51
|
Bihlmaier K, Mesecke N, Kloeppel C, Herrmann JM. The disulfide relay of the intermembrane space of mitochondria: an oxygen-sensing system? Ann N Y Acad Sci 2009; 1147:293-302. [PMID: 19076451 DOI: 10.1196/annals.1427.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The intermembrane space of mitochondria contains many proteins that lack classical mitochondrial targeting sequences. Instead, these proteins often show characteristic patterns of cysteine residues that are critical for their accumulation in the organelle. Import of these proteins is catalyzed by two essential components, Mia40 and Erv1. Mia40 is a protein in the intermembrane space that directly binds newly imported proteins via disulfide bonds. By reorganization of these bonds, intramolecular disulfide bonds are formed in the imported proteins, which are thereby released from Mia40 into the intermembrane space. Because folded proteins are unable to traverse the import pore of the outer membrane, this leads to a permanent location of these proteins within the mitochondria. During this reaction, Mia40 becomes reduced and needs to be re-oxidized to regain its activity. Oxidation of Mia40 is carried out by Erv1, a conserved flavine adenine dinucleotide (FAD)-binding sulfhydryl oxidase. Erv1 directly interacts with Mia40 and shuttles electrons from reduced Mia40 to oxidized cytochrome c, from whence they flow through cytochrome oxidase to molecular oxygen. The connection of the disulfide relay with the respiratory chain not only significantly increases the efficiency of the oxidase activity, but also prevents the formation of potentially deleterious hydrogen peroxide. The oxidative activity of Erv1 strongly depends on the oxygen concentration in mitochondria. Erv1, therefore, may function as a molecular switch that adapts mitochondrial activities to the oxygen levels in the cell.
Collapse
Affiliation(s)
- Karl Bihlmaier
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | |
Collapse
|
52
|
Terziyska N, Grumbt B, Kozany C, Hell K. Structural and Functional Roles of the Conserved Cysteine Residues of the Redox-regulated Import Receptor Mia40 in the Intermembrane Space of Mitochondria. J Biol Chem 2009; 284:1353-63. [DOI: 10.1074/jbc.m805035200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
53
|
Thiol oxidation in bacteria, mitochondria and chloroplasts: Common principles but three unrelated machineries? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:71-7. [DOI: 10.1016/j.bbamcr.2008.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/25/2008] [Accepted: 05/05/2008] [Indexed: 11/18/2022]
|
54
|
Hell K, Neupert W. Oxidative Protein Folding in Mitochondria. OXIDATIVE FOLDING OF PEPTIDES AND PROTEINS 2008. [DOI: 10.1039/9781847559265-00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kai Hell
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5 81377 München Germany
| | - Walter Neupert
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München Butenandtstrasse 5 81377 München Germany
| |
Collapse
|
55
|
Reddehase S, Grumbt B, Neupert W, Hell K. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1. J Mol Biol 2008; 385:331-8. [PMID: 19010334 DOI: 10.1016/j.jmb.2008.10.088] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/24/2022]
Abstract
Cells protect themselves against oxygen stress and reactive oxygen species. An important enzyme in this process is superoxide dismutase, Sod1, which converts superoxide radicals into water and hydrogen peroxide. The biogenesis of functional Sod1 is dependent on its copper chaperone, Ccs1, which introduces a disulfide bond and a copper ion into Sod1. Ccs1 and Sod1 are present in the cytosol but are also found in the mitochondrial intermembrane space (IMS), the compartment between the outer and the inner membrane of mitochondria. Ccs1 mediates mitochondrial localization of Sod1. Here, we report on the biogenesis of the fractions of Ccs1 and Sod1 present in mitochondria of Saccharomyces cerevisiae. The IMS of mitochondria harbors a disulfide relay system consisting of the import receptor Mia40 and the thiol oxidase Erv1, which drives the import of substrates with conserved cysteine residues arranged in typical twin Cx(3)C and twin Cx(9)C motifs. We show that depletion of Mia40 results in decreased levels of Ccs1 and Sod1. On the other hand, overexpression of Mia40 increased the mitochondrial fraction of both proteins. In addition, the import rates of Ccs1 were enhanced by increased levels of Mia40 and reduced upon depletion of Mia40. Mia40 forms mixed disulfides with Ccs1, suggesting a role of Mia40 for the generation of disulfide bonds in Ccs1. We suggest that the disulfide relay system transfers disulfide bonds via Mia40 to Ccs1, which then shuttles disulfide bonds to Sod1. In conclusion, the disulfide relay system is crucial for the import of Ccs1, thereby affecting the transport of Sod1, and it can control the distribution of Ccs1 and Sod1 between the IMS of mitochondria and the cytosol.
Collapse
Affiliation(s)
- Silvia Reddehase
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 München, Germany
| | | | | | | |
Collapse
|
56
|
Mesecke N, Bihlmaier K, Grumbt B, Longen S, Terziyska N, Hell K, Herrmann JM. The zinc-binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40. EMBO Rep 2008; 9:1107-13. [PMID: 18787558 PMCID: PMC2581857 DOI: 10.1038/embor.2008.173] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 11/09/2022] Open
Abstract
A disulphide relay system mediates the import of cysteine-containing proteins into the intermembrane space of mitochondria. This system consists of two essential proteins, Mia40 and Erv1, which bind to newly imported proteins by disulphide transfer. A third component, Hot13, was proposed to be important in the biogenesis of cysteine-rich proteins of the intermembrane space, but the molecular function of Hot13 remained unclear. Here, we show that Hot13, a conserved zinc-binding protein, interacts functionally and physically with the import receptor Mia40. It improves the Erv1-dependent oxidation of Mia40 both in vivo and in vitro. As a consequence, in mutants lacking Hot13, the import of substrates of Mia40 is impaired, particularly in the presence of zinc ions. In mitochondria as well as in vitro, Hot13 can be functionally replaced by zinc-binding chelators. We propose that Hot13 maintains Mia40 in a zinc-free state, thereby facilitating its efficient oxidation by Erv1.
Collapse
Affiliation(s)
- Nikola Mesecke
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
- Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Karl Bihlmaier
- Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Barbara Grumbt
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
| | - Sebastian Longen
- Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Nadia Terziyska
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
| | - Kai Hell
- Institut für Physiologische Chemie, Universität München, Butenandtstrasse 5, 81377 München, Germany
| | - Johannes M Herrmann
- Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
57
|
Stojanovski D, Milenkovic D, Müller JM, Gabriel K, Schulze-Specking A, Baker MJ, Ryan MT, Guiard B, Pfanner N, Chacinska A. Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase. ACTA ACUST UNITED AC 2008; 183:195-202. [PMID: 18852299 PMCID: PMC2568017 DOI: 10.1083/jcb.200804095] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biogenesis of mitochondrial intermembrane space proteins depends on specific machinery that transfers disulfide bonds to precursor proteins. The machinery shares features with protein relays for disulfide bond formation in the bacterial periplasm and endoplasmic reticulum. A disulfide-generating enzyme/sulfhydryl oxidase oxidizes a disulfide carrier protein, which in turn transfers a disulfide to the substrate protein. Current views suggest that the disulfide carrier alternates between binding to the oxidase and the substrate. We have analyzed the cooperation of the disulfide relay components during import of precursors into mitochondria and identified a ternary complex of all three components. The ternary complex represents a transient and intermediate step in the oxidation of intermembrane space precursors, where the oxidase Erv1 promotes disulfide transfer to the precursor while both oxidase and precursor are associated with the disulfide carrier Mia40.
Collapse
Affiliation(s)
- Diana Stojanovski
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Chacinska A, Guiard B, Müller JM, Schulze-Specking A, Gabriel K, Kutik S, Pfanner N. Mitochondrial biogenesis, switching the sorting pathway of the intermembrane space receptor Mia40. J Biol Chem 2008; 283:29723-9. [PMID: 18779329 DOI: 10.1074/jbc.m805356200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial precursor proteins are directed into the intermembrane space via two different routes, the presequence pathway and the redox-dependent MIA pathway. The pathways were assumed to be independent and transport different proteins. We report that the intermembrane space receptor Mia40 can switch between both pathways. In fungi, Mia40 is synthesized as large protein with an N-terminal presequence, whereas in metazoans and plants, Mia40 consists only of the conserved C-terminal domain. Human MIA40 and the C-terminal domain of yeast Mia40 (termed Mia40(core)) rescued the viability of Mia40-deficient yeast independently of the presence of a presequence. Purified Mia40(core) was imported into mitochondria via the MIA pathway. With cells expressing both full-length Mia40 and Mia40(core), we demonstrate that yeast Mia40 contains dual targeting information, directing the large precursor onto the presequence pathway and the smaller Mia40(core) onto the MIA pathway, raising interesting implications for the evolution of mitochondrial protein sorting.
Collapse
Affiliation(s)
- Agnieszka Chacinska
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
59
|
Hu J, Dong L, Outten CE. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 2008; 283:29126-34. [PMID: 18708636 DOI: 10.1074/jbc.m803028200] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Redox control in the mitochondrion is essential for the proper functioning of this organelle. Disruption of mitochondrial redox processes contributes to a host of human disorders, including cancer, neurodegenerative diseases, and aging. To better characterize redox control pathways in this organelle, we have targeted a green fluorescent protein-based redox sensor to the intermembrane space (IMS) and matrix of yeast mitochondria. This approach allows us to separately monitor the redox state of the matrix and the IMS, providing a more detailed picture of redox processes in these two compartments. To verify that the sensors respond to localized glutathione (GSH) redox changes, we have genetically manipulated the subcellular redox state using oxidized GSH (GSSG) reductase localization mutants. These studies indicate that redox control in the cytosol and matrix are maintained separately by cytosolic and mitochondrial isoforms of GSSG reductase. Our studies also demonstrate that the mitochondrial IMS is considerably more oxidizing than the cytosol and mitochondrial matrix and is not directly influenced by endogenous GSSG reductase activity. These redox measurements are used to predict the oxidation state of thiol-containing proteins that are imported into the IMS.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
60
|
Koehler CM, Tienson HL. Redox regulation of protein folding in the mitochondrial intermembrane space. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:139-45. [PMID: 18761382 DOI: 10.1016/j.bbamcr.2008.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 11/29/2022]
Abstract
Protein translocation pathways to the mitochondrial matrix and inner membrane have been well characterized. However, translocation into the intermembrane space, which was thought to be simply a modification of the traditional translocation pathways, is complex. The mechanism by which a subset of intermembrane space proteins, those with disulfide bonds, are translocated has been largely unknown until recently. Specifically, the intermembrane space proteins with disulfide bonds are imported via the mitochondrial intermembrane space assembly (MIA) pathway. Substrates are imported via a disulfide exchange relay with two components Mia40 and Erv1. This new breakthrough has resulted in novel concepts for assembly of proteins in the intermembrane space, suggesting that this compartment may be similar to that of the endoplasmic reticulum and the prokaryotic periplasm. As a better understanding of this pathway emerges, new paradigms for thiol-disulfide exchange mechanisms may be developed. Given that the intermembrane space is important for disease processes including apoptosis and neurodegeneration, new roles in regulation by oxidation-reduction chemistry seem likely to be relevant.
Collapse
Affiliation(s)
- Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Box 951569, Los Angeles, CA 90095-1569, USA.
| | | |
Collapse
|
61
|
Horn D, Barrientos A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 2008; 60:421-9. [PMID: 18459161 DOI: 10.1002/iub.50] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis.
Collapse
Affiliation(s)
- Darryl Horn
- Department of Biochemistry & Molecular Biology, The John T. MacDonald Foundation Center for Medical Genetics,University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | |
Collapse
|
62
|
Mokranjac D, Neupert W. Thirty years of protein translocation into mitochondria: unexpectedly complex and still puzzling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:33-41. [PMID: 18672008 DOI: 10.1016/j.bbamcr.2008.06.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/16/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
Abstract
Mitochondria are essential organelles of the eukaryotic cells that are made by expansion and division of pre-existing mitochondria. The majority of their protein constituents are synthesized in the cytosol. They are transported into and put together within the organelle. This complex process is facilitated by several protein translocases. Here we summarize current knowledge on these sophisticated molecular machines that mediate recognition, transport across membranes and intramitochondrial sorting of many hundreds of mitochondrial proteins.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Institute for Physiological Chemistry, Ludwig-Maximilians University, Butenandtstr. 5, 81377 Munich, Germany
| | | |
Collapse
|
63
|
Chu ZL, Wang J, Yang YS, Tang LJ, Chen H, Yang XM, Wang SY. Identification of interaction between hepatopoietin 205 and cytochrome C. Shijie Huaren Xiaohua Zazhi 2008; 16:1281-1286. [DOI: 10.11569/wcjd.v16.i12.1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the interaction between hepatopoietin 205 (HPO205) and cytochrome C (Cytc).
METHODS: The coding genes of HPO205 and Cytc, amplified by polymerase chain reaction, were cloned into pDBLeu and pPC86 vector respectively. The interaction was confirmed by co-transformation with the recombinant plasmids into MaV203 of yeast two-hybrid system (Y2H), and verified by GST-Pull down assay simultaneously.
RESULTS: The coding genes of HPO205 and Cytc were successfully cloned into relevant vectors, and the obtained vectors were named as pDBLeu-GRER, pDBLeu-CYCS, pPC86-GFER and pPC86-CYCS. After Y2H identification, we found that co-transformation of pDBLeu-GFER pPC86-CYCS activated reporter genes Ura and His, but co-transformation of pDBLeu-CYCS and pPC86-GFER activated no reporter genes. GST-Pull down assay showed that HPO205 was deposited by GST-CYCS, but not by GST, verifying the interaction between HPO205 and Cytc.
CONCLUSION: The interaction between HPO205 and Cytc suggests that HPO205 participates in the biology processes of electron transfer or (and) apoptosis via Cytc.
Collapse
|
64
|
Lionaki E, de Marcos Lousa C, Baud C, Vougioukalaki M, Panayotou G, Tokatlidis K. The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain. J Biol Chem 2008; 283:15747-53. [PMID: 18387953 DOI: 10.1074/jbc.m800350200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small Tims chaperone hydrophobic precursors across the mitochondrial intermembrane space. Tim9 and Tim10 form the soluble TIM10 complex that binds precursors exiting from the outer membrane. Tim12 functions downstream, as the only small Tim peripherally attached on the inner membrane. We show that Tim12 has an intrinsic affinity for inner mitochondrial membrane lipids, in contrast to the other small Tims. We find that the C-terminal end of Tim12 is essential in vivo. Its deletion crucially abolishes assembly of Tim12 in complexes with the other Tims. The N-terminal end contains targeting information and also mediates direct binding of Tim12 to the transmembrane segments of the carrier substrates. These results provide a molecular basis for the concept that the essential role of Tim12 relies on its unique assembly properties that allow this subunit to bridge the soluble and membrane-embedded translocases in the carrier import pathway.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 71110, Crete, Greece
| | | | | | | | | | | |
Collapse
|
65
|
Hell K. The Erv1–Mia40 disulfide relay system in the intermembrane space of mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:601-9. [DOI: 10.1016/j.bbamcr.2007.12.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/05/2007] [Accepted: 12/10/2007] [Indexed: 11/26/2022]
|