Acharya
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697–2695, United States of America
| | - Neal H. Patel
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697–2695, United States of America
| | - Brianna M. Craver
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697–2695, United States of America
| | - Katherine K. Tran
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697–2695, United States of America
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697–2695, United States of America
| | - Bertrand P. Tseng
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697–2695, United States of America
| | - Vipan K. Parihar
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697–2695, United States of America
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697–2695, United States of America
- * E-mail:
| |
Collapse
|
91
|
Parihar VK, Allen B, Tran KK, Macaraeg TG, Chu EM, Kwok SF, Chmielewski NN, Craver BM, Baulch JE, Acharya MM, Cucinotta FA, Limoli CL. What happens to your brain on the way to Mars. SCIENCE ADVANCES 2015; 1:e1400256. [PMID: 26180843 PMCID: PMC4500198 DOI: 10.1126/sciadv.1400256] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/05/2015] [Indexed: 05/21/2023]
Abstract
As NASA prepares for the first manned spaceflight to Mars, questions have surfaced concerning the potential for increased risks associated with exposure to the spectrum of highly energetic nuclei that comprise galactic cosmic rays. Animal models have revealed an unexpected sensitivity of mature neurons in the brain to charged particles found in space. Astronaut autonomy during long-term space travel is particularly critical as is the need to properly manage planned and unanticipated events, activities that could be compromised by accumulating particle traversals through the brain. Using mice subjected to space-relevant fluences of charged particles, we show significant cortical- and hippocampal-based performance decrements 6 weeks after acute exposure. Animals manifesting cognitive decrements exhibited marked and persistent radiation-induced reductions in dendritic complexity and spine density along medial prefrontal cortical neurons known to mediate neurotransmission specifically interrogated by our behavioral tasks. Significant increases in postsynaptic density protein 95 (PSD-95) revealed major radiation-induced alterations in synaptic integrity. Impaired behavioral performance of individual animals correlated significantly with reduced spine density and trended with increased synaptic puncta, thereby providing quantitative measures of risk for developing cognitive decrements. Our data indicate an unexpected and unique susceptibility of the central nervous system to space radiation exposure, and argue that the underlying radiation sensitivity of delicate neuronal structure may well predispose astronauts to unintended mission-critical performance decrements and/or longer-term neurocognitive sequelae.
Collapse
Affiliation(s)
- Vipan K. Parihar
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Barrett Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Katherine K. Tran
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Trisha G. Macaraeg
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Esther M. Chu
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Stephanie F. Kwok
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Nicole N. Chmielewski
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Brianna M. Craver
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Munjal M. Acharya
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
| | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA
- Corresponding author. E-mail:
| |
Collapse
|
92
|
Acharya MM, Martirosian V, Chmielewski NN, Hanna N, Tran KK, Liao AC, Christie LA, Parihar VK, Limoli CL. Stem cell transplantation reverses chemotherapy-induced cognitive dysfunction. Cancer Res 2015; 75:676-86. [PMID: 25687405 DOI: 10.1158/0008-5472.can-14-2237] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The frequent use of chemotherapy to combat a range of malignancies can elicit severe cognitive dysfunction often referred to as "chemobrain," a condition that can persist long after the cessation of treatment in as many as 75% of survivors. Although cognitive health is a critical determinant of therapeutic outcome, chemobrain remains an unmet medical need that adversely affects quality of life in pediatric and adult cancer survivors. Using a rodent model of chemobrain, we showed that chronic cyclophosphamide treatment induced significant performance-based decrements on behavioral tasks designed to interrogate hippocampal and cortical function. Intrahippocampal transplantation of human neural stem cells resolved all cognitive impairments when animals were tested 1 month after the cessation of chemotherapy. In transplanted animals, grafted cells survived (8%) and differentiated along neuronal and astroglial lineages, where improved cognition was associated with reduced neuroinflammation and enhanced host dendritic arborization. Stem cell transplantation significantly reduced the number of activated microglia after cyclophosphamide treatment in the brain. Granule and pyramidal cell neurons within the dentate gyrus and CA1 subfields of the hippocampus exhibited significant reductions in dendritic complexity, spine density, and immature and mature spine types following chemotherapy, adverse effects that were eradicated by stem cell transplantation. Our findings provide the first evidence that cranial transplantation of stem cells can reverse the deleterious effects of chemobrain, through a trophic support mechanism involving the attenuation of neuroinflammation and the preservation host neuronal architecture.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, California
| | - Vahan Martirosian
- Department of Radiation Oncology, University of California, Irvine, California
| | | | - Nevine Hanna
- Department of Radiation Oncology, University of California, Irvine, California
| | - Katherine K Tran
- Department of Radiation Oncology, University of California, Irvine, California
| | - Alicia C Liao
- Department of Radiation Oncology, University of California, Irvine, California
| | - Lori-Ann Christie
- Department of Radiation Oncology, University of California, Irvine, California
| | - Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California.
| |
Collapse
|
93
|
Baulch JE, Craver BM, Tran KK, Yu L, Chmielewski N, Allen BD, Limoli CL. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles. Redox Biol 2015; 5:24-32. [PMID: 25800120 PMCID: PMC4371546 DOI: 10.1016/j.redox.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 10/30/2022] Open
Abstract
Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC) exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO) and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively) in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS) was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut's ability to perform complex tasks during extended missions in deep space.
Collapse
Affiliation(s)
- Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Brianna M Craver
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Katherine K Tran
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Liping Yu
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Nicole Chmielewski
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA.
| |
Collapse
|
94
|
Sokolova IV, Schneider CJ, Bezaire M, Soltesz I, Vlkolinsky R, Nelson GA. Proton Radiation Alters Intrinsic and Synaptic Properties of CA1 Pyramidal Neurons of the Mouse Hippocampus. Radiat Res 2015; 183:208-18. [DOI: 10.1667/rr13785.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Irina V. Sokolova
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| | - Calvin J. Schneider
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Marianne Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California
| | - Roman Vlkolinsky
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| | - Gregory A. Nelson
- Department of Basic Sciences, Division of Radiation Research, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
95
|
Sridharan DM, Asaithamby A, Bailey SM, Costes SV, Doetsch PW, Dynan WS, Kronenberg A, Rithidech KN, Saha J, Snijders AM, Werner E, Wiese C, Cucinotta FA, Pluth JM. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation. Radiat Res 2015; 183:1-26. [PMID: 25564719 DOI: 10.1667/rr13804.1] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.
Collapse
Affiliation(s)
- D M Sridharan
- a Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Parihar VK, Allen BD, Tran KK, Chmielewski NN, Craver BM, Martirosian V, Morganti JM, Rosi S, Vlkolinsky R, Acharya MM, Nelson GA, Allen AR, Limoli CL. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction. Antioxid Redox Signal 2015; 22:78-91. [PMID: 24949841 PMCID: PMC4270160 DOI: 10.1089/ars.2014.5929] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. RESULTS Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. INNOVATION Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. CONCLUSION Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.
Collapse
Affiliation(s)
- Vipan K. Parihar
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Barrett D. Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Katherine K. Tran
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Nicole N. Chmielewski
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Brianna M. Craver
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Vahan Martirosian
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Josh M. Morganti
- Departments of Physical Therapy Rehabilitation Science and Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Susanna Rosi
- Departments of Physical Therapy Rehabilitation Science and Neurological Surgery, University of California, San Francisco, San Francisco, California
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, California
| | - Roman Vlkolinsky
- Departments of Radiation Medicine and Basic Sciences, Loma Linda University, Loma Linda, California
| | - Munjal M. Acharya
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Gregory A. Nelson
- Departments of Radiation Medicine and Basic Sciences, Loma Linda University, Loma Linda, California
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas Medical School, Little Rock, Arkansas
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| |
Collapse
|
97
|
Survival of neural stem cell grafts in the lesioned spinal cord is enhanced by a combination of treadmill locomotor training via insulin-like growth factor-1 signaling. J Neurosci 2014; 34:12788-800. [PMID: 25232115 DOI: 10.1523/jneurosci.5359-13.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combining cell transplantation with activity-based rehabilitation is a promising therapeutic approach for spinal cord repair. The present study was designed to investigate potential interactions between the transplantation (TP) of neural stem cells (NSCs) obtained at embryonic day 14 and treadmill training (TMT) in promoting locomotor recovery and structural repair in rat contusive injury model. Combination of TMT with NSC TP at 1 week after injury synergistically improved locomotor function. We report here that combining TMT increased the survival of grafted NSCs by >3-fold and >5-fold at 3 and 9 weeks after injury, respectively. The number of surviving NSCs was significantly correlated with the extent of locomotor recovery. NSCs grafted into the injured spinal cord were under cellular stresses induced by reactive nitrogen or oxygen species, which were markedly attenuated by TMT. TMT increased the concentration of insulin-like growth factor-1 (IGF-1) in the CSF. Intrathecal infusion of neutralizing IGF-1 antibodies, but not antibodies against either BDNF or Neurotrophin-3 (NT-3), abolished the enhanced survival of NSC grafts by TMT. The combination of TP and TMT also resulted in tissue sparing, increased myelination, and restoration of serotonergic fiber innervation to the lumbar spinal cord to a larger extent than that induced by either TP or TMT alone. Therefore, we have discovered unanticipated beneficial effects of TMT in modulating the survival of grafted NSCs via IGF-1. Our study identifies a novel neurobiological basis for complementing NSC-based spinal cord repair with activity-based neurorehabilitative approaches.
Collapse
|
98
|
Zheng X, Zhang X, Ding L, Lee JR, Weinberger PM, Dynan WS. Synergistic effect of high charge and energy particle radiation and chronological age on biomarkers of oxidative stress and tissue degeneration: a ground-based study using the vertebrate laboratory model organism Oryzias latipes. PLoS One 2014; 9:e111362. [PMID: 25375139 PMCID: PMC4222877 DOI: 10.1371/journal.pone.0111362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.
Collapse
Affiliation(s)
- Xuan Zheng
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xinyan Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lingling Ding
- Department of Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, China
| | - Jeffrey R. Lee
- Department of Pathology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Paul M. Weinberger
- Department of Otolaryngology and Center for Biotechnology & Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - William S. Dynan
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
- Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
99
|
Acharya MM, Rosi S, Jopson T, Limoli CL. Human neural stem cell transplantation provides long-term restoration of neuronal plasticity in the irradiated hippocampus. Cell Transplant 2014; 24:691-702. [PMID: 25289634 DOI: 10.3727/096368914x684600] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For the majority of CNS malignancies, radiotherapy provides the best option for forestalling tumor growth, but is frequently associated with debilitating and progressive cognitive dysfunction. Despite the recognition of this serious side effect, satisfactory long-term solutions are not currently available and have prompted our efforts to explore the potential therapeutic efficacy of cranial stem cell transplants. We have demonstrated that intrahippocampal transplantation of human neural stem cells (hNSCs) can provide long-lasting cognitive benefits using an athymic rat model subjected to cranial irradiation. To explore the possible mechanisms underlying the capability of engrafted cells to ameliorate radiation-induced cognitive dysfunction we analyzed the expression patterns of the behaviorally induced activity-regulated cytoskeleton-associated protein (Arc) in the hippocampus at 1 and 8 months postgrafting. While immunohistochemical analyses revealed a small fraction (4.5%) of surviving hNSCs in the irradiated brain that did not express neuronal or astroglial makers, hNSC transplantation impacted the irradiated microenvironment of the host brain by promoting the expression of Arc at both time points. Arc is known to play key roles in the neuronal mechanisms underlying long-term synaptic plasticity and memory and provides a reliable marker for detecting neurons that are actively engaged in spatial and contextual information processing associated with memory consolidation. Cranial irradiation significantly reduced the number of pyramidal (CA1) and granule neurons (DG) expressing behaviorally induced Arc at 1 and 8 months postirradiation. Transplantation of hNSCs restored the expression of plasticity-related Arc in the host brain to control levels. These findings suggest that hNSC transplantation promotes the long-term recovery of host hippocampal neurons and indicates that one mechanism promoting the preservation of cognition after irradiation involves trophic support from engrafted cells.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
100
|
Kennedy AR. Biological Effects of Space Radiation and Development of Effective Countermeasures. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:10-43. [PMID: 25258703 PMCID: PMC4170231 DOI: 10.1016/j.lssr.2014.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
Collapse
Affiliation(s)
- Ann R Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6072
| |
Collapse
|