51
|
Koehn LM, Noor NM, Dong Q, Er SY, Rash LD, King GF, Dziegielewska KM, Saunders NR, Habgood MD. Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Res 2016; 5:1822. [PMID: 28105306 PMCID: PMC5200949 DOI: 10.12688/f1000research.9094.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 11/10/2023] Open
Abstract
Tissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a). We surmised that antagonism of this channel should provide neuroprotection and functional preservation after SCI. We show that systemic administration of the spider-venom peptide PcTx1, a selective inhibitor of ASIC1a, improves locomotor function in adult Sprague Dawley rats after thoracic SCI. The degree of functional improvement correlated with the degree of tissue preservation in descending white matter tracts involved in hind limb locomotor function. Transcriptomic analysis suggests that PcTx1-induced preservation of spinal cord tissue does not result from a reduction in apoptosis, with no evidence of down-regulation of key genes involved in either the intrinsic or extrinsic apoptotic pathways. We also demonstrate that trauma-induced disruption of blood-spinal cord barrier function persists for at least 4 days post-injury for compounds up to 10 kDa in size, whereas barrier function is restored for larger molecules within a few hours. This temporary loss of barrier function provides a " treatment window" through which systemically administered drugs have unrestricted access to spinal tissue in and around the sites of trauma. Taken together, our data provide evidence to support the use of ASIC1a inhibitors as a therapeutic treatment for SCI. This study also emphasizes the importance of objectively grading the functional severity of initial injuries (even when using standardized impacts) and we describe a simple scoring system based on hind limb function that could be adopted in future studies.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Natassya M Noor
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Qing Dong
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Sing-Yan Er
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Lachlan D Rash
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | - Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| |
Collapse
|
52
|
Emamhadi M, Soltani B, Babaei P, Mashhadinezhad H, Ghadarjani S. Influence of Sexuality in Functional Recovery after Spinal Cord Injury in Rats. THE ARCHIVES OF BONE AND JOINT SURGERY 2016; 4:56-59. [PMID: 26894220 PMCID: PMC4733237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is a major clinical condition and research is commonly done to find suitable treatment options. However, there are some degrees of spontaneous recovery after SCI and gender is said to be a contributing factor in recovery, but this is controversial. This study was done to compare the effects of sexual dimorphism on spontaneous recovery after spinal cord injury in Wistar Rats. METHODS Spinal cord lesions were made by compressing the cord at T9 level and making a spinal cord contusion. Routine care of each rat was done daily. The LSS scoring system was used to measure the locomotion of these rats and to compare the recovery rate between male and female rats. RESULTS The results suggested that there was no significant difference between the two sex in recovery. CONCLUSIONS To be female does not seem to be a prognostic factor for recovery after SCI. However, this preliminary study should be repeated in other animals and in larger cohorts.
Collapse
Affiliation(s)
| | - Bahram Soltani
- Department of Neurosurgery, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Department of Neurosurgery, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Shervin Ghadarjani
- Department of Neurosurgery, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
53
|
Xu N, Åkesson E, Holmberg L, Sundström E. A sensitive and reliable test instrument to assess swimming in rats with spinal cord injury. Behav Brain Res 2015; 291:172-183. [PMID: 25986406 DOI: 10.1016/j.bbr.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
For clinical translation of experimental spinal cord injury (SCI) research, evaluation of animal SCI models should include several sensorimotor functions. Validated and reliable assessment tools should be applicable to a wide range of injury severity. The BBB scale is the most widely used test instrument, but similar to most others it is used to assess open field ambulation. We have developed an assessment tool for swimming in rats with SCI, with high discriminative power and sensitivity to functional recovery after mild and severe injuries, without need for advanced test equipment. We studied various parameters of swimming in four groups of rats with thoracic SCI of different severity and a control group, for 8 weeks after surgery. Six parameters were combined in a multiple item scale, the Karolinska Institutet Swim Assessment Tool (KSAT). KSAT scores for all SCI groups showed consistent functional improvement after injury, and significant differences between the five experimental groups. The internal consistency, the inter-rater and the test-retest reliability were very high. The KSAT score was highly correlated to the cross-section area of white matter spared at the injury epicenter. Importantly, even after 8 weeks of recovery the KSAT score reliably discriminated normal animals from those inflicted by the mildest injury, and also displayed the recovery of the most severely injured rats. We conclude that this swim scale is an efficient and reliable tool to assess motor activity during swimming, and an important addition to the methods available for evaluating rat models of SCI.
Collapse
Affiliation(s)
- Ning Xu
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Åkesson
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stockholms Sjukhem Foundation, Stockholm, Sweden
| | - Lena Holmberg
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stockholms Sjukhem Foundation, Stockholm, Sweden.
| |
Collapse
|
54
|
May Z, Fouad K, Shum-Siu A, Magnuson DSK. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion. Behav Brain Res 2015; 291:26-35. [PMID: 25975172 DOI: 10.1016/j.bbr.2015.04.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022]
Abstract
A rarely explored subject in animal research is the effect of pre-injury variables on behavioral outcome post-SCI. Low reporting of such variables may underlie some discrepancies in findings between laboratories. Particularly, intensive task-specific training before a SCI might be important, considering that sports injuries are one of the leading causes of SCI. Thus, individuals with SCI often underwent rigorous training before their injuries. In the present study, we asked whether training before SCI on a grasping task or a swimming task would influence motor recovery in rats. Swim pre-training impaired recovery of swimming 2 and 4 weeks post-injury. This result fits with the idea of motor learning interference, which posits that learning something new may disrupt learning of a new task; in this case, learning strategies to compensate for functional loss after SCI. In contrast to swimming, grasp pre-training did not influence grasping ability after SCI at any time point. However, grasp pre-trained rats attempted to grasp more times than untrained rats in the first 4 weeks post-injury. Also, lesion volume of grasp pre-trained rats was greater than that of untrained rats, a finding which may be related to stress or activity. The increased participation in rehabilitative training of the pre-trained rats in the early weeks post-injury may have potentiated spontaneous plasticity in the spinal cord and counteracted the deleterious effect of interference and bigger lesions. Thus, our findings suggest that pre-training plays a significant role in recovery after CNS damage and needs to be carefully controlled for.
Collapse
Affiliation(s)
- Zacnicte May
- Faculty of Rehabilitation Research, University of Alberta, Edmonton, AB, Canada
| | - Karim Fouad
- Faculty of Rehabilitation Research, University of Alberta, Edmonton, AB, Canada
| | - Alice Shum-Siu
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - David S K Magnuson
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
55
|
Caudle KL, Atkinson DA, Brown EH, Donaldson K, Seibt E, Chea T, Smith E, Chung K, Shum-Siu A, Cron CC, Magnuson DSK. Hindlimb stretching alters locomotor function after spinal cord injury in the adult rat. Neurorehabil Neural Repair 2014; 29:268-77. [PMID: 25106555 DOI: 10.1177/1545968314543500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Stretching is a widely accepted standard-of-care therapy following spinal cord injury (SCI) that has not been systematically studied in animal models. OBJECTIVE To investigate the influence of a daily stretch-based physical therapy program on locomotor recovery in adult rats with moderate T9 contusive SCI. METHODS A randomized treatment and control study of stretching in an animal model of acute SCI. Moderate SCIs were delivered with the NYU Impactor. Daily stretching (30 min/day, 5 days/wk for 8 weeks) was provided by a team of animal handlers. Hindlimb function was assessed using the BBB Open Field Locomotor Scale and kinematically. Passive range-of-motion for each joint was determined weekly using a goniometer. RESULTS Declines in hindlimb function during overground stepping were observed for the first 4 weeks for stretched animals. BBB scores improved weeks 5 to 10 but remained below the control group. Stretched animals had significant deficits in knee passive range of motion starting at week 4 and for the duration of the study. Kinematic assessment showed decreased joint excursion during stepping that partially recovered beginning at week 5. CONCLUSION Stretch-based therapy significantly impaired functional recovery in adult rats with a moderate contusive SCI at T10. The negative impact on function was greatest acutely but persisted even after the stretching ceased at 8 weeks postinjury.
Collapse
Affiliation(s)
| | | | | | | | - Erik Seibt
- University of Louisville, Louisville KY, USA
| | - Tim Chea
- University of Louisville, Louisville KY, USA
| | - Erin Smith
- University of Louisville, Louisville KY, USA
| | | | | | | | | |
Collapse
|
56
|
Luedtke K, Bouchard SM, Woller SA, Funk MK, Aceves M, Hook MA. Assessment of depression in a rodent model of spinal cord injury. J Neurotrauma 2014; 31:1107-21. [PMID: 24564232 DOI: 10.1089/neu.2013.3204] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite an increased incidence of depression in patients after spinal cord injury (SCI), there is no animal model of depression after SCI. To address this, we used a battery of established tests to assess depression after a rodent contusion injury. Subjects were acclimated to the tasks, and baseline scores were collected before SCI. Testing was conducted on days 9-10 (acute) and 19-20 (chronic) postinjury. To categorize depression, subjects' scores on each behavioral measure were averaged across the acute and chronic stages of injury and subjected to a principal component analysis. This analysis revealed a two-component structure, which explained 72.2% of between-subjects variance. The data were then analyzed with a hierarchical cluster analysis, identifying two clusters that differed significantly on the sucrose preference, open field, social exploration, and burrowing tasks. One cluster (9 of 26 subjects) displayed characteristics of depression. Using these data, a discriminant function analysis was conducted to derive an equation that could classify subjects as "depressed" on days 9-10. The discriminant function was used in a second experiment examining whether the depression-like symptoms could be reversed with the antidepressant, fluoxetine. Fluoxetine significantly decreased immobility in the forced swim test (FST) in depressed subjects identified with the equation. Subjects that were depressed and treated with saline displayed significantly increased immobility on the FST, relative to not depressed, saline-treated controls. These initial experiments validate our tests of depression, generating a powerful model system for further understanding the relationships between molecular changes induced by SCI and the development of depression.
Collapse
Affiliation(s)
- Kelsey Luedtke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | | | | | | | | | | |
Collapse
|
57
|
Fouad K, Hurd C, Magnuson DSK. Functional testing in animal models of spinal cord injury: not as straight forward as one would think. Front Integr Neurosci 2013; 7:85. [PMID: 24324414 PMCID: PMC3840303 DOI: 10.3389/fnint.2013.00085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/08/2013] [Indexed: 12/17/2022] Open
Abstract
When exploring potential treatments for spinal cord injury (SCI), functional recovery is deemed the most relevant outcome measure when it comes to translational considerations. Yet, assessing such recovery and potential treatment effects is challenging and the pitfalls are frequently underestimated. The consequences are that in many cases positive results cannot be reliably replicated, and likely treatments that appear to lack effects have been dismissed prematurely. In this article we review the relationships between lesion location/severity and functional outcomes with specific consideration given to floor and ceiling effects. The roles of compensatory strategies, the challenges of distinguishing them from bona fide recovery, and of comparing function to pre-injury levels given the variability inherent in animal testing are discussed. Ultimately, we offer a series of considerations to enhance the power of functional analysis in animal models of SCI.
Collapse
Affiliation(s)
- Karim Fouad
- Faculty of Rehabilitation Medicine, Centre for Neuroscience, University of Alberta Edmonton, AB, Canada
| | | | | |
Collapse
|
58
|
Renno WM, Al-Khaledi G, Mousa A, Karam SM, Abul H, Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 2013; 77:100-19. [PMID: 24071567 DOI: 10.1016/j.neuropharm.2013.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait.
| | - Ghanim Al-Khaledi
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Alyaa Mousa
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait
| | - Shaima M Karam
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Habib Abul
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Sami Asfar
- Department of Surgery, Kuwait University, Faculty of Medicine, Kuwait
| |
Collapse
|
59
|
Harel NY, Yigitkanli K, Fu Y, Cafferty WBJ, Strittmatter SM. Multimodal exercises simultaneously stimulating cortical and brainstem pathways after unilateral corticospinal lesion. Brain Res 2013; 1538:17-25. [PMID: 24055330 DOI: 10.1016/j.brainres.2013.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 12/16/2022]
Abstract
In the context of injury to the corticospinal tract (CST), brainstem-origin circuits may provide an alternative system of descending motor influence. However, subcortical circuits are largely under subconscious control. To improve volitional control over spared fibers after CST injury, we hypothesized that a combination of physical exercises simultaneously stimulating cortical and brainstem pathways above the injury would strengthen corticobulbar connections through Hebbian-like mechanisms. We sought to test this hypothesis in mice with unilateral CST lesions. Ten days after pyramidotomy, mice were randomized to four training groups: (1) postural exercises designed to stimulate brainstem pathways (BS); (2) distal limb-grip exercises preferentially stimulating CST pathways (CST); (3) simultaneous multimodal exercises (BS+CST); or (4) no training (NT). Behavioral and anatomical outcomes were assessed after 20 training sessions over 4 weeks. Mice in the BS+CST training group showed a trend toward greater improvements in skilled limb performance than mice in the other groups. There were no consistent differences between training groups in gait kinematics. Anatomically, multimodal BS+CST training neither increased corticobulbar fiber density of the lesioned CST rostral to the lesion nor collateral sprouting of the unlesioned CST caudal to the lesion. Further studies should incorporate electrophysiological assessment to gauge changes in synaptic strength of direct and indirect pathways between the cortex and spinal cord in response to multimodal exercises.
Collapse
Affiliation(s)
- Noam Y Harel
- Department of Neurology, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, P.O. Box 208018, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
60
|
Sheets AL, Lai PL, Fisher LC, Basso DM. Quantitative evaluation of 3D mouse behaviors and motor function in the open-field after spinal cord injury using markerless motion tracking. PLoS One 2013; 8:e74536. [PMID: 24058586 PMCID: PMC3776828 DOI: 10.1371/journal.pone.0074536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022] Open
Abstract
Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study’s goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal’s silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal’s front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005) and rear CoV height (r = .65 p<.01) were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative measurement methods, subjectivity and human error is reduced, potentially providing insights leading to breakthroughs in treating human disease.
Collapse
Affiliation(s)
- Alison L. Sheets
- Department of Mechanical and Aeronautical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Po-Lun Lai
- Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Lesley C. Fisher
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - D. Michele Basso
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
61
|
Sun C, Shao J, Su L, Zhao J, Bi J, Yang S, Zhang S, Gao J, Miao J. Cholinergic Neuron-Like Cells Derived from Bone Marrow Stromal Cells Induced by Tricyclodecane-9-yl-Xanthogenate Promote Functional Recovery and Neural Protection after Spinal Cord Injury. Cell Transplant 2013; 22:961-75. [PMID: 23031841 DOI: 10.3727/096368912x657413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rate of neuronal differentiation of bone marrow stromal cells (BMSCs) in vivo is very low; therefore, it is necessary to elevate the number of BMSC-derived neurons to cure neurodegenerative diseases. We previously reported that tricyclodecane-9-yl-xanthogenate (D609), an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), induced BMSCs to differentiate into neuron-like cells in vitro. However, the neuronal type is not clear, and it is still unknown whether these neuron-like cells possess physiological properties of functional neurons and whether they can contribute to the recovery of neuron dysfunction. To answer these questions, we investigated their characteristics by detecting neuronal function-related neurotransmitters and calcium image. The results showed that these cells exhibited functional cholinergic neurons in vitro. Transplantation of these cholinergic neuron-like cells promoted the recovery of spinal cord-injured mice, and they were more effective than BMSCs. The number of cholinergic neurons was increased after injection with BMSC-derived cholinergic neuron-like cells, indicating their high differentiation rate in vivo. Moreover, the proportion of cholinergic neurons in host cells and secretion of acetylcholine were increased, and preservation of neurofilament was also observed in the lesion of mice implanted with BMSC-derived neurons, suggesting the neuronal protection of BMSC-derived neurons. Our findings provide both a simple method to induce the differentiation of BMSCs into cholinergic neuron-like cells and a putative strategy for the therapy of spinal cord injuries.
Collapse
Affiliation(s)
- Chunhui Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | - Jing Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, China
| | - Jianzhong Bi
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Shaonan Yang
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Shangli Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Qilu Hospital, Jinan, China
| |
Collapse
|
62
|
Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J Neurosci 2013; 33:397-410. [PMID: 23303920 DOI: 10.1523/jneurosci.0399-12.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lack of effective therapies for spinal cord injury points to the need for identifying novel targets for therapeutic intervention. Here we report that a small molecule, LM11A-31, developed to block proNGF-p75 interaction and p75-mediated cell death crosses the blood-brain barrier efficiently when delivered orally. Administered starting 4 h postinjury, LM11A-31 promotes functional recovery without causing any toxicity or increased pain in a mouse model of spinal contusion injury. In both weight-bearing open-field tests and nonweight-bearing swim tests, LM11A-31 was effective in improving motor function and coordination. Such functional improvement correlated with a >50% increase in the number of surviving oligodendrocytes and myelinated axons. We also demonstrate that LM11A-31 indeed inhibits proNGF-p75 interaction in vivo, thereby curtailing the JNK3-mediated apoptotic cascade. These results thus highlight p75 as a novel therapeutic target for an orally delivered treatment for spinal cord injury.
Collapse
|
63
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|
64
|
Lowry N, Goderie SK, Lederman P, Charniga C, Gooch MR, Gracey KD, Banerjee A, Punyani S, Silver J, Kane RS, Stern JH, Temple S. The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. Biomaterials 2012; 33:2892-901. [DOI: 10.1016/j.biomaterials.2011.12.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/27/2011] [Indexed: 01/08/2023]
|
65
|
Ferguson AR, Stück ED, Nielson JL. Syndromics: a bioinformatics approach for neurotrauma research. Transl Stroke Res 2011; 2:438-54. [PMID: 22207883 PMCID: PMC3236294 DOI: 10.1007/s12975-011-0121-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/25/2022]
Abstract
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational "syndrome" produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call "syndromics", which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings.
Collapse
Affiliation(s)
- Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Ellen D. Stück
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Jessica L. Nielson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| |
Collapse
|
66
|
Kim JH, Song SK, Burke DA, Magnuson DSK. Comprehensive locomotor outcomes correlate to hyperacute diffusion tensor measures after spinal cord injury in the adult rat. Exp Neurol 2011; 235:188-96. [PMID: 22119625 DOI: 10.1016/j.expneurol.2011.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/10/2011] [Accepted: 11/10/2011] [Indexed: 01/02/2023]
Abstract
In adult rats, locomotor deficits following a contusive thoracic spinal cord injury (SCI) are caused primarily by white matter loss/dysfunction at the epicenter. This loss/dysfunction decreases descending input from the brain and cervical spinal cord, and decreases ascending signals in long propriospinal, spinocerebellar and somatosensory pathways, among many others. Predicting the long-term functional consequences of a contusive injury acutely, without knowledge of the injury severity is difficult due to the temporary flaccid paralysis and loss of reflexes that accompany spinal shock. It is now well known that recovery of high quality hindlimb stepping requires only 12-15% spared white matter at the epicenter, but that forelimb-hindlimb coordination and precision stepping (grid or horizontal ladder) require substantially more trans-contusion communication. In order to translate our understanding of the neural substrates for functional recovery in the rat to the clinical arena, common outcome measures and imaging modalities are required. In the current study we furthered the exploration of one of these approaches, diffusion tensor magnetic resonance imaging (DTI), a technique now used commonly to image the brain in clinical research but rarely used diagnostically or prognostically for spinal cord injury. In the adult rat model of SCI, we found that hyperacute (<3h post-injury) DTI of the lateral and ventral white matter at the injury epicenter was predictive of both electrophysiological and behavioral (locomotor) recovery at 4 weeks post-injury, despite the presence of flaccid paralysis/spinal shock. Regions of white matter with a minimum axial diffusivity of 1.5 μm(2)/ms at 3h were able to conduct action potentials at 4 weeks, and axial diffusivity within the lateral funiculus was highly predictive of locomotor function at 4 weeks. These observations suggest that acute DTI should be useful to provide functional predictions for spared white matter following contusive spinal cord injuries clinically.
Collapse
Affiliation(s)
- Joong H Kim
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
67
|
Caudle KL, Brown EH, Shum-Siu A, Burke DA, Magnuson TSG, Voor MJ, Magnuson DSK. Hindlimb immobilization in a wheelchair alters functional recovery following contusive spinal cord injury in the adult rat. Neurorehabil Neural Repair 2011; 25:729-39. [PMID: 21697451 DOI: 10.1177/1545968311407519] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Locomotor training of rats with thoracic contusion spinal cord injuries can induce task-specific changes in stepping but rarely results in improved overground locomotion, possibly due to a ceiling effect. Thus, the authors hypothesize that incompletely injured rats maximally retrain themselves while moving about in their cages over the first few weeks postinjury. OBJECTIVE To test the hypothesis using hindlimb immobilization after mild thoracic contusion spinal cord injury in adult female rats. A passive stretch protocol was included as an independent treatment. METHODS Wheelchairs were used to hold the hindlimbs stationary in an extended position leaving the forelimbs free. The wheelchairs were used for 15 to 18 hours per day, 5 days per week for 8 weeks, beginning at 4 days postinjury. A 20-minute passive hindlimb stretch therapy was applied to half of the animals. RESULTS Hindlimb locomotor function of the wheelchair group was not different from controls at 1 week postinjury but declined significantly over the next 4 weeks. Passive stretch had no influence on wheelchair animals but limited functional recovery of normally housed animals, preventing them from regaining forelimb-hindlimb coordination. Following 8 weeks of wheelchair immobilization and stretch therapy, only the wheelchair group displayed an improvement in function when returned to normal housing but retained significant deficits in stepping and coordination out to 16 weeks. CONCLUSION Hindlimb immobilization and passive stretch may hinder or conceal the normal course of functional recovery of spinal cord injured rats. These observations have implications for the management of acute clinical spinal cord injuries.
Collapse
|
68
|
Onifer SM, Zhang O, Whitnel-Smith LK, Raza K, O'Dell CR, Lyttle TS, Rabchevsky AG, Kitzman PH, Burke DA. Horizontal ladder task-specific re-training in adult rats with contusive thoracic spinal cord injury. Restor Neurol Neurosci 2011; 29:275-86. [PMID: 21697591 PMCID: PMC3544551 DOI: 10.3233/rnn-2011-598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Using the horizontal ladder task, we examined some issues that need to be resolved before task-specific rehabilitative training can be employed clinically for the frequent contusive spinal cord injury (SCI). We hypothesized that improving recovery in task performance after contusive thoracic SCI requires frequent re-training and initiating the re-training early during spontaneous recovery. METHODS Contusive SCI was produced at the adult female Sprague Dawley rat T10 vertebra. Task re-training was initiated one week later when occasional weight-supported plantar steps were taken overground (n = 8). It consisted of 2 repetitions each day, 5 days each week, for 3 weeks. Task performance and overground locomotion were assessed weekly. Neurotransmission through the SCI ventrolateral funiculus was examined. SCI morphometry was determined. RESULTS Re-training did not improve task performance recovery compared to untrained Controls (n = 7). Untrained overground locomotion and neurotransmission through the SCI did not change. Lesion area at the injury epicenter as a percentage of the total spinal cord area as well as total tissue, lesion, and spared tissue, white matter, or gray matter volumes did not differ. CONCLUSIONS For the horizontal ladder task after contusive thoracic SCI, earlier re-training sessions with more repetitions and critical neural circuitry may be necessary to engender a rehabilitation effect.
Collapse
Affiliation(s)
- Stephen M Onifer
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Smith RR, Brown EH, Shum-Siu A, Whelan A, Burke DA, Benton RL, Magnuson DSK. Swim training initiated acutely after spinal cord injury is ineffective and induces extravasation in and around the epicenter. J Neurotrauma 2010; 26:1017-27. [PMID: 19331515 DOI: 10.1089/neu.2008-0829] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activity-based rehabilitation is a promising strategy for improving functional recovery following spinal cord injury (SCI). While results from both clinical and animal studies have shown that a variety of approaches can be effective, debate still exists regarding the optimal post-injury period to apply rehabilitation. We recently demonstrated that rats with moderately severe thoracic contusive SCI can be re-trained to swim when training is initiated 2 weeks after injury and that swim training had no effect on the recovery of overground locomotion. We concluded that swim training is a task-specific model of post-SCI activity-based rehabilitation. In the present study, we ask if re-training initiated acutely is more or less effective than when initiated at 2 weeks post-injury. Using the Louisville Swim Scale, an 18-point swimming assessment, supplemented by kinematic assessment of hindlimb movement during swimming, we report that acute re-training is less effective than training initiated at 2 weeks. Using the bioluminescent protein luciferase as a blood-borne macromolecular marker, we also show a significant increase in extravasation in and around the site of SCI following only 8 min of swimming at 3 days post-injury. Taken together, these results suggest that acute re-training in a rat model of SCI may compromise rehabilitation efforts via mechanisms that may involve one or more secondary injury cascades, including acute spinal microvascular dysfunction.
Collapse
Affiliation(s)
- Rebecca R Smith
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Task-specificity vs. ceiling effect: step-training in shallow water after spinal cord injury. Exp Neurol 2010; 224:178-87. [PMID: 20302862 DOI: 10.1016/j.expneurol.2010.03.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 02/03/2023]
Abstract
While activity-based rehabilitation is one of the most promising therapeutic approaches for spinal cord injury, the necessary components for optimal locomotor retraining have not yet been determined. Currently, a number of different activity-based approaches are being investigated including body weight-supported treadmill training (with and without manual assistance), robotically-assisted treadmill training, bicycling and swimming, among others. We recently showed, in the adult rat, that intensive rehabilitation based on swimming brought about significant improvements in hindlimb performance during swimming but did not alter the normal course of recovery of over-ground walking (Smith et al., 2006a,b, 2009). However, swimming lacks the phasic limb-loading and plantar cutaneous feedback thought to be important for weight-supported step training. So, we are investigating an innovative approach based on walking in shallow water where buoyancy provides some body weight support and balance while still allowing for limb-loading and appropriate cutaneous afferent feedback during retraining. Thus, the aim of this study is to determine if spinal cord injured animals show improved overground locomotion following intensive body weight-supported locomotor training in shallow water. The results show that training in shallow water successfully improved stepping in shallow water, but was not able to bring about significant improvements in overground locomotion despite the fact that the shallow water provides sufficient body weight support to allow acutely injured rats to generate frequent plantar stepping. These observations support previous suggestions that incompletely injured animals retrain themselves while moving about in their cages and that daily training regimes are not able to improve upon this already substantial functional improvement due to a ceiling effect, rather than task-specificity, per se. These results also support the concept that moderately-severe thoracic contusion injuries decrease the capacity for body weight support, but do not decrease the capacity for pattern generation. In contrast, animals with severe contusion injuries could not support their body weight nor could they generate a locomotor pattern when provided with body weight support via buoyancy.
Collapse
|
71
|
A combined scoring method to assess behavioral recovery after mouse spinal cord injury. Neurosci Res 2010; 67:117-25. [PMID: 20188770 DOI: 10.1016/j.neures.2010.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/25/2010] [Accepted: 02/18/2010] [Indexed: 01/01/2023]
Abstract
Although the rat has been the predominant rodent used to investigate the pathophysiology and treatment of experimental spinal cord injury (SCI), the increasing availability of transgenic animals has led to greater use of mouse models. However, behavioral assessment after SCI in mice has been less extensively investigated than in rats and few studies have critically examined the correlation between behavioral tests and injury severity or tissue damage. The present study characterized hindlimb functional performance in C57Bl/6 mice after contusion SCI at T9 using the weight drop method. A number of behavioral tests were examined with regard to variability, inter-rater reliability, and correlation to injury severity and white matter sparing. Mice were subjected to sham, mild-moderate or moderate-severe SCI and evaluated at day 1 and weekly up to 42 days using the Basso mouse scale (BMS), ladder climb, grid walk, inclined plane, plantar test and tail flick tests. The ladder climb and grid walk tests proved sub-optimal for use in mice, but modifications enhanced their predictive value with regard to injury severity. The inclined plane, plantar test and tail flick test showed far too much variability to have meaningful predictive value. The BMS score proved reliable, as previously reported, but a combined score (BLG) using BMS, Ladder climb (modified), and Grip walk (modified grid walk) provided better separation across injury levels and less variability than the individual tests. These data provide support for use of a combined scoring method to follow motor recovery in mice after contusion SCI.
Collapse
|
72
|
Smith RR, Brown EH, Shum-Siu A, Whelan A, Burke DA, Benton RL, Magnuson DS. Swim Training Initiated Acutely after Spinal Cord Injury Is Ineffective and Induces Extravasation In and Around the Epicenter. J Neurotrauma 2009. [DOI: 10.1089/neu.2008.0829] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Rebecca R. Smith
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Edward H. Brown
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Alice Shum-Siu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Ashley Whelan
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Darlene A. Burke
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
| | - Richard L. Benton
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - David S.K. Magnuson
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
73
|
Magnuson DSK, Smith RR, Brown EH, Enzmann G, Angeli C, Quesada PM, Burke D. Swimming as a model of task-specific locomotor retraining after spinal cord injury in the rat. Neurorehabil Neural Repair 2009; 23:535-45. [PMID: 19270266 DOI: 10.1177/1545968308331147] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.
Collapse
Affiliation(s)
- David S K Magnuson
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
74
|
Zhang YP, Burke DA, Shields LBE, Chekmenev SY, Dincman T, Zhang Y, Zheng Y, Smith RR, Benton RL, DeVries WH, Hu X, Magnuson DSK, Whittemore SR, Shields CB. Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences. J Neurotrauma 2009; 25:1227-40. [PMID: 18986224 DOI: 10.1089/neu.2007.0388] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Contusive spinal cord injury (SCI) is the most common type of spinal injury seen clinically. Several rat contusion SCI models have been described, and all have strengths and weaknesses with respect to sensitivity, reproducibility, and clinical relevance. We developed the Louisville Injury System Apparatus (LISA), which contains a novel spine-stabilizing device that enables precise and stable spine fixation, and is based on tissue displacement to determine the severity of injury. Injuries graded from mild to moderately severe were produced using 0.2-, 0.4-, 0.6-, 0.8-, 1.0-, and 1.2-mm spinal cord displacement in rats. Basso, Beattie, and Bresnahan (BBB) and Louisville Swim Score (LSS) could not significantly distinguish between 0.2-mm lesion severities, except those of 0.6- and 0.8-mm BBB scores, but could between 0.4-mm injury differences or if the data were grouped (0.2-0.4, 0.6-0.8, and 1.0-1.2). Transcranial magnetic motor evoked potential (tcMMEP) response amplitudes were decreased 10-fold at 0.2-mm displacement, barely detected at 0.4-mm displacement, and absent with greater displacement injuries. In contrast, somatosensory evoked potentials (SSEPs) were recorded at 0.2- and 0.4-mm displacements with normal amplitudes and latencies but were detected at lower amplitudes at 0.6-mm displacement and absent with more severe injuries. Analyzing combined BBB, tcMMEP, and SSEP results enabled statistically significant discrimination between 0.2-, 0.4-, 0.6-, and 0.8-mm displacement injuries but not the more severe injuries. Present data document that the LISA produces reliable and reproducible SCI whose parameters of injury can be adjusted to more accurately reflect clinical SCI. Moreover, multiple outcome measures are necessary to accurately detect small differences in functional deficits and/or recovery. This is of crucial importance when trying to detect functional improvement after therapeutic intervention to treat SCI.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Šedý J, Urdzíková L, Jendelová P, Syková E. Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 2008; 32:550-80. [DOI: 10.1016/j.neubiorev.2007.10.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 08/09/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
|