51
|
Xu G, Ding Z, Shi HF. The mechanism of miR-889 regulates osteogenesis in human bone marrow mesenchymal stem cells. J Orthop Surg Res 2019; 14:366. [PMID: 31727100 PMCID: PMC6854696 DOI: 10.1186/s13018-019-1399-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMMSCs) can be used for bone regeneration in the specified condition. Osteogenic differentiation of BMMSCs is controlled by microRNAs (miRNAs) and other factors. This study was aimed to identify the role and mechanism of miR-889 in regulating the osteogenic differentiation of BMMSCs. Methods Osteoporosis patients and normal control bone tissues were collected and used PCR techniques to identify the change of miR-889 and WNT7A. Moreover, the dynamic change of miR-889 and WNT7A during osteogenic differentiation of BMMSCs was also measured. Bioinformatic analysis was performed to identify the target genes and potential pathways of miR-889. Then, we constructed miR-889 mimic and inhibitor, ALP staining, ARS, osteoblastic-related protein, and Wnt β-catenin signaling pathway-related protein were also measured. WNT7A siRNA was also used to verify the function of miR-889. Results In the present study, we showed that miR-889 expression was upregulated in osteoporosis patients than healthy control. However, the miR-889 expression was downregulated during osteogenic differentiation. Bioinformatics analysis found that miR-889 targets 666 genes and mainly through Wnt β-catenin signaling pathway. Administrated miR-889 mimic, the ALP activity, and calcium deposition were decreased than the control group, while miR-889 inhibitor shown the opposite trend. And miR-889 could bind the 3′UTR of WNT7A. We further used WNT7A siRNA to explore the function of miR-889, and the results revealed that co-cultured with miR-889 inhibitor and WNT7A siRNA was associated with a reduction of ALP activity and calcium deposition and osteoblastic-related proteins than miR-889 inhibitor alone. Conclusion Our results revealed that miR-889 plays a negative role in inducing osteogenic differentiation of BMSCs through Wnt β-catenin signaling pathway.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, Xuzhou Medical University affiliated Hospital of Lianyungang, Lianyungang, 222061, Jiangsu Province, China
| | - Zheng Ding
- Department of Orthopedics, TongRen Hospital, Shanghai Jiaotong University School of Medicine, 1111 Xianxia road, Shanghai, 200336, China
| | - Hui-Feng Shi
- Department of Orthopedics, TongRen Hospital, Shanghai Jiaotong University School of Medicine, 1111 Xianxia road, Shanghai, 200336, China.
| |
Collapse
|
52
|
Zhang Y, Liu Y, Wu M, Wang H, Wu L, Xu B, Zhou W, Fan X, Shao J, Yang T. MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2. Biochem Biophys Res Commun 2019; 521:9-14. [PMID: 31630797 DOI: 10.1016/j.bbrc.2019.09.122] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs) has been regarded as a central issue in fracture healing. MicroRNAs (miRNAs, miRs) participate in diverse physiological processes such as osteoblastic differentiation of BMSCs. In this study, we found that miR-664a-5p was upregulated during osteogenic differentiation of human BMSCs, and this upregulation positively correlated with the expression of osteogenic genes Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteocalcin (OCN). Overexpression of miR-664a-5p promoted the osteogenic differentiation of BMSCs, whereas a knockdown of miR-664a-5p suppressed it. Additionally, high-mobility group A2 (HMGA2) mRNA was identified as a direct target of miR-664a-5p that mediates the function of this miRNA. Overexpression of HMGA2 obviously attenuated miR-664a-5p-induced osteogenic differentiation of BMSCs. Thus, the newly identified miR-664a-5p-HMGA2 pathway expands our understanding of the mechanisms underlying the osteogenic differentiation of human BMSCs, may provide deeper insights into the regulation of this differentiation, and can point to new effective methods for treating osteoporosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Yue Liu
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Ming Wu
- Ningxia Medical University, Yinchuan, China
| | - Hongyan Wang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Liang Wu
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Bo Xu
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Wenchao Zhou
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Xinbin Fan
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Jin Shao
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China
| | - Tieyi Yang
- Department of Orthopaedics, Gongli Hospital of Pudong New Area, Shanghai, China.
| |
Collapse
|
53
|
He Y, Li Y, Chen G, Wei C, Zhang X, Zeng B, Yi C, Wang C, Yu D. Concentration‐dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide. J Biomed Mater Res A 2019; 108:50-60. [PMID: 31443121 DOI: 10.1002/jbm.a.36791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Yi He
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Guanhui Chen
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Changbo Wei
- The Affiliated Stomatological Hospital of Soochow UniversitySuzhou Stomatological Hospital Jiangsu China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Binghui Zeng
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Chao Wang
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of StomatologyInstitute of Stomatological Research, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen University Guangzhou China
| |
Collapse
|
54
|
Yang W, Ma B. A Mini-Review: The Therapeutic Potential of Bone Marrow Mesenchymal Stem Cells and Relevant Signaling Cascades. Curr Stem Cell Res Ther 2019; 14:214-218. [PMID: 30207242 DOI: 10.2174/1574888x13666180912141228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) characterized multi-directional differentiation, low immunogenicity and high portability, serve as ideal "seed cells" in ophthalmological disease therapy. Therefore, in this mini-review, we examined the recent literature concerning the potential application of BMSCs for the treatment of ophthalmological disease, that includes: the cellular activity of BMSCs transplantation, migration and homing, as well as the immuno-modulatory and antiinflammatory effects of BMSCs and signaling involved. Each aspect is complementary to the others and together these aspects promoted further understanding of the potential use of BMSCs in treating ophthalmological diseases.
Collapse
Affiliation(s)
- Wen Yang
- Department of Ophthalmology, Xi'an Fourth Hospital, Xi'an Shaanxi, 710000, China
| | - Bo Ma
- Department of Ophthalmology, Xi'an Fourth Hospital, Xi'an Shaanxi, 710000, China
| |
Collapse
|
55
|
Long non-coding RNA MEG3 inhibits chondrogenic differentiation of synovium-derived mesenchymal stem cells by epigenetically inhibiting TRIB2 via methyltransferase EZH2. Cell Signal 2019; 63:109379. [PMID: 31376524 DOI: 10.1016/j.cellsig.2019.109379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/05/2023]
Abstract
Osteoarthritis (OA) is a highly prevalent skeletal disease. Mesenchymal stem cell-derived cartilage tissue engineering is a clinical method used for OA treatment. Investigations on the molecular regulatory mechanisms of the chondrogenic differentiation of synovium-derived mesenchymal stem cells(SMSCs) will help promote its clinical applications. In this study, bioinformatics analysis from three different databases indicated that the long non-coding RNA (lncRNA) MEG3 may regulate the chondrogenic differentiation of SMSCs by targeting TRIB2. We then performed assays and found that both knockdown of MEG3 or overexpression of TRIB2 can stimulate the chondrogenic differentiation of SMSCs and increase Col2A1 and aggrecan expression. Knockdown of MEG3 can induce the expression of TRIB2; conversely, overexpression of MEG3 can inhibit the expression of TRIB2. Futhermore, knockdown of the TRIB2 can rescue the MEG3 silencing-mediated promotion of chondrogenic differentiation. Moreover, RNA immunoprecipitation(RIP) and RNA pull-down assays demonstrated that MEG3 can interact with EZH2, thus recruiting it to induce H3K27me3, which promotes the methylation of TRIB2 by binding with the promoter of TRIB2 in SMSCs. Additionally, EZH2 silencing significantly rescued the MEG3 overexpression-mediated inhibition of TRIB2 expression and chondrogenic differentiation of SMSCs. Taken together, these data indicated that MEG3 regulates chondrogenic differentiation by inhibiting TRIB2 expression through EZH2-mediated H3K27me3.
Collapse
|
56
|
Long H, Zhu Y, Lin Z, Wan J, Cheng L, Zeng M, Tang Y, Zhao R. miR-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development. Cell Death Dis 2019; 10:470. [PMID: 31209205 PMCID: PMC6572824 DOI: 10.1038/s41419-019-1693-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
The osteogenic differentiation of human bone mesenchymal stromal cells (BMSCs) has been considered as a central issue in fracture healing. Wnt signaling could promote BMSC osteogenic differentiation through inhibiting PPARγ. During atrophic nonunion, Wnt signaling-related factors, WNT5A and FZD3 proteins, were significantly reduced, along with downregulation of Runx2, ALP, and Collagen I and upregulation of PPARγ. Here, we performed a microarray analysis to identify differentially expressed miRNAs in atrophic nonunion tissues that were associated with Wnt signaling through targeting related factors. Of upregulated miRNAs, miR-381 overexpression could significantly inhibit the osteogenic differentiation in primary human BMSCs while increase in PPARγ protein level. Through binding to the 3'UTR of WNT5A and FZD3, miR-381 modulated the osteogenic differentiation via regulating β-catenin nucleus translocation. Moreover, PPARγ, an essential transcription factor inhibiting osteogenic differentiation, could bind to the promoter region of miR-381 to activate its expression. Taken together, PPARγ-induced miR-381 upregulation inhibits the osteogenic differentiation in human BMSCs through miR-381 downstream targets, WNT5A and FZD3, and β-catenin nucleus translocation in Wnt signaling. The in vivo study also proved that inhibition of miR-381 promoted the fracture healing. Our finding may provide a novel direction for atrophic nonunion treatment.
Collapse
Affiliation(s)
- Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhangyuan Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Wan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liang Cheng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yifu Tang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruibo Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
57
|
Zhu Y, Long HT, Zeng L, Tang YF, Zhao RB, Lin ZY, Zhao SS, Cheng L. MiR-19b-3p regulates osteogenic differentiation of PDGFRα + muscle cells by specifically targeting PTEN. Cell Biol Int 2019; 43:565-573. [PMID: 30958604 DOI: 10.1002/cbin.11133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/16/2019] [Indexed: 01/08/2023]
Abstract
Heterotopic ossification (HO) is a common disturbing complication of intra-articular fractures. Its prevention and treatment are still difficult as its pathogenesis is unclear. It was reported that PDGFRα+ muscle cells in skeletal muscle may participate in the formation of HO; however, the specific mechanism is still unknown. This study investigated the function of miR-19b-3p in osteogenic differentiation of PDGFRα+ muscle cells. MiR-19b-3p was upregulated during PDGFRα+ muscle cell osteogenic differentiation. The exogenous expression of miR-19b-3p led to an increase in osteogenic marker gene transcription and translation during the osteogenic differentiation of PDGFRα+ muscle cells. Furthermore, both alkaline phosphatase and alizarin red staining increased in miR-19b-3p mimic transfected cells. Over-expression of miR-19b-3p led to the down-regulation of gene of phosphate and tension homology deleted on chromosome ten (PTEN). Additionally, the dual luciferase reporter assay demonstrated that PTEN was a direct target of miR-19b-3p. The increase of osteocalcin, osteopontin, and Runt-related transcription factor 2 protein levels induced by ectopic miR-19b-3p expression could be partially reversed by PTEN over-expression. In conclusion, our results suggested that miR-19b-3p may be a promising target in inhibiting PDGFRα+ muscle cell osteogenic differentiation and treatment of HO.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Orthopaedics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Hai-Tao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Lei Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Yi-Fu Tang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Rui-Bo Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Zhang-Yuan Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Shu-Shan Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | - Liang Cheng
- Department of Orthopaedics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China
| |
Collapse
|
58
|
Mechanism of Action of Icariin in Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2019; 2019:5747298. [PMID: 31089330 PMCID: PMC6476003 DOI: 10.1155/2019/5747298] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis, femoral head necrosis, and congenital bone defects are orthopedic disorders characterized by reduced bone generation and insufficient bone mass. Bone regenerative therapy primarily relies on the bone marrow mesenchymal stem cells (BMSCs) and their ability to differentiate osteogenically. Icariin (ICA) is the active ingredient of Herba epimedii, a common herb used in traditional Chinese medicine (TCM) formulations, and can effectively enhance BMSC proliferation and osteogenesis. However, the underlying mechanism of ICA action in BMSCs is not completely clear. In this review, we provide an overview of the studies on the role and mechanism of action of ICA in BMSCs, to provide greater insights into its potential clinical use in bone regeneration.
Collapse
|
59
|
Liu F, Wang ZF, Liu FF, Xu JZ, Liu Q, Lan J. [MicroRNA-29a-3p regulates osteoblast differentiation and peri-implant osseointegration in a rat model of hyperlipidemia by modulating Frizzled 4 expression]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:200-207. [PMID: 31168988 PMCID: PMC7030145 DOI: 10.7518/hxkq.2019.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/05/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This work aimed to study and identify the influence and target gene of microRNA-29a-3p (miR-29a-3p) in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a high-fat environment in vitro and in vivo. METHODS 1) In vitro: BMSCs were randomly allocated into two groups and were then induced to undergo osteogenic differentiation in a normal or high-fat environment. Next, a miR-29a-3p mimic/inhibitor was transfected into the two groups of cells. The mRNA expression levels of alkaline phosphatase (ALP), Runt related gene 2 (Runx2), and miR-29a-3p and the protein expression levels of ALP and Runx2 were detected before and after transfection through reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analyses. Moreover, Frizzled (Fzd) 4 was predicted as the target gene of miR-29a-3p by using an online database (Target Scan, MiRNA.org). The interactive relationship between miR-29a-3p and Fzd4 was confirmed through dual-luciferase assays. 2) In vivo: Rats were randomly divided into two groups and fed with a standard or high-fat diet. Titanium implants were grown in rats. Then, the expression levels of miR-29a-3p, ALP, and Runx2 were detected in bone tissues surrounding implants. Moreover, hard tissue sections were subjected to methylene blue-acid magenta staining and observed under microscopy to study bone formation around implants. In addition, miR-29a-3p-overexpressing lentiviral vectors were transfected into rats, and the expression levels of ALP, Runx2, and miR-29a-3p in bone tissues surrounding implants were detected at 3 and 10 days after transfection. RESULTS The expression levels of ALP, Runx2, and miR-29a-3p and the osteogenic differentiation of BMSCs were suppressed in high-fat groups in vitro and in vivo. CONCLUSIONS MiR-29a-3p plays a positive role in the regulation of BMSCs in a high-fat environment. It can increase ALP and Runx2 expression levels in bone tissues surrounding implants in hyperlipidemia models. This result implies that miR-29a-3p can promote implant osseointergration in a rat model of hyperlipidemia.
Collapse
Affiliation(s)
- Fei Liu
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Zhi-Feng Wang
- Dept. of Pediatric Dentistry, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Fang-Fang Liu
- Dept. of Dental Implantology, Stomatological Hospital of Nanyang, Nanyang 473000, China
| | - Jin-Zhao Xu
- Dept. of Pediatric Dentistry, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Qibo Liu
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Jing Lan
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
60
|
Zhang Y, Chen B, Li D, Zhou X, Chen Z. LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Pathol Res Pract 2019; 215:525-531. [DOI: 10.1016/j.prp.2018.12.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/06/2018] [Accepted: 12/30/2018] [Indexed: 12/22/2022]
|
61
|
Wu HY, Bi R, Sun T, Xie F. Deletion of Dicer blocks osteogenic differentiation via the inhibition of Wnt signalling. Mol Med Rep 2019; 19:2897-2905. [PMID: 30816532 DOI: 10.3892/mmr.2019.9941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/29/2019] [Indexed: 11/06/2022] Open
Abstract
Micro (mi)RNAs are small, non‑coding RNAs and have been reported to have important roles in the epigenetic control of bone development. miRNAs markedly regulate osteoblast differentiation through stages of maturation as well as the activities of osteogenic signaling pathways. Dicer is an important endoribonuclease that regulates miRNA maturation. Previous studies have demonstrated that Dicer deletion decreases fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass. However, the underlying molecular mechanisms remain unclear. In the present study, whether the deletion of Dicer affects Wnt signaling, which exhibits important roles during osteogenesis, was investigated. Bone marrow stromal cells (BMSCs) were used as an osteogenic model. Dynamic changes of seven Wnt genes and downstream T‑cell factor 1 (Tcf‑1)/lymphoid enhancing binding factor were observed during the osteogenic differentiation of BMSCs, which revealed different roles at early and late differentiation stages. Following the stable knockdown of Dicer in BMSCs using lentiviral short hairpin RNA, osteogenic differentiation was blocked, and the levels of important osteogenic differentiation markers (runt related transcription factor 2 and alkaline phosphatase) were markedly inhibited. Furthermore, stage specific regulation of Wnt genes in Dicer‑deficient BMSCs was investigated in the present study. At the early differentiation stage (days 5‑7), knockdown of Dicer led to the inhibition of Wnt1, Wnt7 and Wnt10b, as well as the upregulation of Wnt4, Wnt10a and Tcf‑1. At the late stage of differentiation (days 14‑21), knockdown of Dicer significantly suppressed the expression levels of all of the included Wnt genes as well as Tcf‑1, with the exception of Wnt10a. The upregulation of Wnt10a following the deletion of Dicer was maintained throughout all stages of differentiation. In addition, differential regulation of Wnt genes and Tcf‑1 were revealed to be associated with dynamic changes in their expression levels during osteogenic differentiation. Furthermore, the four putative Wnt10a‑targeting miRNAs were investigated in the present study, and the results demonstrated that they were upregulated during osteogenic differentiation, which suggested that inhibition of Wnt10a may be an important factor associated with osteogenic differentiation. In conclusion, the present study investigated the mechanism underlying the regulation of Wnt signalling by Dicer during osteogenesis, and identified potential miRNAs targeting the components of Wnt signalling influenced by Dicer. Collectively, the present study identified the association between Dicer and Wnt signalling during bone development.
Collapse
Affiliation(s)
- Hong-Yan Wu
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Rui Bi
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| | - Ting Sun
- Department of Clinical Pharmacology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Fei Xie
- Pharmacy Department, Tangshan People's Hospital, Tangshan, Hebei 063001, P.R. China
| |
Collapse
|
62
|
Zhu L, Yang N, Du G, Li C, Liu G, Liu S, Xu Y, Di Y, Pan W, Li X. LncRNA CRNDE promotes the epithelial-mesenchymal transition of hepatocellular carcinoma cells via enhancing the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 120:1156-1164. [PMID: 30430650 PMCID: PMC6587876 DOI: 10.1002/jcb.26762] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/β-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liying Zhu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Nenghong Yang
- Department of Hepatobiliary SurgerySurgery, Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Guiqin Du
- The First People's Hospital of GuiyangGuiyangGuizhouChina
| | - Chengcheng Li
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Guoqi Liu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Shengju Liu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yongjie Xu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yanan Di
- Department of Clinical Laboratory MedicineBeifang Hospital of China North Industries Group CorporationBeijingChina
| | - Wei Pan
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Xing Li
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
63
|
Su M, Hu X, Lin J, Zhang L, Sun W, Zhang J, Tian Y, Qiu W. Identification of Candidate Genes Involved in Renal Ischemia/Reperfusion Injury. DNA Cell Biol 2019; 38:256-262. [PMID: 30668132 PMCID: PMC6434600 DOI: 10.1089/dna.2018.4551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia/reperfusion injury (IRI) is a main risk factor for the occurrence of delayed graft function or primary graft nonfunction of kidney transplantation. However, it lacks ideal molecular markers for indicating IRI in kidney transplantation. The present study is to explore novel candidate genes involved in renal IRI. Experimental renal IRI mouse models were constructed, and the differentially expressed genes were screened using a microarray assay. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed. The expression of genes was detected using real-time qPCR assay. Western blotting and immunohistochemistry staining assays were performed for protein determination. We identified that renal IRI induced the upregulation of SPRR2F, SPRR1A, MMP-10, and long noncoding RNA (lncRNA) Malat1 in kidney tissues for 479.3-, 4.98-, 238.1-, and 3.79-fold, respectively. The expression of miR-139-5p in kidney tissues of IRI-treated mice was decreased to 40.4% compared with the sham-operated mice. These genes are associated with keratinocyte differentiation, regeneration and repair of kidney tissues, extracellular matrix degradation and remodeling, inflammation, and cell proliferation in renal IRI. Identification of novel biomarkers involved in renal IRI may provide evidences for the diagnosis and treatment of renal IRI.
Collapse
Affiliation(s)
- Ming Su
- 1 Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xinyi Hu
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jun Lin
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lei Zhang
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Sun
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Zhang
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ye Tian
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Qiu
- 2 Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
64
|
Deng M, Hou S, Tong B, Yin J, Xiong W. The Smad2/3/4 complex binds miR‐139 promoter to modulate TGFβ‐induced proliferation and activation of human Tenon's capsule fibroblasts through the Wnt pathway. J Cell Physiol 2019; 234:13342-13352. [PMID: 30648255 DOI: 10.1002/jcp.28011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Mi Deng
- Department of Ophthalmology Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Shi‐Ying Hou
- Department of Ophthalmology Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Bo‐Ding Tong
- Department of Ophthalmology Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia‐Yang Yin
- Department of Ophthalmology Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Wei Xiong
- Department of Ophthalmology Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
65
|
ZHAO XIAOE, YANG ZHENSHAN, GAO ZHEN, GE JUNBANG, WEI QIANG, MA BAOHUA. 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway. ACTA ACUST UNITED AC 2019; 91:e20180459. [PMID: 30916158 DOI: 10.1590/0001-3765201920180459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
|
66
|
Zhao XE, Yang Z, Zhang H, Yao G, Liu J, Wei Q, Ma B. Resveratrol Promotes Osteogenic Differentiation of Canine Bone Marrow Mesenchymal Stem Cells Through Wnt/Beta-Catenin Signaling Pathway. Cell Reprogram 2018; 20:371-381. [DOI: 10.1089/cell.2018.0032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Xiao-e Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhenshan Yang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ge Yao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Liu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
67
|
Fan J, An X, Yang Y, Xu H, Fan L, Deng L, Li T, Weng X, Zhang J, Chunhua Zhao R. MiR-1292 Targets FZD4 to Regulate Senescence and Osteogenic Differentiation of Stem Cells in TE/SJ/Mesenchymal Tissue System via the Wnt/β-catenin Pathway. Aging Dis 2018; 9:1103-1121. [PMID: 30574422 PMCID: PMC6284756 DOI: 10.14336/ad.2018.1110] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
With the expansion of the elderly population, age-related osteoporosis and the resulting bone loss have become a significant health and socioeconomic issue. In Triple Energizer (TE)/San Jiao (SJ)/mesenchymal tissue system, mesenchymal stem cell (MSC) senescence, and impaired osteogenesis are thought to contribute to age-related diseases such as osteoporosis. Therefore, comprehending the molecular mechanisms underlying MSC senescence and osteogenesis is essential to improve the treatment of bone metabolic diseases. With the increasing role of miRNAs in MSC aging and osteogenic differentiation, we need to understand further how miRNAs participate in relevant mechanisms. In this study, we observed that the expression of miR-1292 was augmented during cellular senescence and lessened with osteogenesis in human adipose-derived mesenchymal stem cells (hADSCs). miR-1292 expression was positively correlated with senescence markers and negatively associated with bone formation markers in clinical bone samples. Overexpression of miR-1292 notably accelerated hADSC senescence and restrained osteogenesis, whereas its knockdown decreased senescence and enhanced osteogenic differentiation. Furthermore, miR-1292 upregulation inhibited ectopic bone formation in vivo. Mechanistically, FZD4 was identified as a potential target of miR-1292. Downregulation of FZD4 phenocopied the effect of miR-1292 overexpression on hADSC senescence and osteogenic differentiation. Moreover, the impact of miR-1292 suppression on senescence and osteogenesis were reversed by the FZD4 knockdown. Pathway analysis revealed that miR-1292 regulates hADSC senescence and osteogenesis through the Wnt/β-catenin signaling pathway. Thus, TE/SJ/mesenchymal tissue system is the largest organ composed of various functional cells derived from mesoderm, responsible for maintaining homeostasis and regulating cell senescence. miR-1292 might serve as a novel therapeutic target for the prevention and treatment of osteoporosis or other diseases related to bone metabolism and aging.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Xingyan An
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Yanlei Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Luchan Deng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Tao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and School of Basic Medicine Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| |
Collapse
|
68
|
Wang Y, Wang K, Hu Z, Zhou H, Zhang L, Wang H, Li G, Zhang S, Cao X, Shi F. MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death Dis 2018; 9:1107. [PMID: 30382082 PMCID: PMC6208413 DOI: 10.1038/s41419-018-1153-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Recent studies have confirmed that microRNAs and lncRNAs can affect bone cell differentiation and bone formation. In this study, miR-139-3p was upregulated in the femurs of hindlimb unloading mice and MC3T3-E1 cells under simulated microgravity; this effect was related to osteoblast differentiation and apoptosis. Silencing miR-139-3p attenuated the suppression of differentiation and the promotion of MC3T3-E1 cell apoptosis induced by simulated microgravity. ELK1 is a target of miR-139-3p and is essential for miR-139-3p to regulate osteoblast differentiation and apoptosis. An osteoblast differentiation-related lncRNA that could interact with miR-139-3p (lncRNA ODSM) was identified in MC3T3-E1 cells under simulated microgravity. Further investigations demonstrated that lncRNA ODSM could promote MC3T3-E1 cell differentiation. Therefore, this research was the first to reveal the critical role of the lncRNA ODSM/miR-139-3p/ELK1 pathway in osteoblasts, and these findings suggest the potential value of miR-139-3p in osteoporosis diagnosis and therapy.
Collapse
Affiliation(s)
- Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
69
|
Liu F, Wang Z, Liu F, Xu J, Liu Q, Yin K, Lan J. MicroRNA-29a-3p enhances dental implant osseointegration of hyperlipidemic rats via suppressing dishevelled 2 and frizzled 4. Cell Biosci 2018; 8:55. [PMID: 30386554 PMCID: PMC6203977 DOI: 10.1186/s13578-018-0254-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Fine osseointegration is the basis of long-term survival of implant. In our previous study, we observed a strong correlation between hyperlipidemia and compromised osseointegration. MicroRNA-29a-3p (miR-29a-3p) has been discovered to participate in bone marrow mesenchymal stem cells (BMSCs) differentiation. However, the role and the underlying mechanisms of hyperlipidemia and miR-29a-3p in osseointegration still remain obscure. Results In peri-implant bone tissues of hyperlipidemia rats, bone mass, mineralization and bone trabecula formation were weakened. Alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2), and miR-29a-3p expression were reduced. While in normal rats, implant-bone interfaces were filled with dense new bone and ALP, Runx2 and miR-29a-3p were up-regulated. Overexpressed miR-29a-3p can reverse the adverse effect of hyperlipidemia on osseointegration. Implants were tightly integrated with the surrounding dense new bone tissues, and ALP as well as Runx2 mRNAs were enhanced in miR-29a-3p overexpressed and hyperlipidemia rats, while little peri-implant bone tissue existed, ALP and Runx2 deregulated on miR-29a-3p inhibited rats. Dishevelled 2 (Dvl2) mRNA was declined in peri-implant bone tissue of high-fat (HF) group than normal group, while frizzled 4 (Fzd4) mRNA declined on day 5 and increased from day 10 to day 20 after implantation in hyperlipidemia rats than in normal rats. Next, BMSCs were cultured under HF or normal medium in vitro. In the HF group, ALP activity and mineralization, ALP and Runx2 mRNAs and proteins expression, and miR-29a-3p expression were suppressed, while adipogenesis was increased, as a result, cytoskeletons were sparse and disordered compared to control group. However, when miR-29a-3p was overexpressed in BMSCs, ALP activity, ALP, Runx2, Dvl2 and Fzd4 mRNAs and proteins expressions were up-regulated. As miR-29a-3p was inhibited in BMSCs, the reverse results were obtained. In addition, promoter assay revealed that miR-29a-3p can directly suppress Wnt/β-catenin pathway related Dvl2 and Fzd4 through binding to their 3'-UTR. Conclusions MiR-29a-3p facilitated implant osseointegration via targeting Wnt/β-catenin pathway-related Dvl2 and Fzd4. MiR-29a-3p/Dvl2/Fzd4 may serve as a promising therapeutic target for hyperlipidemia osseointegration.
Collapse
Affiliation(s)
- Fei Liu
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China
| | - Zhifeng Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,3Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, 250000 China
| | - Fangfang Liu
- Department of Implantology, Stomatological Hospital of Nanyang, Nanyang, 473000 China
| | - Jinzhao Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,3Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, 250000 China
| | - Qibo Liu
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China
| | - Kaifeng Yin
- 4Department of Orthodontics, Herman Ostrow School of Dentistry, Los Angeles, CA 90089 USA.,5Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Los Angeles, 90033 USA
| | - Jing Lan
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,7Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| |
Collapse
|
70
|
Gao Y, Xiao F, Wang C, Wang C, Cui P, Zhang X, Chen X. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J Cell Biochem 2018; 119:6986-6996. [PMID: 29741283 DOI: 10.1002/jcb.26907] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is essential for the human bone formation, and emerging evidence shows that long non-coding RNAs (lncRNAs) play important roles in hBMSC osteogenic differentiation. MALAT1 is often regarded as a tumor-related lncRNA, but its function in mesenchymal stem cell differentiation remains to be defined. In this study, we aimed to investigate whether MALAT1 regulates Osterix (Osx) expression by sponging miR-143 to promote hBMSC osteogenic differentiation. Firstly, we found that the expression of MALAT1 was much lower in hBMSCs from osteoporosis patients and miR-143 was contrarily higher. In addition, MALAT1 expression increased, and miR-143 decreased when hBMSCs were treated with osteogenic induction. Then, we used short hairpin RNAs to knockdown MALAT1, and the results showed that hBMSC osteogenic differentiation decreased significantly, indicating that MALAT1 is a positive regulator of osteogenic differentiation in hBMSCs. Furthermore, by luciferase assays, we found that MALAT1 could directly bind to miR-143 and negatively regulate its expression. Similarly, miR-143 could directly bind to the target site on the Osx 3'-UTR and then inhibit Osx expression. Knockdown of MALAT1 decreased Osx expression, and co-transfection of miR-143 inhibitor could rescue Osx mRNA expression. While Osx expression was increased in MALAT1-overexpressing hBMSCs, it was reversed by the miR-143 mimics. Moreover, Osx silencing decreased ALP, OCN, and OPN mRNA expression induced by the miR-143 inhibitor. Altogether, our findings suggest that MALAT1 acts to regulate Osx expression through targeting miR-143; thus, it is considered as a positive regulator in hBMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
71
|
Bone remodeling induced by mechanical forces is regulated by miRNAs. Biosci Rep 2018; 38:BSR20180448. [PMID: 29844019 PMCID: PMC6028748 DOI: 10.1042/bsr20180448] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between mechanical force and alveolar bone remodeling is an important issue in orthodontics because tooth movement is dependent on the response of bone tissue to the mechanical force induced by the appliances used. Mechanical cyclical stretch (MCS), fluid shear stress (FSS), compression, and microgravity play different roles in the cell differentiation and proliferation involved in bone remodeling. However, the underlying mechanisms are unclear, particularly the molecular pathways regulated by non-coding RNAs (ncRNAs) that play essential roles in bone remodeling. Amongst the various ncRNAs, miRNAs act as post-transcriptional regulators that inhibit the expression of their target genes. miRNAs are considered key regulators of many biologic processes including bone remodeling. Here, we review the role of miRNAs in mechanical force-induced bone metabolism.
Collapse
|
72
|
Fan L, Fan J, Liu Y, Li T, Xu H, Yang Y, Deng L, Li H, Zhao RC. miR-450b Promotes Osteogenic Differentiation In Vitro and Enhances Bone Formation In Vivo by Targeting BMP3. Stem Cells Dev 2018; 27:600-611. [PMID: 29649414 DOI: 10.1089/scd.2017.0276] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is characterized by deterioration of bone microarchitecture and low bone mass. One of the primary causes of osteoporosis is the decrease in the osteogenic differentiation of mesenchymal stem cells (MSCs). Tissue engineering therapy with genetically modified MSCs has attracted much attention in the study of bone regeneration. In this study, we found that the expression level of miR-450b was upregulated during osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs). To explore the effect of miR-450b on the osteogenesis of hADSCs, we performed a series of gain- and loss-of-function analyses and demonstrated that miR-450b not only promoted the process of hADSC differentiation to osteoblasts in vitro but also enhanced ectopic bone formation in vivo. Bone morphogenetic protein 3 (BMP3), the most abundant BMP member in bone, was identified as a direct target of miR-450b. Downregulation of the endogenous expression of BMP3 could mimic the effect of miR-450b upregulation on the osteogenic differentiation of hADSCs. Overall, our study first demonstrated that a novel microRNA miR-450b was essential for hADSC differentiation, which could promote osteogenic differentiation in vitro and enhance bone formation in vivo by directly suppressing BMP3.
Collapse
Affiliation(s)
- Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yan Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Tangping Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yanlei Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Luchan Deng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences , School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
73
|
Imamura K, Tachi K, Takayama T, Shohara R, Kasai H, Dai J, Yamano S. Released fibroblast growth factor18 from a collagen membrane induces osteoblastic activity involved with downregulation of miR-133a and miR-135a. J Biomater Appl 2018; 32:1382-1391. [PMID: 29544382 DOI: 10.1177/0885328218763318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a unique delivery system of growth factors using collagen membranes (CMs) to induce bone regeneration. We hypothesized that fibroblast growth factor18 (FGF-18), a pleiotropic protein that stimulates proliferation in several tissues, can be a good candidate to use our delivery system for bone regeneration. Cell viability, cell proliferation, alkaline phosphatase activity, mineralization, and marker gene expression of osteoblastic differentiation were evaluated after mouse preosteoblasts were cultured with a CM containing FGF-18, a CM containing platelet-derived growth factor, or a CM alone. Furthermore, expression of microRNA, especially miR-133a and miR-135a involving inhibition of osteogenic factors, was measured in preosteoblasts with CM/FGF-18 or CM alone. A sustained release of FGF-18 from the CM was observed over 21 days. CM/FGF-18 significantly promoted cell proliferation, alkaline phosphatase activity, and mineralization compared to CM alone. Gene expression of type I collagen, runt-related transcription factor 2, osteocalcin, Smad5, and osteopontin was significantly upregulated in CM/FGF-18 compared to CM alone, and similar to CM/platelet-derived growth factor. Additionally, CM/FGF-18 downregulated expression of miR-133a and miR-135a. These results suggested that released FGF-18 from a CM promotes osteoblastic activity involved with downregulation of miR-133a and miR-135a.
Collapse
Affiliation(s)
- Kentaro Imamura
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA.,2 Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Keita Tachi
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Tadahiro Takayama
- 3 Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryutaro Shohara
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Hironori Kasai
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Jisen Dai
- 4 Mouse Genotyping Core, New York University Langone Medical Center, NY, USA
| | - Seiichi Yamano
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| |
Collapse
|
74
|
Wu X, Hu L, Li Y, Li Y, Wang F, Ma P, Wang J, Zhang C, Jiang C, Wang S. SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine. Int J Med Sci 2018; 15:291-299. [PMID: 29511365 PMCID: PMC5835700 DOI: 10.7150/ijms.22495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/23/2017] [Indexed: 12/17/2022] Open
Abstract
The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. However, the morphological dynamics and factors regulating the differentiation of the DF during root elongation remain largely unknown. Miniature pigs are regarded as a useful experimental animal for modeling in craniofacial research because they are similar to humans with respect to dentition and mandible anatomy. In the present study, we used the third deciduous incisor of miniature pig as the model to investigate the factors influencing DF differentiation during root development. We found that the DF was shaped like a crescent and was located between the root apical and the alveolar bone. The expression levels of WNT5a, β-Catenin, and COL-I gradually increased from the center of the DF (beneath the apical foramen) to the lateral coronal corner, where the DF differentiates into the periodontium. To determine the potential regulatory role of the apical papilla on DF cell differentiation, we co-cultured dental follicle stem cells (DFSCs) with stem cells of the apical papilla (SCAPs). The osteogenesis and fibrogenesis abilities of DFSCs were inhibited when being co-cultured with SCAPs, suggesting that the fate of the DF can be regulated by signals from the apical papilla. The apical papilla may sustain the undifferentiated status of DFSCs before root development finishes. These data yield insight into the interaction between the root apex and surrounding DF tissues in root and periodontium development and shed light on the future study of root regeneration in large mammals.
Collapse
Affiliation(s)
- Xiaoshan Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yan Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yang Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Fu Wang
- Department of Oral Basic Science, School of Stomatology, Dalian Medical University, Dalian, China
| | - Ping Ma
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|