51
|
Jourdain I, Sontam D, Johnson C, Dillies C, Hyams JS. Dynamin-dependent biogenesis, cell cycle regulation and mitochondrial association of peroxisomes in fission yeast. Traffic 2007; 9:353-65. [PMID: 18088324 DOI: 10.1111/j.1600-0854.2007.00685.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peroxisomes were visualized for the first time in living fission yeast cells. In small, newly divided cells, the number of peroxisomes was low but increased in parallel with the increase in cell length/volume that accompanies cell cycle progression. In cells grown in oleic acid, both the size and the number of peroxisomes increased. The peroxisomal inventory of cells lacking the dynamin-related proteins Dnm1 or Vps1 was similar to that in wild type. By contrast, cells of the double mutant dnm1Delta vps1Delta contained either no peroxisomes at all or a small number of morphologically aberrant organelles. Peroxisomes exhibited either local Brownian movement or longer-range linear displacements, which continued in the absence of either microtubules or actin filaments. On the contrary, directed peroxisome motility appeared to occur in association with mitochondria and may be an indirect function of intrinsic mitochondrial dynamics. We conclude that peroxisomes are present in fission yeast and that Dnm1 and Vps1 act redundantly in peroxisome biogenesis, which is under cell cycle control. Peroxisome movement is independent of the cytoskeleton but is coupled to mitochondrial dynamics.
Collapse
Affiliation(s)
- Isabelle Jourdain
- Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
52
|
Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc Natl Acad Sci U S A 2007; 104:18526-30. [PMID: 17998537 DOI: 10.1073/pnas.0706441104] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial fission controls mitochondrial shape and physiology, including mitochondrial remodeling in apoptosis. During assembly of the yeast mitochondrial fission complex, the outer membrane protein Fis1 recruits the dynamin-related GTPase Dnm1 to mitochondria. Fis1 contains a tetratricopeptide repeat (TPR) domain and interacts with Dnm1 via the molecular adaptors Mdv1 and Caf4. By using crystallographic analysis of adaptor-Fis1 complexes, we show that these adaptors use two helices to bind to both the concave and convex surfaces of the Fis1 TPR domain. Fis1 therefore contains two interaction interfaces, a binding mode that, to our knowledge, has not been observed previously for TPR domains. Genetic and biochemical studies indicate that both binding interfaces are important for binding of Mdv1 and Caf4 to Fis1 and for mitochondrial fission activity in vivo. Our results reveal how Fis1 recruits the mitochondrial fission complex and will facilitate efforts to manipulate mitochondrial fission.
Collapse
|
53
|
Wells RC, Picton LK, Williams SCP, Tan FJ, Hill RB. Direct binding of the dynamin-like GTPase, Dnm1, to mitochondrial dynamics protein Fis1 is negatively regulated by the Fis1 N-terminal arm. J Biol Chem 2007; 282:33769-33775. [PMID: 17884824 PMCID: PMC3046406 DOI: 10.1074/jbc.m700807200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recruitment of a dynamin-like GTPase (Drp1/Dlp1/Dnm1) to membranes requires the mitochondrial dynamics protein Fis1. Mdv1 has been proposed to act as an adaptor between Fis1 and Dnm1 in Saccharomyces cerevisiae. We show that S. cerevisiae Fis1 binds directly to Dnm1 and to Mdv1. Two Fis1 regions have been previously implicated in Mdv1 recruitment: an N-terminal "arm" and a concave surface formed by evolutionarily conserved residues in the tetratricopeptide repeat domain. Perturbing either Fis1 region does not affect Mdv1 binding, but both regions influence Dnm1 binding. Fis1 lacking its N-terminal arm binds tightly to Dnm1, and binding is abolished by mutations to the Fis1 concave surface. The Fis1-Dnm1 interaction decreases more than 100-fold in the presence of the Fis1 arm, suggesting that the arm acts in an autoinhibitory manner to restrict access to the Dnm1 binding site on Fis1. Our data indicate that the concave surface of the Fis1 tetratricopeptide repeat-like domain is evolutionarily conserved to bind the dynamin-like GTPase Dnm1 and not Mdv1 as previously predicted.
Collapse
Affiliation(s)
- Robert C Wells
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, 21218
| | - Lora K Picton
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, 21218
| | - Sarah C P Williams
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, 21218
| | - Frederick J Tan
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, 21218
| | - R Blake Hill
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, 21218; Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218.
| |
Collapse
|
54
|
Abstract
Mitochondria are derived from eubacteria; however, in most eukaryotes, novel mechanisms for the propagation of this organelle and its genome have evolved. This review focuses on what is currently known about the novel molecular machines that divide and fuse mitochondria.
Collapse
Affiliation(s)
- Suzanne Hoppins
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
55
|
Affiliation(s)
- Johannes M Herrmann
- Institut für Zellbiologie, Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
56
|
Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 2007; 581:2935-42. [PMID: 17544409 DOI: 10.1016/j.febslet.2007.05.048] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 11/24/2022]
Abstract
Cell death in yeast (Saccharomyces cerevisiae) involves several apoptotic processes. Here, we report the first evidence of the following processes, which are also characteristic of apoptosis, in ethanol-induced cell death in yeast: chromatin condensation and fragmentation, DNA cleavage, and a requirement for de novo protein synthesis. Mitochondrial fission protein, Fis1, appears to mediate ethanol-induced apoptosis and ethanol-induced mitochondrial fragmentation. However, mitochondrial fragmentation in response to elevated ethanol levels was not correlated with cell death. Further, in the presence of ethanol, generation of reactive oxygen species was elevated in mutant fis1Delta cells. Our characterization of ethanol-induced cell death in yeast as being Fis1-mediated apoptosis is likely to pave the way to overcoming limitations in large-scale fermentation processes, such as those employed in the production of alcoholic beverages and ethanol-based biofuels.
Collapse
|
57
|
Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. ACTA ACUST UNITED AC 2007; 177:439-50. [PMID: 17470634 PMCID: PMC2064824 DOI: 10.1083/jcb.200610042] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dynamin-related protein 1 (DRP1) plays an important role in mitochondrial fission at steady state and during apoptosis. Using fluorescence recovery after photobleaching, we demonstrate that in healthy cells, yellow fluorescent protein (YFP)–DRP1 recycles between the cytoplasm and mitochondria with a half-time of 50 s. Strikingly, during apoptotic cell death, YFP-DRP1 undergoes a transition from rapid recycling to stable membrane association. The rapid cycling phase that characterizes the early stages of apoptosis is independent of Bax/Bak. However, after Bax recruitment to the mitochondrial membranes but before the loss of mitochondrial membrane potential, YFP-DRP1 becomes locked on the membrane, resulting in undetectable fluorescence recovery. This second phase in DRP1 cycling is dependent on the presence of Bax/Bak but independent of hFis1 and mitochondrial fragmentation. Coincident with Bax activation, we detect a Bax/Bak-dependent stimulation of small ubiquitin-like modifier-1 conjugation to DRP1, a modification that correlates with the stable association of DRP1 with mitochondrial membranes. Altogether, these data demonstrate that the apoptotic machinery regulates the biochemical properties of DRP1 during cell death.
Collapse
Affiliation(s)
- Sylwia Wasiak
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
58
|
Cerveny KL, Studer SL, Jensen RE, Sesaki H. Yeast mitochondrial division and distribution require the cortical num1 protein. Dev Cell 2007; 12:363-75. [PMID: 17336903 DOI: 10.1016/j.devcel.2007.01.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 11/10/2006] [Accepted: 01/19/2007] [Indexed: 01/14/2023]
Abstract
Yeast mitochondrial division requires the dynamin-related Dnm1 protein. By isolating high-copy suppressors of a dominant-negative Dnm1p mutant, we uncovered an unexpected role in mitochondrial division and inheritance for Num1p, a protein previously shown to facilitate nuclear migration. num1 mutants contain an interconnected network of mitochondrial tubules, remarkably similar to cells lacking Dnm1p, and time-lapse microscopy confirms that mitochondrial fission is greatly reduced in num1Delta cells. We also find that Num1p assembles into punctate structures, which often colocalize with mitochondrial-bound Dnm1p particles. Suggesting a role for both Num1p and Dnm1p in mitochondrial inheritance, we find that num1 dnm1 double mutants accumulate mitochondria in daughter buds and that mother cells are frequently devoid of all mitochondria. Thus, our studies have revealed an additional role for Dnm1p in mitochondrial transmission through its interaction with Num1p, thereby providing a link between mitochondrial division and inheritance.
Collapse
Affiliation(s)
- Kara L Cerveny
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
59
|
Paoletti M, Saupe SJ, Clavé C. Genesis of a fungal non-self recognition repertoire. PLoS One 2007; 2:e283. [PMID: 17356694 PMCID: PMC1805685 DOI: 10.1371/journal.pone.0000283] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 02/10/2007] [Indexed: 11/19/2022] Open
Abstract
Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown. Fungi are able to form heterokaryons by fusion of somatic cells, and somatic non self-recognition is controlled by heterokaryon incompatibility loci (het loci). Herein, we have analyzed the evolutionary features of the het-d and het-e fungal allorecognition genes. In these het genes, allorecognition specificity is determined by a polymorphic WD-repeat domain. We found that het-d and het-e belong to a large gene family with 10 members that all share the WD-repeat domain and show that repeats of all members of the family undergo concerted evolution. It follows that repeat units are constantly exchanged both within and between members of the gene family. As a consequence, high mutation supply in the repeat domain is ensured due to the high total copy number of repeats. We then show that in each repeat four residues located at the protein/protein interaction surface of the WD-repeat domain are under positive diversifying selection. Diversification of het-d and het-e is thus ensured by high mutation supply, followed by reshuffling of the repeats and positive selection for favourable variants. We also propose that RIP, a fungal specific hypermutation process acting specifically on repeated sequences might further enhance mutation supply. The combination of these evolutionary mechanisms constitutes an original process for generating extensive polymorphism at loci that require rapid diversification.
Collapse
Affiliation(s)
- Mathieu Paoletti
- Laboratoire de Génétique Moléculaire des Champignons, UMR-5095 Centre National de la Recherche Scientifique (CNRS) et Université Bordeaux 2, Institut de Biochimie et Génétique Cellulaires (IBGC), Bordeaux, France.
| | | | | |
Collapse
|
60
|
Merz S, Hammermeister M, Altmann K, Dürr M, Westermann B. Molecular machinery of mitochondrial dynamics in yeast. Biol Chem 2007; 388:917-26. [PMID: 17696775 DOI: 10.1515/bc.2007.110] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondria are amazingly dynamic organelles. They continuously move along cytoskeletal tracks and frequently fuse and divide. These processes are important for maintenance of mitochondrial functions, for inheritance of the organelles upon cell division, for cellular differentiation and for apoptosis. As the machinery of mitochondrial behavior has been highly conserved during evolution, it can be studied in simple model organisms, such as yeast. During the past decade, several key components of mitochondrial dynamics have been identified and functionally characterized in Saccharomyces cerevisiae. These include the mitochondrial fusion and fission machineries and proteins required for maintenance of tubular shape and mitochondrial motility. Taken together, these findings reveal a comprehensive picture that shows the cellular processes and molecular components required for mitochondrial inheritance and morphogenesis in a simple eukaryotic cell.
Collapse
Affiliation(s)
- Sandra Merz
- Institut für Zellbiologie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
61
|
Abstract
Eukaryotic cells maintain the overall shape of their mitochondria by balancing the opposing processes of mitochondrial fusion and fission. Unbalanced fission leads to mitochondrial fragmentation, and unbalanced fusion leads to mitochondrial elongation. Moreover, these processes control not only the shape but also the function of mitochondria. Mitochondrial dynamics allows mitochondria to interact with each other; without such dynamics, the mitochondrial population consists of autonomous organelles that have impaired function. Key components of the mitochondrial fusion and fission machinery have been identified, allowing initial dissection of their mechanisms of action. These components play important roles in mitochondrial function and development as well as programmed cell death. Disruption of the fusion machinery leads to neurodegenerative disease.
Collapse
Affiliation(s)
- David C Chan
- Division of Biology, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
62
|
Miyagishima SY, Froehlich JE, Osteryoung KW. PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site. THE PLANT CELL 2006; 18:2517-30. [PMID: 16998069 PMCID: PMC1626610 DOI: 10.1105/tpc.106.045484] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During plastid division, the dynamin-related protein ACCUMULATION AND REPLICATION OF CHLOROPLASTS5 (ARC5) is recruited from the cytosol to the surface of the outer chloroplast envelope membrane. In Arabidopsis thaliana arc5 mutants, chloroplasts arrest during division site constriction. Analysis of mutants similar to arc5 along with map-based cloning identified PLASTID DIVISION1 (PDV1), an integral outer envelope membrane protein, and its homolog PDV2 as components of the plastid division machinery. Similar to ARC5, PDV1 localized to a discontinuous ring at the division site in wild-type plants. The midplastid PDV1 ring formed in arc5 mutants and the ARC5 ring formed in pdv1 and pdv2 mutants, but not in pdv1 pdv2. Stromal FtsZ ring assembly occurred in pdv1, pdv2, and pdv1 pdv2, as it does in arc5. Topological analysis showed that the large N-terminal region of PDV1 upstream of the transmembrane helix bearing a putative coiled-coil domain is exposed to the cytosol. Mutation of the conserved PDV1 C-terminal Gly residue did not block PDV1 insertion into the outer envelope membrane but did abolish its localization to the division site. Our results indicate that plastid division involves the stepwise localization of FtsZ, PDV1, and ARC5 at the division site and that PDV1 and PDV2 together mediate the recruitment of ARC5 to the midplastid constriction at a late stage of division.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
63
|
Abstract
Mitochondria are dynamic organelles, essential for cell life and death. The morphology of this organelle is determined by fusion and fission, controlled by a growing set of "mitochondria-shaping" proteins, which influence crucial signalling cascades, including apoptosis.
Collapse
Affiliation(s)
- Kai S Dimmer
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, I-35129 Padova, Italy
| | | |
Collapse
|
64
|
Cheng WC, Berman SB, Ivanovska I, Jonas EA, Lee SJ, Chen Y, Kaczmarek LK, Pineda F, Hardwick JM. Mitochondrial factors with dual roles in death and survival. Oncogene 2006; 25:4697-705. [PMID: 16892083 DOI: 10.1038/sj.onc.1209596] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At least in mammals, we have some understanding of how caspases facilitate mitochondria-mediated cell death, but the biochemical mechanisms by which other factors promote or inhibit programmed cell death are not understood. Moreover, most of these factors are only studied after treating cells with a death stimulus. A growing body of new evidence suggests that cell death regulators also have 'day jobs' in healthy cells. Even caspases, mitochondrial fission proteins and pro-death Bcl-2 family proteins appear to have normal cellular functions that promote cell survival. Here, we review some of the supporting evidence and stretch beyond the evidence to seek an understanding of the remaining questions.
Collapse
Affiliation(s)
- W-C Cheng
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Schauss AC, Bewersdorf J, Jakobs S. Fis1p and Caf4p, but not Mdv1p, determine the polar localization of Dnm1p clusters on the mitochondrial surface. J Cell Sci 2006; 119:3098-106. [PMID: 16835275 DOI: 10.1242/jcs.03026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mitochondrial division machinery consists of the large dynamin-related protein Dnm1p (Drp1/Dlp1 in humans), and Fis1p, Mdv1p and Caf4p. Proper assembly of Dnm1p complexes on the mitochondrial surface is crucial for balanced fission and fusion events. Using quantitative confocal microscopy, we show that Caf4p is important for the recruitment of Dnm1p to the mitochondria. The mitochondrial Dnm1p assemblies can be divided into at least two morphologically distinguishable fractions. A small subset of these assemblies appear to be present as Dnm1p-spirals (or rings) that encircle tubule constrictions, with seldom more than seven turns. A larger fraction of the Dnm1p assemblies is primarily present at one side of the mitochondrial tubules. We show that a majority of these mitochondria-associated Dnm1p clusters point towards the cell cortex. This polarized orientation is abolished in fis1Delta and caf4Delta yeast cells, but is maintained in mdv1Delta cells and after disruption of the actin cytoskeleton. This study suggests that Caf4p plays a key role in determining the polarized localization of those Dnm1p clusters that are not immediately involved in the mitochondrial fission process.
Collapse
Affiliation(s)
- Astrid C Schauss
- Max-Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
66
|
Bhar D, Karren MA, Babst M, Shaw JM. Dimeric Dnm1-G385D Interacts with Mdv1 on Mitochondria and Can Be Stimulated to Assemble into Fission Complexes Containing Mdv1 and Fis1. J Biol Chem 2006; 281:17312-17320. [PMID: 16601120 DOI: 10.1074/jbc.m513530200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interactions between yeast Dnm1p, Mdv1p, and Fis1p are required to form fission complexes that catalyze division of the mitochondrial compartment. During the formation of mitochondrial fission complexes, the Dnm1p GTPase self-assembles into large multimeric complexes on the outer mitochondrial membrane that are visualized as punctate structures by fluorescent labeling. Although it is clear that Fis1p.Mdv1p complexes on mitochondria are required for the initial recruitment of Dnm1p, it is not clear whether Dnm1p puncta assemble before or after this recruitment step. Here we show that the minimum oligomeric form of cytoplasmic Dnm1p is a dimer. The middle domain mutant protein Dnm1G385Dp forms dimers in vivo but fails to assemble into punctate structures. However, this dimeric mutant stably interacts with Mdv1p on the outer mitochondrial membrane, demonstrating that assembly of stable Dnm1p multimers is not required for Dnm1p-Mdv1p association or for mitochondrial recruitment of Dnm1p. Dnm1G385Dp is reported to be a terminal dimer in vitro. We describe conditions that allow assembly of Dnm1G385Dp into functional fission complexes on mitochondria in vivo. Using these conditions, we demonstrate that multimerization of Dnm1p is required to promote reorganization of Mdv1p from a uniform mitochondrial localization into punctate fission complexes. Our studies also reveal that Fis1p is present in these assembled fission complexes. Based on our results, we propose that Dnm1p dimers are initially recruited to the membrane via interaction with Mdv1p.Fis1p complexes. These dimers then assemble into multimers that subsequently promote the reorganization of Mdv1p into punctate fission complexes.
Collapse
Affiliation(s)
- Debjani Bhar
- Biochemistry Department, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Mary Anne Karren
- Biochemistry Department, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
| | - Markus Babst
- Biology Department, University of Utah, Salt Lake City, Utah 84112-0840
| | - Janet M Shaw
- Biochemistry Department, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650.
| |
Collapse
|
67
|
Abstract
Mitochondria form dynamic tubular networks that continually change their shape and move throughout the cell. In eukaryotes, these organellar gymnastics are controlled by numerous pathways that preserve proper mitochondrial morphology and function. The best understood of these are the fusion and fission pathways, which rely on conserved GTPases and their binding partners to regulate organelle connectivity and copy number in healthy cells and during apoptosis. In budding yeast, mitochondrial shape is also maintained by proteins acting in the tubulation pathway. Novel proteins and pathways that control mitochondrial dynamics continue to be discovered, indicating that the mechanisms governing this organelle's behavior are more sophisticated than previously appreciated. Here we review recent advances in the field of mitochondrial dynamics and highlight the importance of these pathways to human health.
Collapse
Affiliation(s)
- Koji Okamoto
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-3201, USA.
| | | |
Collapse
|
68
|
Scott I, Tobin AK, Logan DC. BIGYIN, an orthologue of human and yeast FIS1 genes functions in the control of mitochondrial size and number in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1275-80. [PMID: 16510519 DOI: 10.1093/jxb/erj096] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Reverse-genetics was used to evaluate the role of an Arabidopsis homologue of the human and yeast FIS1 genes, which are both involved in mitochondrial fission. Two independent T-DNA insertion mutants of gene At3g57090 were identified and genetically transformed to express mitochondria-targeted GFP to enable visualization of mitochondria in vivo. Plants homozygous for either of the recessive T-DNA mutant alleles, termed bigyin1-1 (bgy1-1) and bigyin1-2 (bgy1-2), displayed an abnormal mitochondrial morphology. Disruption of BIGYIN leads to a reduced number of mitochondria per cell, coupled to a large increase in the size of individual mitochondria, relative to wild-type. It is concluded that BIGYIN is an Arabidopsis FIS orthologue and is part of the Arabidopsis mitochondrial division apparatus.
Collapse
Affiliation(s)
- Iain Scott
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | | | | |
Collapse
|
69
|
Kiefel BR, Gilson PR, Beech PL. Cell biology of mitochondrial dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:151-213. [PMID: 17147999 DOI: 10.1016/s0074-7696(06)54004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondria are the product of an ancient endosymbiotic event between an alpha-proteobacterium and an archael host. An early barrier to overcome in this relationship was the control of the bacterium's proliferation within the host. Undoubtedly, the bacterium (or protomitochondrion) would have used its own cell division apparatus to divide at first and, today a remnant of this system remains in some "ancient" and diverse eukaryotes such as algae and amoebae, the most conserved and widespread of all bacterial division proteins, FtsZ. In many of the eukaryotes that still use FtsZ to constrict the mitochondria from the inside, the mitochondria still resemble bacteria in shape and size. Eukaryotes, however, have a mitochondrial morphology that is often highly fluid, and in their tubular networks of mitochondria, division is clearly complemented by mitochondrial fusion. FtsZ is no longer used by these complex eukaryotes, and may have been replaced by other proteins better suited to sustaining complex mitochondrial networks. Although proteins that divide mitochondria from the inside are just beginning to be characterized in higher eukaryotes, many division proteins are known to act on the outside of the organelle. The most widespread of these are the dynamin-like proteins, which appear to have been recruited very early in the evolution of mitochondria. The essential nature of mitochondria dictates that their loss is intolerable to human cells, and that mutations disrupting mitochondrial division are more likely to be fatal than result in disease. To date, only one disease (Charcot-Marie-Tooth disease 2A) has been mapped to a gene that is required for mitochondrial division, whereas two other diseases can be attributed to mutations in mitochondrial fusion genes. Apart from playing a role in regulating the morphology, which might be important for efficient ATP production, research has indicated that the mitochondrial division and fusion proteins can also be important during apoptosis; mitochondrial fragmentation is an early triggering (and under many stimuli, essential) step in the pathway to cell suicide.
Collapse
Affiliation(s)
- Ben R Kiefel
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | | | | |
Collapse
|
70
|
Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, Nunnari J. Dnm1 forms spirals that are structurally tailored to fit mitochondria. ACTA ACUST UNITED AC 2005; 170:1021-7. [PMID: 16186251 PMCID: PMC2171542 DOI: 10.1083/jcb.200506078] [Citation(s) in RCA: 448] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynamin-related proteins (DRPs) are large self-assembling GTPases whose common function is to regulate membrane dynamics in a variety of cellular processes. Dnm1, which is a yeast DRP (Drp1/Dlp1 in humans), is required for mitochondrial division, but its mechanism is unknown. We provide evidence that Dnm1 likely functions through self-assembly to drive the membrane constriction event that is associated with mitochondrial division. Two regulatory features of Dnm1 self-assembly were also identified. Dnm1 self-assembly proceeded through a rate-limiting nucleation step, and nucleotide hydrolysis by assembled Dnm1 structures was highly cooperative with respect to GTP. Dnm1 formed extended spirals, which possessed diameters greater than those of dynamin-1 spirals but whose sizes, remarkably, were equal to those of mitochondrial constriction sites in vivo. These data suggest that Dnm1 has evolved to form structures that fit the dimensions of mitochondria.
Collapse
Affiliation(s)
- Elena Ingerman
- Department of Molecular and Cellular Biology, Center for Genetics and Development, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Naylor K, Ingerman E, Okreglak V, Marino M, Hinshaw JE, Nunnari J. Mdv1 interacts with assembled dnm1 to promote mitochondrial division. J Biol Chem 2005; 281:2177-83. [PMID: 16272155 DOI: 10.1074/jbc.m507943200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The dynamin-related GTPase, Dnm1, self-assembles into punctate structures that are targeted to the outer mitochondrial membrane where they mediate mitochondrial division. Post-targeting, Dnm1-dependent division is controlled by the actions of the WD repeat protein, Mdv1, and the mitochondrial tetratricopeptide repeat-like outer membrane protein, Fis1. Our previous studies suggest a model where at this step Mdv1 functions as an adaptor linking Fis1 with Dnm1. To gain insight into the exact role of the Fis1.Mdv1.Dnm1 complex in mitochondrial division, we performed a structure-function analysis of the Mdv1 adaptor. Our analysis suggests that dynamic interactions between Mdv1 and Dnm1 play a key role in division by regulating Dnm1 self-assembly.
Collapse
Affiliation(s)
- Kari Naylor
- Section of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
72
|
Ivanovska I, Hardwick JM. Viruses activate a genetically conserved cell death pathway in a unicellular organism. ACTA ACUST UNITED AC 2005; 170:391-9. [PMID: 16061692 PMCID: PMC2171480 DOI: 10.1083/jcb.200503069] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the importance of apoptosis in the pathogenesis of virus infections in mammals, we investigated the possibility that unicellular organisms also respond to viral pathogens by activating programmed cell death. The M1 and M2 killer viruses of Saccharomyces cerevisiae encode pore-forming toxins that were assumed to kill uninfected yeast cells by a nonprogrammed assault. However, we found that yeast persistently infected with these killer viruses induce a programmed suicide pathway in uninfected (nonself) yeast. The M1 virus-encoded K1 toxin is primarily but not solely responsible for triggering the death pathway. Cell death is mediated by the mitochondrial fission factor Dnm1/Drp1, the K+ channel Tok1, and the yeast metacaspase Yca1/Mca1 encoded by the target cell and conserved in mammals. In contrast, cell death is inhibited by yeast Fis1, a pore-forming outer mitochondrial membrane protein. This virus-host relationship in yeast resembles that of pathogenic human viruses that persist in their infected host cells but trigger programmed death of uninfected cells.
Collapse
Affiliation(s)
- Iva Ivanovska
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
73
|
Karren MA, Coonrod EM, Anderson TK, Shaw JM. The role of Fis1p-Mdv1p interactions in mitochondrial fission complex assembly. J Cell Biol 2005; 171:291-301. [PMID: 16247028 PMCID: PMC2171191 DOI: 10.1083/jcb.200506158] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 09/19/2005] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial division requires coordinated interactions among Fis1p, Mdv1p, and the Dnm1p GTPase, which assemble into fission complexes on the outer mitochondrial membrane. The integral outer membrane protein Fis1p contains a cytoplasmic domain consisting of a tetratricopeptide repeat (TPR)-like fold and a short NH(2)-terminal helix. Although it is known that the cytoplasmic domain is necessary for assembly of Mdv1p and Dnm1p into fission complexes, the molecular details of this assembly are not clear. In this study, we provide new evidence that the Fis1p-Mdv1p interaction is direct. Furthermore, we show that conditional mutations in the Fis1p TPR-like domain cause fission complex assembly defects that are suppressed by mutations in the Mdv1p-predicted coiled coil. We also define separable functions for the Fis1p NH(2)-terminal arm and TPR-like fold. These studies suggest that the concave binding surface of the Fis1p TPR-like fold interacts with Mdv1p during mitochondrial fission and that Mdv1p facilitates Dnm1p recruitment into functional fission complexes.
Collapse
Affiliation(s)
- Mary Anne Karren
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
74
|
Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 2005; 14 Spec No. 2:R283-9. [PMID: 16244327 DOI: 10.1093/hmg/ddi270] [Citation(s) in RCA: 400] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondria provide a myriad of services to the cell, including energy production, calcium buffering and regulation of apoptosis. How these diverse functions are coordinated among the hundreds of mitochondria in a given cell is largely unknown, but is probably dependent on the dynamic nature of mitochondria. In this review, we explore the latest developments in mitochondrial dynamics in mammals. These studies indicate that mitofusins and OPA1 are essential for mitochondrial fusion, whereas Fis1 and Drp1 are essential for mitochondrial fission. The overall morphology of the mitochondrial population depends on the relative activities of these two sets of proteins. In addition to the regulation of mitochondrial shape, these molecules also play important roles in cell and tissue physiology. Perturbation of mitochondrial fusion results in defects in mitochondrial membrane potential and respiration, poor cell growth and increased susceptibility to cell death. These cellular observations may explain why mitochondrial fusion is essential for embryonic development. Two inherited neuropathies, Charcot-Marie-Tooth type 2A and autosomal dominant optic atrophy, are caused by mutations in mitofusin 2 and OPA1, suggesting that proper regulation of mitochondrial dynamics is particularly vital to neurons. Mitochondrial fission accompanies several types of apoptotic cell death and appears important for progression of the apoptotic pathway. These studies provide insight into how mitochondria communicate with one another to coordinate mitochondrial function and morphology.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology, California Institute of Technology, 1200 E. California Boulevard, MC114-96, Pasadena, CA 91125, USA
| | | |
Collapse
|
75
|
Abstract
The abundance and size of cellular organelles vary depending on the cell type and metabolic needs. Peroxisomes constitute a class of cellular organelles renowned for their ability to adapt to cellular and environmental conditions. Together with transcriptional regulators, two groups of peroxisomal proteins have a pronounced influence on peroxisome size and abundance. Pex11-type peroxisome proliferators are involved in the proliferation of peroxisomes, defined here as an increase in size and/or number of peroxisomes. Dynamin-related proteins have recently been suggested to be required for the scission of peroxisomal membranes. This review surveys the function of Pex11-type peroxisome proliferators and dynamin-related proteins in peroxisomal proliferation and division.
Collapse
Affiliation(s)
- Sven Thoms
- Ruhr-University-Bochum, Medical Faculty, Institute of Physiological Chemistry, Bochum, Germany
| | | |
Collapse
|
76
|
Yu T, Fox RJ, Burwell LS, Yoon Y. Regulation of mitochondrial fission and apoptosis by the mitochondrial outer membrane protein hFis1. J Cell Sci 2005; 118:4141-51. [PMID: 16118244 DOI: 10.1242/jcs.02537] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fission is a highly regulated process mediated by a defined set of protein factors and is involved in the early stage of apoptosis. In mammals, at least two proteins, the dynamin-like protein DLP1/Drp1 and the mitochondrial outer membrane protein hFis1, participate in mitochondrial fission. The cytosolic domain of hFis1 contains six alpha-helices that form two tetratricopeptide repeat (TPR) motifs. Overexpression of hFis1 induces DLP1-mediated fragmentation of mitochondria, suggesting that hFis1 is a limiting factor in mitochondrial fission by recruiting cytosolic DLP1. In the present study, we identified two regions of hFis1 that are necessary for correct fission of mitochondria. We found that the TPR region of hFis1 participates in the interaction with DLP1 or DLP1-containing complex and that the first helix (alpha1) of hFis1 is required for mitochondrial fission presumably by regulating DLP1-hFis1 interaction. Misregulated interaction between DLP1 and hFis1 by alpha1 deletion induced mitochondrial swelling, in part by the mitochondrial permeability transition, but significantly delayed cell death. Our data suggest that hFis1 is a main regulator of mitochondrial fission, controlling the recruitment and assembly of DLP1 during both normal and apoptotic fission processes.
Collapse
Affiliation(s)
- Tianzheng Yu
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
77
|
Griffin EE, Graumann J, Chan DC. The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. ACTA ACUST UNITED AC 2005; 170:237-48. [PMID: 16009724 PMCID: PMC2171414 DOI: 10.1083/jcb.200503148] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mitochondrial division machinery regulates mitochondrial dynamics and consists of Fis1p, Mdv1p, and Dnm1p. Mitochondrial division relies on the recruitment of the dynamin-related protein Dnm1p to mitochondria. Dnm1p recruitment depends on the mitochondrial outer membrane protein Fis1p. Mdv1p interacts with Fis1p and Dnm1p, but is thought to act at a late step during fission because Mdv1p is dispensable for Dnm1p localization. We identify the WD40 repeat protein Caf4p as a Fis1p-associated protein that localizes to mitochondria in a Fis1p-dependent manner. Caf4p interacts with each component of the fission apparatus: with Fis1p and Mdv1p through its NH2-terminal half and with Dnm1p through its COOH-terminal WD40 domain. We demonstrate that mdv1delta yeast contain residual mitochondrial fission due to the redundant activity of Caf4p. Moreover, recruitment of Dnm1p to mitochondria is disrupted in mdv1delta caf4delta yeast, demonstrating that Mdv1p and Caf4p are molecular adaptors that recruit Dnm1p to mitochondrial fission sites. Our studies support a revised model for assembly of the mitochondrial fission apparatus.
Collapse
Affiliation(s)
- Erik E Griffin
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
78
|
Suzuki M, Neutzner A, Tjandra N, Youle RJ. Novel Structure of the N Terminus in Yeast Fis1 Correlates with a Specialized Function in Mitochondrial Fission. J Biol Chem 2005; 280:21444-52. [PMID: 15809300 DOI: 10.1074/jbc.m414092200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial fission is facilitated by a multiprotein complex assembled at the division site. The required components of the fission machinery in Saccharomyces cerevisiae include Dnm1, Fis1, and Mdv1. In the present study, we determined the protein structure of yeast Fis1 using NMR spectroscopy. Although the six alpha-helices, as well as their folding, in the yeast Fis1 structure are similar to those of the tetratricopeptide repeat (TPR) domains of the human Fis1 structure, the two structures differ in their N termini. The N-terminal tail of human Fis1 is flexible and unstructured, whereas a major segment of the longer N terminus of yeast Fis1 is fixed to the concave face formed by the six alpha-helices in the TPR domains. To investigate the role of the fixed N terminus, exogenous Fis1 was expressed in yeast lacking the endogenous protein. Expression of yeast Fis1 protein rescued mitochondrial fission in delta fis1 yeast only when the N-terminal TPR binding segment was left intact. The presence of this segment is also correlated to the recruitment of Mdv1 to mitochondria. The conformation of the N-terminal segment embedded in the TPR pocket indicates an intra-molecular regulation of Fis1 bioactivity. Although the TPR-like helix bundle of Fis1 mediates the interaction with Dnm1 and Mdv1, the N terminus of Fis1 is a prerequisite to recruit Mdv1 to facilitate mitochondrial fission.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
79
|
Guillou E, Bousquet C, Daloyau M, Emorine LJ, Belenguer P. Msp1p is an intermembrane space dynamin-related protein that mediates mitochondrial fusion in a Dnm1p-dependent manner inS. pombe. FEBS Lett 2005; 579:1109-16. [PMID: 15710398 DOI: 10.1016/j.febslet.2004.12.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/13/2004] [Accepted: 12/28/2004] [Indexed: 12/23/2022]
Abstract
Mitochondrial morphology is controlled by large GTPases, such as Msp1p, whose action on mitochondrial membranes is not yet understood. The sub-mitochondrial localization of Msp1p, the subject of ongoing controversies, was found to be within the intermembrane space. Overexpression of Msp1p led to aggregation of the mitochondrial network, while its downregulation resulted in fragmentation of this network. Mutations affecting the integrity of the Msp1p GTPase function had a dominant phenotype and induced mitochondrial fragmentation followed by mitochondrial DNA loss and cell death. These effects were not observed in cells deleted for Dnm1p, an actor in mitochondrial fission, suggesting that Msp1p is involved in the fusion of mitochondria.
Collapse
Affiliation(s)
- Emmanuelle Guillou
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, France
| | | | | | | | | |
Collapse
|
80
|
Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basañez G, Hardwick JM. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 2004; 18:2785-97. [PMID: 15520274 PMCID: PMC528898 DOI: 10.1101/gad.1247904] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.
Collapse
Affiliation(s)
- Yihru Fannjiang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University Schools of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Opposing fission and fusion events maintain the yeast mitochondrial network. Six proteins regulate these membrane dynamics during mitotic growth-Dnm1p, Mdv1p, and Fis1p mediate fission; Fzo1p, Mgm1p, and Ugo1p mediate fusion. Previous studies established that mitochondria fragment and rejoin at distinct stages during meiosis and sporulation, suggesting that mitochondrial fission and fusion are required during this process. Here we report that strains defective for mitochondrial fission alone, or both fission and fusion, complete meiosis and sporulation. However, visualization of mitochondria in sporulating cultures reveals morphological defects associated with the loss of fusion and/or fission proteins. Specifically, mitochondria collapse to one side of the cell and fail to fragment during presporulation. In addition, mitochondria are not inherited equally by newly formed spores, and mitochondrial DNA nucleoid segregation defects give rise to spores lacking nucleoids. This nucleoid inheritance defect is correlated with an increase in petite spore colonies. Unexpectedly, mitochondria fragment in mature tetrads lacking fission proteins. The latter finding suggests either that novel fission machinery operates during sporulation or that mechanical forces generate the mitochondrial fragments observed in mature spores. These results provide evidence of fitness defects caused by fission mutations and reveal new phenotypes associated with fission and fusion mutations.
Collapse
Affiliation(s)
- Steven W Gorsich
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
82
|
Affiliation(s)
- Hsiuchen Chen
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
83
|
Abstract
Mitochondria and chloroplasts are essential eukaryotic organelles of endosymbiotic origin. Dynamic cellular machineries divide these organelles. The mechanisms by which mitochondria and chloroplasts divide were thought to be fundamentally different because chloroplasts use proteins derived from the ancestral prokaryotic cell division machinery, whereas mitochondria have largely evolved a division apparatus that lacks bacterial cell division components. Recent findings indicate, however, that both types of organelles universally require dynamin-related guanosine triphosphatases to divide. This mechanistic link provides fundamental insights into the molecular events driving the division, and possibly the evolution, of organelles in eukaryotes.
Collapse
Affiliation(s)
- Katherine W Osteryoung
- Department of Plant Biology, 166 Plant Biology Building, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|