51
|
Sun HB, Schaniel C, Leong DJ, Wang JHC. Biology and mechano-response of tendon cells: Progress overview and perspectives. J Orthop Res 2015; 33:785-92. [PMID: 25728946 PMCID: PMC4422159 DOI: 10.1002/jor.22885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/24/2015] [Indexed: 02/04/2023]
Abstract
In this review, we summarize the group discussions on Cell Biology & Mechanics from the 2014 ORS/ISMMS New Frontiers in Tendon Research Conference. The major discussion topics included: (1) the biology of tendon stem/progenitor cells (TSPCs) and the potential of stem cell-based tendon therapy using TSPCs and other types of stem cells, namely, embryonic and/or induced pluripotent stem cells (iPSCs), (2) the biological concept and potential impact of cellular senescence on tendon aging, tendon injury repair and the development of degenerative disease, and (3) the effects of tendon cells' mechano-response on tendon cell fate and metabolism. For each topic, a brief overview is presented which summarizes the major points discussed by the group participants. The focus of the discussions ranged from current research progress, challenges and opportunities, to future directions on these topics. In the preparation of this manuscript, authors consulted relevant references as a part of their efforts to present an accurate view on the topics discussed.
Collapse
Affiliation(s)
- Hui B. Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY
,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY
,Corresponding Author: 1300 Morris Park Avenue, Golding 101 Bronx, NY 10461 USA Tel: (718) 430-4291 Fax: (718) 430-3259
| | - Christoph Schaniel
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY
,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel J. Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY
,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY
| | - James H-C. Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
52
|
p38 MAPK signaling in postnatal tendon growth and remodeling. PLoS One 2015; 10:e0120044. [PMID: 25768932 PMCID: PMC4359143 DOI: 10.1371/journal.pone.0120044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA) increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo.
Collapse
|
53
|
Xu W, Sun Y, Zhang J, Xu K, Pan L, He L, Song Y, Njunge L, Xu Z, Chiang MYM, Sung KLP, Chuong CM, Yang L. Perivascular-derived stem cells with neural crest characteristics are involved in tendon repair. Stem Cells Dev 2015; 24:857-68. [PMID: 25381682 DOI: 10.1089/scd.2014.0036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tendons and ligaments exhibit limited regenerative capacity following injury, with damaged tissue being replaced by a fibrotic scar. The physiological role of scar tissue is complex and has been studied extensively. In this study, we demonstrate that rat tendons contain a unique subpopulation of cells exhibiting stem cell characteristics, including clonogenicity, multipotency, and self-renewal capacity. Additionally, these putative stem cells expressed markers consistent with neural crest stem cells (NCSCs). Using immunofluorescent labeling, we identified P75(+) (p75 neurotrophin receptor) cells in the perivascular regions of the native rat tendon. Importantly, P75(+) cells were frequently localized near vascular cells and increased in number within the peritenon after injury. Ultrastructural analysis showed that perivascular cells detached from vessels in response to injury, migrated into the interstitial space, and deposited extracellular matrix. Characterization of P75(+) cells isolated from the scar tissue indicated that this population also expressed the NCSC markers, Vimentin, Sox10, and Snail. In conclusion, our results suggest that neural crest-like stem cells of perivascular origin reside within the rat peritenon and give rise to scar-forming stromal cells following tendon injury.
Collapse
Affiliation(s)
- Wei Xu
- 1 Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University , Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Exercise and Regulation of Bone and Collagen Tissue Biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:259-91. [DOI: 10.1016/bs.pmbts.2015.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
55
|
Gumucio JP, Phan AC, Ruehlmann DG, Noah AC, Mendias CL. Synergist ablation induces rapid tendon growth through the synthesis of a neotendon matrix. J Appl Physiol (1985) 2014; 117:1287-91. [PMID: 25277742 DOI: 10.1152/japplphysiol.00720.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanical loading can increase tendon cross-sectional area (CSA), but the mechanisms by which this occurs are largely unknown. To gain a greater understanding of the cellular mechanisms of adult tendon growth in response to mechanical loading, we used a synergist ablation model whereby a tenectomy of the Achilles tendon was performed to induce growth of the synergist plantaris tendon. We hypothesized that after synergist ablation progenitor cells in the epitenon would proliferate and increase the size of the existing tendon matrix. Adult male mice were subjected to a bilateral Achilles tenectomy, and plantaris tendons were isolated from mice at 0, 2, 7, 14, and 28 days after surgery. Tendons were sectioned stained with either fast green and hematoxylin, prepared for fluorescent microscopy, or prepared for gene expression of scleraxis and type I collagen. After overload, there was a dramatic increase in total CSA of tendons, whereas the size of the original tendon matrix was not changed. Growth primarily occurred through the formation of a neotendon matrix between the original tendon and the epitenon, and contained cells that were proliferative and scleraxis positive. Additionally, an initial expansion of fibroblast cells occurred before the synthesis of new extracellular matrix. Fibroblasts in the original tendon did not re-enter the cell cycle. The results from this study provide new insight into the mechanisms of tendon growth, indicate tendon consists mostly of postmitotic cells, and that growth of tendon primarily occurs from the most superficial layers outward.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan and Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anthony C Phan
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan and
| | - David G Ruehlmann
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan and
| | - Andrew C Noah
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan and
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan and Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
56
|
Mienaltowski MJ, Adams SM, Birk DE. Tendon proper- and peritenon-derived progenitor cells have unique tenogenic properties. Stem Cell Res Ther 2014; 5:86. [PMID: 25005797 PMCID: PMC4230637 DOI: 10.1186/scrt475] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/30/2014] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Multipotent progenitor populations exist within the tendon proper and peritenon of the Achilles tendon. Progenitor populations derived from the tendon proper and peritenon are enriched with distinct cell types that are distinguished by expression of markers of tendon and vascular or pericyte origins, respectively. The objective of this study was to discern the unique tenogenic properties of tendon proper- and peritenon-derived progenitors within an in vitro model. We hypothesized that progenitors from each region contribute differently to tendon formation; thus, when incorporated into a regenerative model, progenitors from each region will respond uniquely. Moreover, we hypothesized that cell populations like progenitors were capable of stimulating tenogenic differentiation, so we generated conditioned media from these cell types to analyze their stimulatory potentials. METHODS Isolated progenitors were seeded within fibrinogen/thrombin gel-based constructs with or without supplementation with recombinant growth/differentiation factor-5 (GDF5). Early and late in culture, gene expression of differentiation markers and matrix assembly genes was analyzed. Tendon construct ultrastructure was also compared after 45 days. Moreover, conditioned media from tendon proper-derived progenitors, peritenon-derived progenitors, or tenocytes was applied to each of the three cell types to determine paracrine stimulatory effects of the factors secreted from each of the respective cell types. RESULTS The cell orientation, extracellular domain and fibril organization of constructs were comparable to embryonic tendon. The tendon proper-derived progenitors produced a more tendon-like construct than the peritenon-derived progenitors. Seeded tendon proper-derived progenitors expressed greater levels of tenogenic markers and matrix assembly genes, relative to peritenon-derived progenitors. However, GDF5 supplementation improved expression of matrix assembly genes in peritenon progenitors and structurally led to increased mean fibril diameters. It also was found that peritenon-derived progenitors secrete factor(s) stimulatory to tenocytes and tendon proper progenitors. CONCLUSIONS Data demonstrate that, relative to peritenon-derived progenitors, tendon proper progenitors have greater potential for forming functional tendon-like tissue. Furthermore, factors secreted by peritenon-derived progenitors suggest a trophic role for this cell type as well. Thus, these findings highlight the synergistic potential of including these progenitor populations in restorative tendon engineering strategies.
Collapse
|
57
|
Lui PPY, Kong SK, Lau PM, Wong YM, Lee YW, Tan C, Wong OT. Allogeneic tendon-derived stem cells promote tendon healing and suppress immunoreactions in hosts: in vivo model. Tissue Eng Part A 2014; 20:2998-3009. [PMID: 24798058 DOI: 10.1089/ten.tea.2013.0713] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The medium- to long-term healing effect and infiltration of inflammatory cells, after transplantation of allogeneic tendon-derived stem cell (TDSC) to the rat patellar tendon window wound, were examined. Allogeneic patellar TDSCs derived from a green fluorescent protein rat were used. The outcome of tendon healing and the infiltration of inflammatory cells were examined by histology and immunohistochemistry up to week 16 postinjury. The fate of the transplanted cells was examined by ex vivo fluorescent imaging and immunohistochemistry. Our results showed that the transplantation of allogeneic TDSCs promoted tendon healing with no increased risk of ectopic chondro-ossification up to week 16. A low infiltration of T cells, ED1 macrophages, ED2 macrophages, and mast cells in the window wound was obtained. The transplanted TDSCs were found in the window wound at week 1 and 2, but were absent after week 4 postinjury. In conclusion, allogeneic TDSCs promoted tendon repair in the medium to long term and exhibited weak immunoreactions and anti-inflammatory effects in the hosts after transplantation in a rat model. There was no increased risk of ectopic chondro-ossification after TDSC transplantation. The decrease in the number of transplanted cells with time suggested that allogeneic TDSCs did not promote tendon repair through direct differentiation.
Collapse
|
58
|
Tan C, Lui PPY, Lee YW, Wong YM. Scx-transduced tendon-derived stem cells (tdscs) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS One 2014; 9:e97453. [PMID: 24831949 PMCID: PMC4022525 DOI: 10.1371/journal.pone.0097453] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
We hypothesized that the transplantation of Scx-transduced tendon-derived stem cells (TDSCs) promoted better tendon repair compared to the transplantation of mock-transduced cells. This study thus aimed to investigate the effect of Scx transduction on the expression of lineage markers in TDSCs and the effect of the resulting cell line in the promotion of tendon repair. Rat non-GFP or GFP-TDSCs were transduced with Scx or empty lentiviral vector (Mock) and selected by blasticidin. The mRNA expressions of Scx and different lineage markers were examined by qRT-PCR. The effect of the transplantation of GFP-TDSC-Scx on tendon repair was then tested in a rat unilateral patellar tendon window injury model. The transplantation of GFP-TDSC-Mock and scaffold-only served as controls. At week 2, 4 and 8 post-transplantation, the repaired patellar tendon was harvested for ex vivo fluorescent imaging, vivaCT imaging, histology, immunohistochemistry and biomechanical test. GFP-TDSC-Scx consistently showed higher expressions of most of tendon- and cartilage- related markers compared to the GFP-TDSC-Mock. However, the effect of Scx transduction on the expressions of bone-related markers was inconclusive. The transplanted GFP-TDSCs could be detected in the window wound at week 2 but not at week 4. Ectopic mineralization was detected in some samples at week 8 but there was no difference among different groups. The GFP-TDSC-Scx group only statistically significantly improved tendon repair histologically and biomechanically compared to the Scaffold-only group and the GFP-TDSC-Mock group at the early stage of tendon repair. There was significant higher expression of collagen type I in the window wound in the GFP-TDSC-Scx group compared to the other two groups at week 2. The transplantation of GFP-TDSC-Scx promoted healing at the early stage of tendon repair in a rat patellar tendon window injury model.
Collapse
Affiliation(s)
- Chunlai Tan
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yin Mei Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
59
|
Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One 2014; 9:e96113. [PMID: 24759953 PMCID: PMC3997569 DOI: 10.1371/journal.pone.0096113] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023] Open
Abstract
Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth and natural healing is poorly characterized. Therefore, we utilized 1) an inducible Cre driven by alpha smooth muscle actin (SMACreERT2), that identifies mesenchymal progenitors, 2) a constitutively active Cre driven by growth and differentiation factor 5 (GDF5Cre), a critical regulator of joint condensation, in combination with 3) an Ai9 Cre reporter to permanently label SMA9 and GDF5-9 populations and their progeny. In growing mice, SMA9+ cells were found in peritendinous structures and scleraxis-positive (ScxGFP+) cells within the tendon midsubstance and myotendinous junction. The progenitors within the tendon midsubstance were transiently labeled as they displayed a 4-fold expansion from day 2 to day 21 but reduced to baseline levels by day 70. SMA9+ cells were not found within tendon entheses or ligaments in the knee, suggesting a different origin. In contrast to the SMA9 population, GDF5-9+ cells extended from the bone through the enthesis and into a portion of the tendon midsubstance. GDF5-9+ cells were also found throughout the length of the ligaments, indicating a significant variation in the progenitors that contribute to tendons and ligaments. Following tendon injury, SMA9+ paratenon cells were the main contributors to the healing response. SMA9+ cells extended over the defect space at 1 week and differentiated into ScxGFP+ cells at 2 weeks, which coincided with increased collagen signal in the paratenon bridge. Thus, SMA9-labeled cells represent a unique progenitor source that contributes to the tendon midsubstance, paratenon, and myotendinous junction during growth and natural healing, while GDF5 progenitors contribute to tendon enthesis and ligament development. Understanding the mechanisms that regulate the expansion and differentiation of these progenitors may prove crucial to improving future repair strategies.
Collapse
Affiliation(s)
- Nathaniel A. Dyment
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yusuke Hagiwara
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Brya G. Matthews
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yingcui Li
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Biology, College of Arts and Sciences, University of Hartford, Hartford, Connecticut, United States of America
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - David W. Rowe
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|