51
|
Murakami Y, Tawamie H, Maeda Y, Büttner C, Buchert R, Radwan F, Schaffer S, Sticht H, Aigner M, Reis A, Kinoshita T, Jamra RA. Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy. PLoS Genet 2014; 10:e1004320. [PMID: 24784135 PMCID: PMC4006728 DOI: 10.1371/journal.pgen.1004320] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/07/2014] [Indexed: 02/07/2023] Open
Abstract
Many eukaryotic cell-surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). There are at least 26 genes involved in biosynthesis and remodeling of GPI anchors. Hypomorphic coding mutations in seven of these genes have been reported to cause decreased expression of GPI anchored proteins (GPI-APs) on the cell surface and to cause autosomal-recessive forms of intellectual disability (ARID). We performed homozygosity mapping and exome sequencing in a family with encephalopathy and non-specific ARID and identified a homozygous 3 bp deletion (p.Leu197del) in the GPI remodeling gene PGAP1. PGAP1 was not described in association with a human phenotype before. PGAP1 is a deacylase that removes an acyl-chain from the inositol of GPI anchors in the endoplasmic reticulum immediately after attachment of GPI to proteins. In silico prediction and molecular modeling strongly suggested a pathogenic effect of the identified deletion. The expression levels of GPI-APs on B lymphoblastoid cells derived from an affected person were normal. However, when those cells were incubated with phosphatidylinositol-specific phospholipase C (PI-PLC), GPI-APs were cleaved and released from B lymphoblastoid cells from healthy individuals whereas GPI-APs on the cells from the affected person were totally resistant. Transfection with wild type PGAP1 cDNA restored the PI-PLC sensitivity. These results indicate that GPI-APs were expressed with abnormal GPI structure due to a null mutation in the remodeling gene PGAP1. Our results add PGAP1 to the growing list of GPI abnormalities and indicate that not only the cell surface expression levels of GPI-APs but also the fine structure of GPI-anchors is important for the normal neurological development. Glycosylphosphatidylinositols (GPI) are glycolipid anchors that anchor various proteins to the cell surface. At least 26 genes are involved in biosynthesis and modification of the GPI anchors. Recently, mutations in eight of those genes have been described. Although those mutations do not fully abolish the functions of encoded enzymes, they lead to a decreased expression of surface GPI-anchored proteins and to different forms of intellectual disability. Here we report a mutation in PGAP1 that encodes a protein that modifies the GPI anchor. We found that the mutation leads to a full loss of PGAP1 enzyme activity, but that the patient cells still express normal levels of surface GPI-anchored proteins. However, the GPI anchors have an abnormal lipid structure that is resistant to cleavage by phosphatidylinositol-specific phospholipase C. Our results add PGAP1 to the growing list of GPI abnormalities that cause intellectual disability and indicate that the fine structure of GPI-anchors is also important for a normal neurological development.
Collapse
Affiliation(s)
- Yoshiko Murakami
- Research Institute for Microbial Diseases and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- * E-mail: (YM); (RAJ)
| | - Hasan Tawamie
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yusuke Maeda
- Research Institute for Microbial Diseases and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca Buchert
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Farah Radwan
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Schaffer
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Rami Abou Jamra
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail: (YM); (RAJ)
| |
Collapse
|
52
|
Ferdaus MZ, Xiao B, Ohara H, Nemoto K, Harada Y, Saar K, Hübner N, Isomura M, Nabika T. Identification of Stim1 as a candidate gene for exaggerated sympathetic response to stress in the stroke-prone spontaneously hypertensive rat. PLoS One 2014; 9:e95091. [PMID: 24736434 PMCID: PMC3988177 DOI: 10.1371/journal.pone.0095091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/23/2014] [Indexed: 12/21/2022] Open
Abstract
The stroke-prone spontaneously hypertensive rat (SHRSP) is known to have exaggerated sympathetic nerve activity to various types of stress, which might contribute to the pathogenesis of severe hypertension and stroke observed in this strain. Previously, by using a congenic strain (called SPwch1.72) constructed between SHRSP and the normotensive Wistar-Kyoto rat (WKY), we showed that a 1.8-Mbp fragment on chromosome 1 (Chr1) of SHRSP harbored the responsible gene(s) for the exaggerated sympathetic response to stress. To further narrow down the candidate region, in this study, another congenic strain (SPwch1.71) harboring a smaller fragment on Chr1 including two functional candidate genes, Phox2a and Ship2, was generated. Sympathetic response to cold and restraint stress was compared among SHRSP, SPwch1.71, SPwch1.72 and WKY by three different methods (urinary norepinephrine excretion, blood pressure measurement by the telemetry system and the power spectral analysis on heart rate variability). The results indicated that the response in SPwch1.71 did not significantly differ from that in SHRSP, excluding Phox2a and Ship2 from the candidate genes. As the stress response in SPwch1.72 was significantly less than that in SHRSP, it was concluded that the 1.2-Mbp congenic region covered by SPwch1.72 (and not by SPwch1.71) was responsible for the sympathetic stress response. The sequence analysis of 12 potential candidate genes in this region in WKY/Izm and SHRSP/Izm identified a nonsense mutation in the stromal interaction molecule 1 (Stim1) gene of SHRSP/Izm which was shared among 4 substrains of SHRSP. A western blot analysis confirmed a truncated form of STIM1 in SHRSP/Izm. In addition, the analysis revealed that the protein level of STIM1 in the brainstem of SHRSP/Izm was significantly lower when compared with WKY/Izm. Our results suggested that Stim1 is a strong candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP.
Collapse
Affiliation(s)
| | - Bing Xiao
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Hiroki Ohara
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
- * E-mail:
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuji Harada
- Department of Surgical Pathology, Shimane University Hospital, Izumo, Japan
| | - Kathrin Saar
- Department of Experimental Genetics of Cardiovascular Diseases, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Norbert Hübner
- Department of Experimental Genetics of Cardiovascular Diseases, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Minoru Isomura
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
53
|
Howard M, Murakami Y, Pagnamenta A, Daumer-Haas C, Fischer B, Hecht J, Keays D, Knight S, Kölsch U, Krüger U, Leiz S, Maeda Y, Mitchell D, Mundlos S, Phillips J, Robinson P, Kini U, Taylor J, Horn D, Kinoshita T, Krawitz P. Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation. Am J Hum Genet 2014; 94:278-87. [PMID: 24439110 DOI: 10.1016/j.ajhg.2013.12.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022] Open
Abstract
Glycosylphophatidylinositol (GPI)-anchored proteins play important roles in many biological processes, and mutations affecting proteins involved in the synthesis of the GPI anchor are reported to cause a wide spectrum of intellectual disabilities (IDs) with characteristic additional phenotypic features. Here, we describe a total of five individuals (from three unrelated families) in whom we identified mutations in PGAP3, encoding a protein that is involved in GPI-anchor maturation. Three siblings in a consanguineous Pakistani family presented with profound developmental delay, severe ID, no speech, psychomotor delay, and postnatal microcephaly. A combination of autozygosity mapping and exome sequencing identified a 13.8 Mb region harboring a homozygous c.275G>A (p.Gly92Asp) variant in PGAP3 region 17q11.2-q21.32. Subsequent testing showed elevated serum alkaline phosphatase (ALP), a GPI-anchored enzyme, in all three affected children. In two unrelated individuals in a cohort with developmental delay, ID, and elevated ALP, we identified compound-heterozygous variants c.439dupC (p.Leu147Profs(∗)16) and c.914A>G (p.Asp305Gly) and homozygous variant c.314C>G (p.Pro105Arg). The 1 bp duplication causes a frameshift and nonsense-mediated decay. Further evidence supporting pathogenicity of the missense mutations c.275G>A, c.314C>G, and c.914A>G was provided by the absence of the variants from ethnically matched controls, phylogenetic conservation, and functional studies on Chinese hamster ovary cell lines. Taken together with recent data on PGAP2, these results confirm the importance of the later GPI-anchor remodelling steps for normal neuronal development. Impairment of PGAP3 causes a subtype of hyperphosphatasia with ID, a congenital disorder of glycosylation that is also referred to as Mabry syndrome.
Collapse
|
54
|
KINOSHITA T. Biosynthesis and deficiencies of glycosylphosphatidylinositol. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:130-43. [PMID: 24727937 PMCID: PMC4055706 DOI: 10.2183/pjab.90.130] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/19/2014] [Indexed: 05/18/2023]
Abstract
At least 150 different human proteins are anchored to the outer leaflet of the plasma membrane via glycosylphosphatidylinositol (GPI). GPI preassembled in the endoplasmic reticulum is attached to the protein's carboxyl-terminus as a post-translational modification by GPI transamidase. Twenty-two PIG (for Phosphatidyl Inositol Glycan) genes are involved in the biosynthesis and protein-attachment of GPI. After attachment to proteins, both lipid and glycan moieties of GPI are structurally remodeled in the endoplasmic reticulum and Golgi apparatus. Four PGAP (for Post GPI Attachment to Proteins) genes are involved in the remodeling of GPI. GPI-anchor deficiencies caused by somatic and germline mutations in the PIG and PGAP genes have been found and characterized. The characteristics of the 26 PIG and PGAP genes and the GPI deficiencies caused by mutations in these genes are reviewed.
Collapse
Affiliation(s)
- Taroh KINOSHITA
- WPI Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Correspondence should be addressed: T. Kinoshita, WPI Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan (e-mail: )
| |
Collapse
|
55
|
Chiyonobu T, Inoue N, Morimoto M, Kinoshita T, Murakami Y. Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J Med Genet 2013; 51:203-7. [PMID: 24367057 DOI: 10.1136/jmedgenet-2013-102156] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors 150 or more kinds of proteins to the human cell surface. There are at least 26 genes involved in the biosynthesis and remodelling of GPI anchored proteins (GPI-APs). Recently, inherited GPI deficiencies (IGDs) were reported which cause intellectual disability often accompanied by epilepsy, coarse facial features and multiple anomalies that vary in severity depending upon the degree of defect and/or step in the pathway of affected gene. METHODS AND RESULTS A patient born to non-consanguineous parents developed intractable seizures with typical hypsarrhythmic pattern in electroencephalography, and was diagnosed as having West syndrome. Because the patient showed severe developmental delay with dysmorphic facial features and hyperphosphatasia, characteristics often seen in IGDs, the patient was tested for GPI deficiency. The patient had decreased surface expression of GPI-APs on blood granulocytes and was identified to be compound heterozygous for NM_178517:c.211A>C and c.499A>G mutations in PIGW by targeted sequencing. CONCLUSION Here we describe the first patient with deficiency of PIGW, which is involved in the addition of the acyl-chain to inositol in an early step of GPI biosynthesis. Therefore, IGD should be considered in West syndrome and flow cytometric analysis of blood cells is effective in screening IGD.
Collapse
Affiliation(s)
- Tomohiro Chiyonobu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | | | | | | | | |
Collapse
|
56
|
Wang Y, Murakami Y, Yasui T, Wakana S, Kikutani H, Kinoshita T, Maeda Y. Significance of glycosylphosphatidylinositol-anchored protein enrichment in lipid rafts for the control of autoimmunity. J Biol Chem 2013; 288:25490-25499. [PMID: 23864655 DOI: 10.1074/jbc.m113.492611] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycosylphosphatidylinositols (GPI) are complex glycolipids that are covalently linked to the C terminus of proteins as a post-translational modification and tether proteins to the plasma membrane. One of the most striking features of GPI-anchored proteins (APs) is their enrichment in lipid rafts. The biosynthesis of GPI and its attachment to proteins occur in the endoplasmic reticulum. In the Golgi, GPI-APs are subjected to fatty acid remodeling, which replaces an unsaturated fatty acid at the sn-2 position of the phosphatidylinositol moiety with a saturated fatty acid. We previously reported that fatty acid remodeling is critical for the enrichment of GPI-APs in lipid rafts. To investigate the biological significance of GPI-AP enrichment in lipid rafts, we generated a PGAP3 knock-out mouse (PGAP3(-/-)) in which fatty acid remodeling of GPI-APs does not occur. We report here that a significant number of aged PGAP3(-/-) mice developed autoimmune-like symptoms, such as increased anti-DNA antibodies, spontaneous germinal center formation, and enlarged renal glomeruli with deposition of immune complexes and matrix expansion. A possible cause for this was the impaired engulfment of apoptotic cells by resident peritoneal macrophages in PGAP3(-/-) mice. Mice with conditional targeting of PGAP3 in either B or T cells did not develop such autoimmune-like symptoms. In addition, PGAP3(-/-) mice exhibited the tendency of Th2 polarization. These data demonstrate that PGAP3-dependent fatty acid remodeling of GPI-APs has a significant role in the control of autoimmunity, possibly by the regulation of apoptotic cell clearance and Th1/Th2 balance.
Collapse
Affiliation(s)
- Yetao Wang
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Yoshiko Murakami
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Teruhito Yasui
- Department of Molecular Immunology, Research Institute for Microbial Diseases, and Laboratory of Molecular Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 and
| | - Shigeharu Wakana
- the Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN Bioresource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hitoshi Kikutani
- Department of Molecular Immunology, Research Institute for Microbial Diseases, and Laboratory of Molecular Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 and
| | - Taroh Kinoshita
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and
| | - Yusuke Maeda
- From the Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, and.
| |
Collapse
|
57
|
Castillon GA, Michon L, Watanabe R. Apical sorting of lysoGPI-anchored proteins occurs independent of association with detergent-resistant membranes but dependent on their N-glycosylation. Mol Biol Cell 2013; 24:2021-33. [PMID: 23615438 PMCID: PMC3681704 DOI: 10.1091/mbc.e13-03-0160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Overexpression of C-terminally tagged PGAP3 causes predominant production of lysoGPI-APs in MDCK cells. In these cells, produced lysoGPI-APs are not incorporated into detergent-resistant membranes but are still delivered apically. The apical transport of both fully remodeled and lysoGPI-APs is sensitive to cholesterol depletion and ablation of N-glycosylation. Most glycosylphosphatidylinositol-anchored proteins (GPI-APs) are located at the apical surface of epithelial cells. The apical delivery of GPI-APs is believed to result from their association with lipid rafts. We find that overexpression of C-terminally tagged PGAP3 caused predominant production of lysoGPI-APs, an intermediate precursor in the GPI lipid remodeling process in Madin–Darby canine kidney cells. In these cells, produced lysoGPI-APs are not incorporated into detergent-resistant membranes (DRMs) but still are delivered apically, suggesting that GPI-AP association with DRMs is not necessary for apical targeting. In contrast, apical transport of both fully remodeled and lyso forms of GPI-APs is dependent on N-glycosylation, confirming a general role of N-glycans in apical protein transport. We also find that depletion of cholesterol causes apical-to-basolateral retargeting not only of fully remodeled GPI-APs, but also of lysoGPI-APs, as well as endogenous soluble and transmembrane proteins that would normally be targeted to the apical membrane. These findings confirm the essential role for cholesterol in the apical protein targeting and further demonstrate that the mechanism of cholesterol-dependent apical sorting is not related to DRM association of GPI-APs.
Collapse
|
58
|
Krawitz P, Murakami Y, Rieß A, Hietala M, Krüger U, Zhu N, Kinoshita T, Mundlos S, Hecht J, Robinson P, Horn D. PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am J Hum Genet 2013; 92:584-9. [PMID: 23561847 DOI: 10.1016/j.ajhg.2013.03.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/28/2013] [Accepted: 03/15/2013] [Indexed: 01/02/2023] Open
Abstract
Recently, mutations in genes involved in the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor have been identified in a new subclass of congenital disorders of glycosylation (CDGs) with a distinct spectrum of clinical features. To date, mutations have been identified in six genes (PIGA, PIGL, PIGM, PIGN, PIGO, and PIGV) encoding proteins in the GPI-anchor-synthesis pathway in individuals with severe neurological features, including seizures, muscular hypotonia, and intellectual disability. We developed a diagnostic gene panel for targeting all known genes encoding proteins in the GPI-anchor-synthesis pathway to screen individuals matching these features, and we detected three missense mutations in PGAP2, c.46C>T, c.380T>C, and c.479C>T, in two unrelated individuals with hyperphosphatasia with mental retardation syndrome (HPMRS). The mutations cosegregated in the investigated families. PGAP2 is involved in fatty-acid GPI-anchor remodeling, which occurs in the Golgi apparatus and is required for stable association between GPI-anchored proteins and the cell-surface membrane rafts. Transfection of the altered protein constructs, p.Arg16Trp (NP_001243169.1), p.Leu127Ser, and p.Thr160Ile, into PGAP2-null cells showed only partial restoration of GPI-anchored marker proteins, CD55 and CD59, on the cell surface. In this work, we show that an impairment of GPI-anchor remodeling also causes HPMRS and conclude that targeted sequencing of the genes encoding proteins in the GPI-anchor-synthesis pathway is an effective diagnostic approach for this subclass of CDGs.
Collapse
|
59
|
Hansen L, Tawamie H, Murakami Y, Mang Y, ur Rehman S, Buchert R, Schaffer S, Muhammad S, Bak M, Nöthen MM, Bennett EP, Maeda Y, Aigner M, Reis A, Kinoshita T, Tommerup N, Baig SM, Abou Jamra R. Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability. Am J Hum Genet 2013; 92:575-83. [PMID: 23561846 DOI: 10.1016/j.ajhg.2013.03.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/11/2013] [Accepted: 03/12/2013] [Indexed: 12/28/2022] Open
Abstract
PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous families. Rescue experiments with the altered proteins in PGAP2-deficient Chinese hamster ovary cell lines showed less expression of cell-surface GPI-anchored proteins DAF and CD59 than of the wild-type protein, substantiating the pathogenicity of the identified alterations. Furthermore, we observed a full rescue when we used strong promoters before the mutant cDNAs, suggesting a hypomorphic effect of the mutations. We report on alterations in the Golgi-located part of the GPI-anchor-biosynthesis pathway and extend the phenotypic spectrum of the GPI-anchor deficiencies to isolated intellectual disability with elevated ALP. GPI-anchor deficiencies can be interpreted within the concept of a disease family, and we propose that the severity of the phenotype is dependent on the location of the altered protein in the biosynthesis chain.
Collapse
Affiliation(s)
- Lars Hansen
- Wilhelm Johannsen Centre for Functional Genome Research, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Seong J, Wang Y, Kinoshita T, Maeda Y. Implications of lipid moiety in oligomerization and immunoreactivities of GPI-anchored proteins. J Lipid Res 2013; 54:1077-91. [PMID: 23378600 DOI: 10.1194/jlr.m034421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) enriches GPI-anchored proteins (GPI-AP) in lipid rafts by intimate interaction of its lipid moiety with sphingolipids and cholesterol. In addition to such lipid-lipid interactions, it has been reported that GPI may interact with protein moiety linked to GPI and affect protein conformations because GPI delipidation reduced immunoreactivities of protein. Here, we report that GPI-APs that have not undergone fatty acid remodeling exhibit reduced immunoreactivities in Western blotting, similar to delipidated proteins, compared with normal remodeled GPI-APs. In contrast, immunostaining in flow cytometry and immunoprecipitation did not show significant differences between remodeled and unremodeled GPI-APs. Moreover, detection with premixed primary/secondary antibody complexes or Fab fragments eliminated this difference in Western blotting. These results indicate that normally remodeled GPI enhanced oligomerization of GPI-APs and that inefficient oligomerization of unremodeled GPI-APs was responsible for reduced immunoreactivities. Moreover, the reduction in immunoreactivities of delipidated GPI-APs was most likely caused by the same effect. Finally, by chemical cross-linking of surface proteins in living cells and cell killing assay using a pore-forming bacterial toxin, we showed that enhanced oligomerization by GPI-remodeling occurs under a physiological membrane environment. Thus, this study clarifies the significance of GPI fatty acid remodeling in oligomerization of GPI-APs and provides useful information for technical studies of these cell components.
Collapse
Affiliation(s)
- Jihyoun Seong
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
61
|
Kinoshita T, Maeda Y, Fujita M. Transport of glycosylphosphatidylinositol-anchored proteins from the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2473-8. [PMID: 23380706 DOI: 10.1016/j.bbamcr.2013.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/15/2013] [Accepted: 01/25/2013] [Indexed: 12/17/2022]
Abstract
In this review on the transport of glycosylphosphatidylinositol-anchored proteins (GPI-APs), we focus on events that occur in the endoplasmic reticulum after the transfer of GPI to proteins. These events include structural remodeling of both the lipid and glycan moieties of GPI, recruitment of GPI-APs into ER exit sites, association with the cargo receptor, p24 protein complex, and packaging into COPII coated transport vesicles. Similarities with the transport of Wnt proteins are also discussed. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
62
|
Zhan X, Wang C, Liu A, Liu Q, Zhang Y. Region-specific localization of IMDS-60 protein in mouse epididymis and its relationship with sperm maturation. Acta Biochim Biophys Sin (Shanghai) 2012; 44:924-30. [PMID: 23097094 DOI: 10.1093/abbs/gms079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spermatozoa acquire forward motility and fertilizing capacity during their transit through the epididymis. This maturation process involves modifications of the sperm surface by different proteins secreted by a series of specialized regions in the epididymal epithelium. Previously, our lab has reported IMDS-60 gene, which is highly expressed in mouse corpus and cauda epididymidis. Here, to perform further characterization of IMDS-60 protein, the specific polyclonal antisera were raised to the C-terminal peptide of the IMDS-60 protein. Western blot and immunohistochemistry assay revealed that IMDS-60 protein was specifically localized in the corpus and cauda regions of epididymidis. IMDS-60 could be transported from epididymal epithelium to the surface of epididymal spermatozoa. Finally, the results of the antibody block experiments suggested that IMDS-60 might play important roles in sperm maturation in the epididymis.
Collapse
Affiliation(s)
- Xiaoni Zhan
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
63
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
64
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
65
|
Araten DJ, Sanders KJ, Anscher D, Zamechek L, Hunger SP, Ibrahim S. Leukemic blasts with the paroxysmal nocturnal hemoglobinuria phenotype in children with acute lymphoblastic leukemia. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1862-9. [PMID: 22940070 DOI: 10.1016/j.ajpath.2012.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/21/2012] [Accepted: 07/05/2012] [Indexed: 01/12/2023]
Abstract
It has been proposed that genomic instability is essential to account for the multiplicity of mutations often seen in malignancies. Using the X-linked PIG-A gene as a sentinel gene for spontaneous inactivating somatic mutations, we previously showed that healthy individuals harbor granulocytes with the PIG-A mutant (paroxysmal nocturnal hemoglobinuria) phenotype at a median frequency (f) of ∼12 × 10(-6). Herein, we used a similar approach to determine f in blast cells derived from 19 individuals with acute lymphoblastic leukemia (ALL) and in immortalized Epstein-Barr virus-transformed B-cell cultures (human B-lymphoblastoid cell lines) from 19 healthy donors. The B-lymphoblastoid cell lines exhibited a unimodal distribution, with a median f value of 11 × 10(-6). In contrast, analysis of the f values for the ALL samples revealed at least two distinct populations: one population, representing approximately half of the samples (n = 10), had a median f value of 13 × 10(-6), and the remaining samples (n = 9) had a median f value of 566 × 10(-6). We conclude that in ALL, there are two distinct phenotypes with respect to hypermutability, which we hypothesize will correlate with the number of pathogenic mutations required to produce the leukemia.
Collapse
Affiliation(s)
- David J Araten
- Division of Hematology, New York University School of Medicine, New York University Langone Clinical Cancer Center, New York, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Fujita M, Kinoshita T. GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1050-8. [DOI: 10.1016/j.bbalip.2012.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 01/08/2023]
|
67
|
Loizides-Mangold U, David FPA, Nesatyy VJ, Kinoshita T, Riezman H. Glycosylphosphatidylinositol anchors regulate glycosphingolipid levels. J Lipid Res 2012; 53:1522-34. [PMID: 22628614 DOI: 10.1194/jlr.m025692] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchor biosynthesis takes place in the endoplasmic reticulum (ER). After protein attachment, the GPI anchor is transported to the Golgi where it undergoes fatty acid remodeling. The ER exit of GPI-anchored proteins is controlled by glycan remodeling and p24 complexes act as cargo receptors for GPI anchor sorting into COPII vesicles. In this study, we have characterized the lipid profile of mammalian cell lines that have a defect in GPI anchor biosynthesis. Depending on which step of GPI anchor biosynthesis the cells were defective, we observed sphingolipid changes predominantly for very long chain monoglycosylated ceramides (HexCer). We found that the structure of the GPI anchor plays an important role in the control of HexCer levels. GPI anchor-deficient cells that generate short truncated GPI anchor intermediates showed a decrease in very long chain HexCer levels. Cells that synthesize GPI anchors but have a defect in GPI anchor remodeling in the ER have a general increase in HexCer levels. GPI-transamidase-deficient cells that produce no GPI-anchored proteins but generate complete free GPI anchors had unchanged levels of HexCer. In contrast, sphingomyelin levels were mostly unaffected. We therefore propose a model in which the transport of very long chain ceramide from the ER to Golgi is regulated by the transport of GPI anchor molecules.
Collapse
Affiliation(s)
- Ursula Loizides-Mangold
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
68
|
Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T. Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 2012; 287:6318-25. [PMID: 22228761 DOI: 10.1074/jbc.m111.331090] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperphosphatasia mental retardation syndrome (HPMR), an autosomal recessive disease characterized by mental retardation and elevated serum alkaline phosphatase (ALP) levels, is caused by mutations in the coding region of the phosphatidylinositol glycan anchor biosynthesis, class V (PIGV) gene, the product of which is a mannosyltransferase essential for glycosylphosphatidylinositol (GPI) biosynthesis. Mutations found in four families caused amino acid substitutions A341E, A341V, Q256K, and H385P, which drastically decreased expression of the PIGV protein. Hyperphosphatasia resulted from secretion of ALP, a GPI-anchored protein normally expressed on the cell surface, into serum due to PIGV deficiency. In contrast, a previously reported PIGM deficiency, in which there is a defect in the transfer of the first mannose, does not result in hyperphosphatasia. To provide insights into the mechanism of ALP secretion in HPMR patients, we took advantage of CHO cell mutants that are defective in various steps of GPI biosynthesis. Secretion of ALP requires GPI transamidase, which in normal cells, cleaves the C-terminal GPI attachment signal peptide and replaces it with GPI. The GPI-anchored protein was secreted substantially into medium from PIGV-, PIGB-, and PIGF-deficient CHO cells, in which incomplete GPI bearing mannose was accumulated. In contrast, ALP was degraded in PIGL-, DPM2-, or PIGX-deficient CHO cells, in which incomplete shorter GPIs that lacked mannose were accumulated. Our results suggest that GPI transamidase recognizes incomplete GPI bearing mannose and cleaves a hydrophobic signal peptide, resulting in secretion of soluble ALP. These results explain the molecular mechanism of hyperphosphatasia in HPMR.
Collapse
Affiliation(s)
- Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka, Japan 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Fujita M. Potential Roles of GPI-Anchor Remodeling in Protein Trafficking and Raft Association in Mammalian Cells. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
70
|
Girouard J, Frenette G, Sullivan R. Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. ACTA ACUST UNITED AC 2011; 34:e475-86. [DOI: 10.1111/j.1365-2605.2011.01203.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
71
|
Fujita M, Watanabe R, Jaensch N, Romanova-Michaelides M, Satoh T, Kato M, Riezman H, Yamaguchi Y, Maeda Y, Kinoshita T. Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. ACTA ACUST UNITED AC 2011; 194:61-75. [PMID: 21727194 PMCID: PMC3135397 DOI: 10.1083/jcb.201012074] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
p24 complexes act as cargo receptors for sorting GPI-anchored proteins into COPII vesicles. Glycosylphosphatidylinositol (GPI) anchoring of proteins is a posttranslational modification occurring in the endoplasmic reticulum (ER). After GPI attachment, proteins are transported by coat protein complex II (COPII)-coated vesicles from the ER. Because GPI-anchored proteins (GPI-APs) are localized in the lumen, they cannot interact with cytosolic COPII components directly. Receptors that link GPI-APs to COPII are thought to be involved in efficient packaging of GPI-APs into vesicles; however, mechanisms of GPI-AP sorting are not well understood. Here we describe two remodeling reactions for GPI anchors, mediated by PGAP1 and PGAP5, which were required for sorting of GPI-APs to ER exit sites. The p24 family of proteins recognized the remodeled GPI-APs and sorted them into COPII vesicles. Association of p24 proteins with GPI-APs was pH dependent, which suggests that they bind in the ER and dissociate in post-ER acidic compartments. Our results indicate that p24 complexes act as cargo receptors for correctly remodeled GPI-APs to be sorted into COPII vesicles.
Collapse
Affiliation(s)
- Morihisa Fujita
- Research Institute for Microbial Diseases and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 2011; 50:411-24. [PMID: 21658410 DOI: 10.1016/j.plipres.2011.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid that is covalently attached to proteins as a post-translational modification. Such modification leads to the anchoring of the protein to the outer leaflet of the plasma membrane. Proteins that are decorated with GPIs have unique properties in terms of their physical nature. In particular, these proteins tend to accumulate in lipid rafts, which are critical for the functions and trafficking of GPI-anchored proteins (GPI-APs). Recent studies mainly using mutant cells revealed that various structural remodeling reactions occur to GPIs present in GPI-APs as they are transported from the endoplasmic reticulum to the cell surface. This review examines the recent progress describing the mechanisms of structural remodeling of mammalian GPI-anchors, such as inositol deacylation, glycan remodeling and fatty acid remodeling, with particular focus on their trafficking and functions, as well as the pathogenesis involving GPI-APs and their deficiency.
Collapse
|
73
|
Koeller CM, Heise N. The Sphingolipid Biosynthetic Pathway Is a Potential Target for Chemotherapy against Chagas Disease. Enzyme Res 2011; 2011:648159. [PMID: 21603271 PMCID: PMC3092604 DOI: 10.4061/2011/648159] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/17/2011] [Accepted: 02/25/2011] [Indexed: 12/23/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of human Chagas disease, for which there currently is no cure. The life cycle of T. cruzi is complex, including an extracellular phase in the triatomine insect vector and an obligatory intracellular stage inside the vertebrate host. These phases depend on a variety of surface glycosylphosphatidylinositol-(GPI-) anchored glycoconjugates that are synthesized by the parasite. Therefore, the surface expression of GPI-anchored components and the biosynthetic pathways of GPI anchors are attractive targets for new therapies for Chagas disease. We identified new drug targets for chemotherapy by taking the available genome sequence information and searching for differences in the sphingolipid biosynthetic pathways (SBPs) of mammals and T. cruzi. In this paper, we discuss the major steps of the SBP in mammals, yeast and T. cruzi, focusing on the IPC synthase and ceramide remodeling of T. cruzi as potential therapeutic targets for Chagas disease.
Collapse
Affiliation(s)
- Carolina Macedo Koeller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G-019, Cidade Universitária-Ilha do Fundão, 21941-902 Rio de Janeiro RJ, Brazil
| | | |
Collapse
|
74
|
Accelerated urokinase-receptor protein turnover triggered by interference with the addition of the glycolipid anchor. Biochem J 2011; 434:233-42. [PMID: 21143195 DOI: 10.1042/bj20101573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
u-PAR (urokinase-type plasminogen activator receptor), anchored to the cell surface via a glycolipid moiety, drives tumour progression. We previously reported that colon cancer cells (RKO clone 2 FS2), attenuated for in vivo tumorigenicity, are diminished >15-fold for u-PAR display when compared with their tumorigenic isogenic counterparts (RKO clone 2), this disparity not reflecting altered transcription/mRNA stability. FACS, confocal microscopy and Western blotting using a fused u-PAR-EGFP (enhanced green fluorescent protein) cDNA revealed a >14-fold differential in the u-PAR-EGFP signal between the isogenic cells, ruling out alternate splicing as a mechanism. Although metabolic labelling indicated similar synthesis rates, pulse-chase revealed accelerated u-PAR-EGFP turnover in the RKO clone 2 FS2 cells. Expression in RKO clone 2 cells of a u-PAR-EGFP protein unable to accept the glycolipid moiety yielded diminished protein amounts, thus mirroring the low endogenous protein levels evident with RKO clone 2 FS2 cells. Transcript levels for the phosphatidylglycan anchor biosynthesis class B gene required for glycolipid synthesis were reduced by 65% in RKO clone 2 FS2 cells, and forced overexpression in these cells partially restored endogenous u-PAR. Thus attenuated u-PAR levels probably reflects accelerated turnover triggered by inefficient addition of the glycolipid moiety.
Collapse
|
75
|
Lipid remodelling of glycosylphosphatidylinositol (GPI) glycoconjugates in procyclic-form trypanosomes: biosynthesis and processing of GPIs revisited. Biochem J 2010; 428:409-18. [PMID: 20345369 DOI: 10.1042/bj20100229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The African trypanosome, Trypanosoma brucei, has been used as a model to study the biosynthesis of GPI (glycosylphosphatidylinositol) anchors. In mammalian (bloodstream)-form parasites, diacyl-type GPI precursors are remodelled in their lipid moieties before attachment to variant surface glycoproteins. In contrast, the GPI precursors of insect (procyclic)-form parasites, consisting of lyso-(acyl)PI (inositol-acylated acyl-lyso-phosphatidylinositol) species, remain unaltered before protein attachment. By using a combination of metabolic labelling, cell-free assays and complementary MS analyses, we show in the present study that GPI-anchored glycoconjugates in T. congolense procyclic forms initially receive tri-acylated GPI precursors, which are subsequently de-acylated either at the glycerol backbone or on the inositol ring. Chemical and enzymatic treatments of [3H]myristate-labelled lipids in combination with ESI-MS/MS (electrospray ionization-tandem MS) and MALDI-QIT-TOF-MS3 (matrix-assisted laser-desorption ionization-quadrupole ion trap-time-of-flight MS) analyses indicate that the structure of the lipid moieties of steady-state GPI lipids from T. congolense procyclic forms consist of a mixture of lyso-(acyl)PI, diacyl-PI and diacyl-(acyl)PI species. Interestingly, some of these species are myristoylated at the sn-2 position. To our knowledge, this is the first demonstration of lipid remodelling at the level of protein- or polysaccharide-linked GPI anchors in procyclic-form trypanosomes.
Collapse
|
76
|
Rivier AS, Castillon GA, Michon L, Fukasawa M, Romanova-Michaelides M, Jaensch N, Hanada K, Watanabe R. Exit of GPI-anchored proteins from the ER differs in yeast and mammalian cells. Traffic 2010; 11:1017-33. [PMID: 20477992 DOI: 10.1111/j.1600-0854.2010.01081.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have shown that yeast glycosylphosphatidylinositol-anchored proteins (GPI-APs) and other secretory proteins are preferentially incorporated into distinct coat protein II (COPII) vesicle populations for their transport from the endoplasmic reticulum (ER) to the Golgi apparatus, and that incorporation of yeast GPI-APs into COPII vesicles requires specific lipid interactions. We compared the ER exit mechanism and segregation of GPI-APs from other secretory proteins in mammalian and yeast cells. We find that, unlike yeast, ER-to-Golgi transport of GPI-APs in mammalian cells does not depend on sphingolipid synthesis. Whereas ER exit of GPI-APs is tightly dependent on Sar1 in mammalian cells, it is much less so in yeast. Furthermore, in mammalian cells, GPI-APs and other secretory proteins are not segregated upon COPII vesicle formation, in contrast to the remarkable segregation seen in yeast. These findings suggest that GPI-APs use different mechanisms to concentrate in COPII vesicles in the two organisms, and the difference might explain their propensity to segregate from other secretory proteins upon ER exit.
Collapse
Affiliation(s)
- Anne-Sophie Rivier
- Department of Biochemistry, University of Geneva, Sciences II, 30 quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Araten DJ, Martinez-Climent JA, Perle MA, Holm E, Zamechek L, DiTata K, Sanders KJ. A quantitative analysis of genomic instability in lymphoid and plasma cell neoplasms based on the PIG-A gene. Mutat Res 2010; 686:1-8. [PMID: 20060400 DOI: 10.1016/j.mrfmmm.2009.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 10/23/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022]
Abstract
It has been proposed that hypermutability is necessary to account for the high frequency of mutations in cancer. However, historically, the mutation rate (mu) has been difficult to measure directly, and increased cell turnover or selection could provide an alternative explanation. We recently developed an assay for mu using PIG-A as a sentinel gene and estimated that its average value is 10.6 x 10(-7) mutations per cell division in B-lymphoblastoid cell lines (BLCLs) from normal donors. Here we have measured mu in human malignancies and found that it was elevated in cell lines derived from T cell acute lymphoblastic leukemia, mantle cell lymphoma, follicular lymphoma in transformed phase, and 2 plasma cell neoplasms. In contrast, mu was much lower in a marginal zone lymphoma cell line and 5 other plasma cell neoplasms. The highest mu value that we measured, 3286 x 10(-7), is 2 orders of magnitude above the range we have observed in non-malignant human cells. We conclude that the type of genomic instability detected in this assay is a common but not universal feature of hematologic malignancies.
Collapse
Affiliation(s)
- David J Araten
- Division of Hematology, NYU School of Medicine, NYU Langone Cancer Center, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
78
|
Maeda Y, Fujita M, Kinoshita T. GPI-Anchor: Update for Biosynthesis and Remodeling. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell 2009; 139:352-65. [PMID: 19837036 DOI: 10.1016/j.cell.2009.08.040] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/29/2009] [Accepted: 08/12/2009] [Indexed: 01/12/2023]
Abstract
Many eukaryotic proteins are attached to the cell surface via glycosylphosphatidylinositol (GPI) anchors. How GPI-anchored proteins (GPI-APs) are trafficked from the endoplasmic reticulum (ER) to the cell surface is poorly understood, but the GPI moiety has been postulated to function as a signal for sorting and transport. Here, we established mutant cells that were selectively defective in transport of GPI-APs from the ER to the Golgi. We identified a responsible gene, designated PGAP5 (post-GPI-attachment to proteins 5). PGAP5 belongs to a dimetal-containing phosphoesterase family and catalyzed the remodeling of the glycan moiety on GPI-APs. PGAP5 catalytic activity is a prerequisite for the efficient exit of GPI-APs from the ER. Our data demonstrate that GPI glycan acts as an ER-exit signal and suggest that glycan remodeling mediated by PGAP5 regulates GPI-AP transport in the early secretory pathway.
Collapse
|
80
|
Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett 2009; 584:1670-7. [PMID: 19883648 DOI: 10.1016/j.febslet.2009.10.079] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 11/24/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved post-translational modification in eukaryotes. In mammalian cells, approximately 150 proteins on the plasma membrane are attached to the cell surface by GPI anchors, which confer specific properties on proteins, such as association with membrane microdomains. The structures of lipid and glycan moieties on GPI anchors are remodeled during biosynthesis and after attachment to proteins. The remodeling processes are critical for transport and microdomain-association of GPI-anchored proteins. Here, we describe the structural remodeling of GPI anchors and genes required for the processes in mammals, yeast, and trypanosomes.
Collapse
|
81
|
Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc Natl Acad Sci U S A 2009; 106:17711-6. [PMID: 19815513 DOI: 10.1073/pnas.0904762106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) play various roles in cell-cell and cell-environment interactions. GPI is synthesized in the endoplasmic reticulum (ER) from phosphatidylinositol (PI) through step-wise reactions including transfers of monosaccharides and preassembled GPI is transferred en bloc to proteins. Cellular PI contains mostly diacyl glycerol and unsaturated fatty acid in the sn-2 position, whereas mammalian GPI-APs have mainly 1-alkyl-2-acyl PI and almost exclusively stearic acid, a saturated chain, at the sn-2 position. The latter characteristic is the result of fatty acid remodeling occurring in the Golgi, generating GPI-anchors compatible with raft membrane. The former characteristic is the result of diacyl to alkyl-acyl change occurring in the third GPI intermediate, glucosaminyl-inositolacylated-PI (GlcN-acyl-PI). Here we investigated the origin of the sn-1 alkyl-chain in GPI-APs. Using cell lines defective in the peroxisomal alkyl-phospholipid biosynthetic pathway, we demonstrated that generation of alkyl-containing GPI is dependent upon the peroxisomal pathway. We further demonstrated that in cells defective in the peroxisome pathway, the chain composition of the diacyl glycerol moiety in GlcN-acyl-PI is different from those in the first intermediate N-acetylglucosaminyl-PI and cellular PI, indicating that not only diacyl to alkyl-acyl change but also diacyl to diacyl change occurs in GlcN-acyl-PI. We therefore propose a biosynthetic step within GlcN-acyl-PI in which the diacyl glycerol (or diacyl phosphatidic acid) part is replaced by diradyl glycerol (or diradyl phosphatidic acid). These results highlight cooperation of three organelles, the ER, the Golgi, and the peroxisome, in the generation of the lipid portion of GPI-APs.
Collapse
|
82
|
Hong Y, Kinoshita T. Trypanosome glycosylphosphatidylinositol biosynthesis. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47:197-204. [PMID: 19724691 DOI: 10.3347/kjp.2009.47.3.197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/23/2022]
Abstract
Trypanosoma brucei, a protozoan parasite, causes sleeping sickness in humans and Nagana disease in domestic animals in central Africa. The trypanosome surface is extensively covered by glycosylphosphatidylinositol (GPI)-anchored proteins known as variant surface glycoproteins and procyclins. GPI anchoring is suggested to be important for trypanosome survival and establishment of infection. Trypanosomes are not only pathogenically important, but also constitute a useful model for elucidating the GPI biosynthesis pathway. This review focuses on the trypanosome GPI biosynthesis pathway. Studies on GPI that will be described indicate the potential for the design of drugs that specifically inhibit trypanosome GPI biosynthesis.
Collapse
Affiliation(s)
- Yeonchul Hong
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu, Korea.
| | | |
Collapse
|
83
|
Chapter 1 Overview of GPI Biosynthesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1874-6047(09)26001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
84
|
Jigami Y. [Biosynthetic pathway of GPI-anchored cell wall mannoproteins in yeast as a potential target for anti-fungal and anti-cancer drugs]. NIHON ISHINKIN GAKKAI ZASSHI = JAPANESE JOURNAL OF MEDICAL MYCOLOGY 2008; 49:253-62. [PMID: 19001750 DOI: 10.3314/jjmm.49.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glycosylphosphatidyl-inositol (GPI) -anchored mannoproteins are one of the major cell wall components of eukaryotic microorganisms, including yeast and fungi. Some GPI-anchored proteins are localized at the plasma membrane, but others are processed at the plasma membrane and are covalently linked to beta-1, 6-glucan of the cell wall through the GPI portion. The genes and enzymes responsible for their biosynthesis and cell wall assembly are potential targets of anti-fungal reagents. We identified GWT1 as a new anti-fungal drug candidate target and elucidated its function as being involved in the acylation of the inositol ring. We also found a new function of GPI7 , which is involved in transfer of ethanolamine phosphate to Man2 of GPI. Our results indicate that the localization of GPI-anchored endoglucanase Egt2p is displaced from the septal region to the cell cortex at the restrictive temperature in gpi7 mutant cells, suggesting that GPI7 is involved in the separation of mother and daughter cells and its defective phenotype is a good marker to select a new inhibitor of Gpi7 function. We have also reported that PER1 is involved in lipid remodeling of GPI-anchored proteins, indicating that Per1p has a GPI-phospholipase A2 activity to eliminate the unsaturated fatty acyl chain at the sn-2 position of PI moiety. We further found that human PERLD1 , which is now known as an oncogene, is a functional homologue of yeast PER1 , indicating that this is a potential target for new anti-cancer drugs.
Collapse
Affiliation(s)
- Yoshifumi Jigami
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
85
|
Kinoshita T, Fujita M, Maeda Y. Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 2008; 144:287-94. [PMID: 18635593 DOI: 10.1093/jb/mvn090] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
More than 100 mammalian proteins are post-translationally modified by glycosylphosphatidylinositol (GPI) at their C-termini and are anchored to the cell surface membrane via the lipid portion. GPI-anchored proteins (GPI-APs) have various functions, such as hydrolytic enzymes, receptors, adhesion molecules, complement regulatory proteins and other immunologically important proteins. GPI-anchored proteins are mainly associated with membrane microdomains or membrane rafts enriched in sphingolipids and cholesterol. It is thought that association with membrane rafts is important for GPI-APs in signal transduction and other functions. Here, we review recent progress in studies on biosynthesis, remodelling and functions of mammalian GPI-APs.
Collapse
Affiliation(s)
- Taroh Kinoshita
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | | | | |
Collapse
|
86
|
Fujita M, Jigami Y. Lipid remodeling of GPI-anchored proteins and its function. Biochim Biophys Acta Gen Subj 2008; 1780:410-20. [PMID: 17913366 DOI: 10.1016/j.bbagen.2007.08.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 02/07/2023]
Abstract
Many proteins are attached to the cell surface via a conserved post-translational modification, the glycosylphosphatidylinositol (GPI) anchor. GPI-anchored proteins are functionally diverse, but one of their most striking features is their association with lipid microdomains, which consist mainly of sphingolipids and sterols. GPI-anchored proteins modulate various biological functions when they are incorporated into these specialized domains. The biosynthesis of GPI and its attachment to proteins occurs in the endoplasmic reticulum. The lipid moieties of GPI-anchored proteins are further modified during their transport to the cell surface, and these remodeling processes are essential for the association of proteins with lipid microdomains. Recently, several genes required for GPI lipid remodeling have been identified in yeast and mammalian cells. In this review, we describe the pathways for lipid remodeling of GPI-anchored proteins in yeast and mammalian cells, and discuss how lipid remodeling affects the association of GPI-anchored proteins with microdomains in cellular events.
Collapse
Affiliation(s)
- Morihisa Fujita
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | |
Collapse
|
87
|
Kajiwara K, Watanabe R, Pichler H, Ihara K, Murakami S, Riezman H, Funato K. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Mol Biol Cell 2008; 19:2069-82. [PMID: 18287539 DOI: 10.1091/mbc.e07-08-0740] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI), covalently attached to many eukaryotic proteins, not only acts as a membrane anchor but is also thought to be a sorting signal for GPI-anchored proteins that are associated with sphingolipid and sterol-enriched domains. GPI anchors contain a core structure conserved among all species. The core structure is synthesized in two topologically distinct stages on the leaflets of the endoplasmic reticulum (ER). Early GPI intermediates are assembled on the cytoplasmic side of the ER and then are flipped into the ER lumen where a complete GPI precursor is synthesized and transferred to protein. The flipping process is predicted to be mediated by a protein referred as flippase; however, its existence has not been proven. Here we show that yeast Arv1p is an important protein required for the delivery of an early GPI intermediate, GlcN-acylPI, to the first mannosyltransferase of GPI synthesis in the ER lumen. We also provide evidence that ARV1 deletion and mutations in other proteins involved in GPI anchor synthesis affect inositol phosphorylceramide synthesis as well as the intracellular distribution and amounts of sterols, suggesting a role of GPI anchor synthesis in lipid flow from the ER.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem J 2007; 409:555-62. [DOI: 10.1042/bj20070234] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The GPI (glycosylphosphatidylinositol) moiety is attached to newly synthesized proteins in the lumen of the ER (endoplasmic reticulum). The modified proteins are then directed to the PM (plasma membrane). Less well understood is how nascent mammalian GPI-anchored proteins are targeted from the ER to the PM. In the present study, we investigated mechanisms underlying membrane trafficking of the GPI-anchored proteins, focusing on the early secretory pathway. We first established a cell line that stably expresses inducible temperature-sensitive GPI-fused proteins as a reporter and examined roles of transport-vesicle constituents called p24 proteins in the traffic of the GPI-anchored proteins. We selectively suppressed one of the p24 proteins, namely p23, employing RNAi (RNA interference) techniques. The suppression resulted in pronounced delays of PM expression of the GPI-fused reporter proteins. Furthermore, maturation of DAF (decay-accelerating factor), one of the GPI-anchored proteins in mammals, was slowed by the suppression of p23, indicating delayed trafficking of DAF from the ER to the Golgi. Trafficking of non-GPI-linked cargo proteins was barely affected by p23 knockdown. This is the first to demonstrate direct evidence for the transport of mammalian GPI-anchored proteins being mediated by p24 proteins.
Collapse
|
89
|
Jaquenoud M, Pagac M, Signorell A, Benghezal M, Jelk J, Bütikofer P, Conzelmann A. The Gup1 homologue of Trypanosoma brucei is a GPI glycosylphosphatidylinositol remodelase. Mol Microbiol 2007; 67:202-12. [PMID: 18036137 DOI: 10.1111/j.1365-2958.2007.06043.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylphosphatidylinositol (GPI) lipids of Trypanosoma brucei undergo lipid remodelling, whereby longer fatty acids on the glycerol are replaced by myristate (C14:0). A similar process occurs on GPI proteins of Saccharomyces cerevisiae where Per1p first deacylates, Gup1p subsequently reacylates the anchor lipid, thus replacing a shorter fatty acid by C26:0. Heterologous expression of the GUP1 homologue of T. brucei in gup1Delta yeast cells partially normalizes the gup1Delta phenotype and restores the transfer of labelled fatty acids from Coenzyme A to lyso-GPI proteins in a newly developed microsomal assay. In this assay, the Gup1p from T. brucei (tbGup1p) strongly prefers C14:0 and C12:0 over C16:0 and C18:0, whereas yeast Gup1p strongly prefers C16:0 and C18:0. This acyl specificity of tbGup1p closely matches the reported specificity of the reacylation of free lyso-GPI lipids in microsomes of T. brucei. Depletion of tbGup1p in trypanosomes by RNAi drastically reduces the rate of myristate incorporation into the sn-2 position of lyso-GPI lipids. Thus, tbGup1p is involved in the addition of myristate to sn-2 during GPI remodelling in T. brucei and can account for the fatty acid specificity of this process. tbGup1p can act on GPI proteins as well as on GPI lipids.
Collapse
Affiliation(s)
- Malika Jaquenoud
- Department of Medicine/Biochemistry, University of Fribourg, Chemin du Musée 5, CH-1700, Switzerland
| | | | | | | | | | | | | |
Collapse
|
90
|
Ghugtyal V, Vionnet C, Roubaty C, Conzelmann A. CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae. Mol Microbiol 2007; 65:1493-502. [PMID: 17714445 DOI: 10.1111/j.1365-2958.2007.05883.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After glycosylphosphatidylinositols (GPIs) are added to GPI proteins of Saccharomyces cerevisiae, the fatty acid in sn-2 of the diacylglycerol moiety can be replaced by a C26:0 fatty acid by a deacylation-reacylation cycle catalysed by Per1p and Gup1p. Furthermore the diacylglycerol moiety of the yeast GPI anchor can also be replaced by ceramides. CWH43 of yeast is homologous to PGAP2, a gene that recently was implicated in a similar deacylation reacylation cycle of GPI proteins in mammalian cells, where PGAP2 is required for the reacylation of monoradylglycerol-type GPI anchors. Here we show that mutants lacking CWH43 are unable to synthesize ceramide-containing GPI anchors, while the replacement of C18 by C26 fatty acids on the primary diacylglycerol anchor by Per1p and Gup1p is still intact. CWH43 contains the COG3568 metal hydrolase motif, which is found in many eukaryotic and prokaryotic enzymes. The conserved His 802 residue of this motif was identified as being essential for ceramide remodelling. Ceramide remodelling is not required for the normal integration of GPI proteins into the cell wall. All remodelling reactions are dependent on prior removal of the inositol-linked fatty acid by Bst1p.
Collapse
Affiliation(s)
- Vikram Ghugtyal
- University of Fribourg, Department of Medicine, Ch. Du Musée 5, CH-1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
91
|
Umemura M, Fujita M, Yoko-o T, Fukamizu A, Jigami Y. Saccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides. Mol Biol Cell 2007; 18:4304-16. [PMID: 17761529 PMCID: PMC2043546 DOI: 10.1091/mbc.e07-05-0482] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored proteins are subjected to lipid remodeling during their biosynthesis. In the yeast Saccharomyces cerevisiae, the mature GPI-anchored proteins contain mainly ceramide or diacylglycerol with a saturated long-fatty acid, whereas conventional phosphatidylinositol (PI) used for GPI biosynthesis contains an unsaturated fatty acid. Here, we report that S. cerevisiae Cwh43p, whose N-terminal region contains a sequence homologous to mammalian PGAP2, is involved in the remodeling of the lipid moiety of GPI anchors to ceramides. In cwh43 disruptant cells, the PI moiety of the GPI-anchored protein contains a saturated long fatty acid and lyso-PI but not inositolphosphorylceramides, which are the main lipid moieties of GPI-anchored proteins from wild-type cells. Moreover, the C-terminal region of Cwh43p (Cwh43-C), which is not present in PGAP2, is essential for the ability to remodel GPI lipids to ceramides. The N-terminal region of Cwh43p (Cwh43-N) is associated with Cwh43-C, and it enhanced the lipid remodeling to ceramides by Cwh43-C. Our results also indicate that mouse FRAG1 and C130090K23, which are homologous to Cwh43-N and -C, respectively, share these activities.
Collapse
Affiliation(s)
- Mariko Umemura
- *Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan; and
| | - Morihisa Fujita
- *Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Takehiko Yoko-o
- *Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Akiyoshi Fukamizu
- Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Yoshifumi Jigami
- *Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan; and
| |
Collapse
|
92
|
Houjou T, Hayakawa J, Watanabe R, Tashima Y, Maeda Y, Kinoshita T, Taguchi R. Changes in molecular species profiles of glycosylphosphatidylinositol anchor precursors in early stages of biosynthesis. J Lipid Res 2007; 48:1599-606. [PMID: 17449863 DOI: 10.1194/jlr.m700095-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchor is a major lipidation in posttranslational modification. GPI anchor precursors are biosynthesized from endogenous phosphatidylinositols (PIs) and attached to proteins in the endoplasmic reticulum. Endogenous PIs are characterized by domination of diacyl species and the presence of polyunsaturated fatty acyl chain, such as 18:0-20:4, at the sn-2 position. In contrast, the features of mammalian glycosylphosphatidylinositol-anchored proteins (GPI-APs) are domination of alkyl/acyl PI species and the presence of saturated fatty acyl chains at the sn-2 position, the latter being consistent with association with lipid rafts. Recent studies showed that saturated fatty acyl chain at sn-2 is introduced by fatty acid remodeling that occurs in GPI-APs. To gain insight into the former feature, we analyzed the molecular species of several different GPI precursors derived from various mammalian mutant cell lines. Here, we show that the PI species profile greatly changed in the precursor glucosamine (GlcN)-acyl-PI and became very similar to that of GPI-APs before fatty acid remodeling. They had alkyl (or alkenyl)/acyl types with unsaturated acyl chain as the major PI species. Therefore, a specific feature of the PI moieties of mature GPI-APs, domination of alkyl (or alkenyl)/acyl type species over diacyl types, is established at the stage of GlcN-acyl-PI.
Collapse
Affiliation(s)
- Toshiaki Houjou
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
93
|
Orlean P, Menon AK. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 2007; 48:993-1011. [PMID: 17361015 DOI: 10.1194/jlr.r700002-jlr200] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins is the most complex and metabolically expensive of the lipid posttranslational modifications described to date. The GPI anchor is synthesized via a membrane-bound multistep pathway in the endoplasmic reticulum (ER) requiring >20 gene products. The pathway is initiated on the cytoplasmic side of the ER and completed in the ER lumen, necessitating flipping of a glycolipid intermediate across the membrane. The completed GPI anchor is attached to proteins that have been translocated across the ER membrane and that display a GPI signal anchor sequence at the C terminus. GPI proteins transit the secretory pathway to the cell surface; in yeast, many become covalently attached to the cell wall. Genes encoding proteins involved in all but one of the predicted steps in the assembly of the GPI precursor glycolipid and its transfer to protein in mammals and yeast have now been identified. Most of these genes encode polytopic membrane proteins, some of which are organized in complexes. The steps in GPI assembly, and the enzymes that carry them out, are highly conserved. GPI biosynthesis is essential for viability in yeast and for embryonic development in mammals. In this review, we describe the biosynthesis of mammalian and yeast GPIs, their transfer to protein, and their subsequent processing.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
94
|
Pittet M, Conzelmann A. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:405-20. [PMID: 16859984 DOI: 10.1016/j.bbalip.2006.05.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/20/2006] [Accepted: 05/22/2006] [Indexed: 11/28/2022]
Abstract
Like most other eukaryotes, Saccharomyces cerevisiae harbors a GPI anchoring machinery and uses it to attach proteins to membranes. While a few GPI proteins reside permanently at the plasma membrane, a majority of them gets further processed and is integrated into the cell wall by a covalent attachment to cell wall glucans. The GPI biosynthetic pathway is necessary for growth and survival of yeast cells. The GPI lipids are synthesized in the ER and added onto proteins by a pathway comprising 12 steps, carried out by 23 gene products, 19 of which are essential. Some of the estimated 60 GPI proteins predicted from the genome sequence serve enzymatic functions required for the biosynthesis and the continuous shape adaptations of the cell wall, others seem to be structural elements of the cell wall and yet others mediate cell adhesion. Because of its genetic tractability S. cerevisiae is an attractive model organism not only for studying GPI biosynthesis in general, but equally for investigating the intracellular transport of GPI proteins and the peculiar role of GPI anchoring in the elaboration of fungal cell walls.
Collapse
Affiliation(s)
- Martine Pittet
- Department of Medicine, Division of Biochemistry, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | | |
Collapse
|
95
|
Maeda Y, Tashima Y, Houjou T, Fujita M, Yoko-o T, Jigami Y, Taguchi R, Kinoshita T. Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell 2007; 18:1497-506. [PMID: 17314402 PMCID: PMC1838968 DOI: 10.1091/mbc.e06-10-0885] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Whereas most of the cellular phosphatidylinositol (PI) contain unsaturated fatty chains and are excluded from rafts, GPI-anchored proteins (APs) unusually contain two saturated fatty chains in their PI moiety, and they are typically found within lipid rafts. However, the origin of the saturated chains and whether they are essential for raft association are unclear. Here, we report that GPI-APs, with two saturated fatty chains, are generated from those bearing an unsaturated chain by fatty acid remodeling that occurs most likely in the Golgi and requires post-GPI-attachment to proteins (PGAP)2 and PGAP3. The surface GPI-APs isolated from the PGAP2 and -3 double-mutant Chinese hamster ovary (CHO) cells had unsaturated chains, such as oleic, arachidonic, and docosatetraenoic acids in the sn-2 position, whereas those from wild-type CHO cells had exclusively stearic acid, a saturated chain, indicating that the sn-2 chain is exchanged to a saturated chain. We then assessed the association of GPI-APs with lipid rafts. Recovery of unremodeled GPI-APs from the double-mutant cells in the detergent-resistant membrane fraction was very low, indicating that GPI-APs become competent to be incorporated into lipid rafts by PGAP3- and PGAP2-mediated fatty acid remodeling. We also show that the remodeling requires the preceding PGAP1-mediated deacylation from inositol of GPI-APs in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Yusuke Maeda
- *Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yuko Tashima
- *Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toshiaki Houjou
- Graduate School of Medicine, University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan; and
| | - Morihisa Fujita
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Takehiko Yoko-o
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshifumi Jigami
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryo Taguchi
- Graduate School of Medicine, University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan; and
| | - Taroh Kinoshita
- *Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
96
|
Fujita M, Umemura M, Yoko-o T, Jigami Y. PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol Biol Cell 2006; 17:5253-64. [PMID: 17021251 PMCID: PMC1679688 DOI: 10.1091/mbc.e06-08-0715] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glycosylphoshatidylinositol (GPI) anchors are remodeled during their transport to the cell surface. Newly synthesized proteins are transferred to a GPI anchor, consisting of diacylglycerol with conventional C16 and C18 fatty acids, whereas the lipid moiety in mature GPI-anchored proteins is exchanged to either diacylglycerol containing a C26:0 fatty acid in the sn-2 position or ceramide in Saccharomyces cerevisiae. Here, we report on PER1, a gene encoding a protein that is required for the GPI remodeling pathway. We found that GPI-anchored proteins could not associate with the detergent-resistant membranes in per1Delta cells. In addition, the mutant cells had a defect in the lipid remodeling from normal phosphatidylinositol (PI) to a C26 fatty acid-containing PI in the GPI anchor. In vitro analysis showed that PER1 is required for the production of lyso-GPI, suggesting that Per1p possesses or regulates the GPI-phospholipase A2 activity. We also found that human PERLD1 is a functional homologue of PER1. Our results demonstrate for the first time that PER1 encodes an evolutionary conserved component of the GPI anchor remodeling pathway, highlighting the close connection between the lipid remodeling of GPI and raft association of GPI-anchored proteins.
Collapse
Affiliation(s)
- Morihisa Fujita
- *Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; and
| | - Mariko Umemura
- *Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; and
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Takehiko Yoko-o
- *Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; and
| | - Yoshifumi Jigami
- *Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; and
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
97
|
Perbal B. New insight into CCN3 interactions--nuclear CCN3 : fact or fantasy? Cell Commun Signal 2006; 4:6. [PMID: 16895594 PMCID: PMC1590038 DOI: 10.1186/1478-811x-4-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 08/08/2006] [Indexed: 02/07/2023] Open
Abstract
The identification of potential partners for CCN3(NOV) sheds new light on the biological activity of this signaling protein. In particular, the physical interaction of CCN3 with the IL33 cytokine combined with previous data indicating that CCN3 expression was regulated by TNFalpha and IL1 cytokines, point to CCN3 as a potent player in a variety of inflammatory responses, including neurodegenerative disease, and arthritis. Nuclear proteins that are involved in the regulation of RNA processing and chromatin remodeling were also found to interact with CCN3. These observations reinforce the concept that routing of CCN3 to the cell nucleus where it acts as a transcription regulator, might constitute a key element in the balance between the anti- and pro-proliferative activities of CCN3 proteins.
Collapse
Affiliation(s)
- Bernard Perbal
- Laboratoire d'Oncologie Virale et Moléculaire, UFR de Biochimie, Université Paris 7-D,Diderot, 75005, Paris, France.
| |
Collapse
|
98
|
Bosson R, Jaquenoud M, Conzelmann A. GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol Biol Cell 2006; 17:2636-45. [PMID: 16597698 PMCID: PMC1474799 DOI: 10.1091/mbc.e06-02-0104] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The anchors of mature glycosylphosphatidylinositol (GPI)-anchored proteins of Saccharomyces cerevisiae contain either ceramide or diacylglycerol with a C26:0 fatty acid in the sn2 position. The primary GPI lipid added to newly synthesized proteins in the ER consists of diacylglycerol with conventional C16 and C18 fatty acids. Here we show that GUP1 is essential for the synthesis of the C26:0-containing diacylglycerol anchors. Gup1p is an ER membrane protein with multiple membrane-spanning domains harboring a motif that is characteristic of membrane-bound O-acyl-transferases (MBOAT). Gup1Delta cells make normal amounts of GPI proteins but most mature GPI anchors contain lyso-phosphatidylinositol, and others possess phosphatidylinositol with conventional C16 and C18 fatty acids. The incorporation of the normal ceramides into the anchors is also disturbed. As a consequence, the ER-to-Golgi transport of the GPI protein Gas1p is slow, and mature Gas1p is lost from the plasma membrane into the medium. Gup1Delta cells have fragile cell walls and a defect in bipolar bud site selection. GUP1 function depends on the active site histidine of the MBOAT motif. GUP1 is highly conserved among fungi and protozoa and the gup1Delta phenotype is partially corrected by GUP1 homologues of Aspergillus fumigatus and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Régine Bosson
- Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
99
|
Abstract
Glycosylphosphatidylinositol (GPI) is used for anchoring many cell surface proteins to the plasma membrane. Biosynthesis of GPI anchor, its attachment to proteins, and modification of GPI-anchored proteins (GPI-APs) en route to the plasma membrane are complex processes (Ferguson, 1999; Kinoshita and Inoue, 2000). GPI-AP-defective mutant cell lines derived from CHO and other cells have been very useful in elucidating GPI biosynthetic pathway and cloning genes involved in these processes. In this chapter, we overview GPI-AP biosynthesis, establishment and characterization of GPI-AP-defective mutant cell lines, expression cloning using those mutant cells, and characteristics of GPI-AP-defective mutant cell lines.
Collapse
Affiliation(s)
- Yusuke Maeda
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | |
Collapse
|