51
|
Wang SA, Hung CY, Chuang JY, Chang WC, Hsu TI, Hung JJ. Phosphorylation of p300 increases its protein degradation to enhance the lung cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1135-49. [PMID: 24530506 DOI: 10.1016/j.bbamcr.2014.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 01/05/2023]
Abstract
p300 is a transcription cofactor for a number of nuclear proteins. Most studies of p300 have focused on the regulation of its function, which primarily includes its role as a transcription co-factor for a number of nuclear proteins. In this study, we found that p300 was highly phosphorylated and its level was decreased during mitosis and tumorigenesis. In vitro and in vivo experiments aimed showed that cyclin-dependent kinase 1 (CDK1) and ERK1/2 phosphorylated p300 on Ser1038 and Ser2039. Mutations of Ser1038 and Ser2039 increased p300 protein stability and levels. Inhibition of p300 degradation by blocking its phosphorylation decreased the proliferation and metastasis activity of lung cancer cells, indicating that p300 acts as a tumor suppressor in lung cancer tumorigenesis. Investigation of the molecular mechanism showed that blocking p300 phosphorylation disrupted chromatin condensation and the increased the acetylation of histone H3. Analysis of cell cycle progression in HA-p300-S2A-expressing cells by flow cytometry showed that the p300 mutants arrested the cells at S-phase or delayed the mitotic entry and exit. The expression of several important oncogenes, MMP-9, vimentin, β-catenin, N-cadherin and c-myc, was negatively regulated by p300. In conclusion, during lung tumorigenesis, a phosphorylation-mediated decrease in p300 level enhanced oncogene expression during interphase and decreased histone H3 acetylation during mitosis, which promoted lung cancer progression.
Collapse
Affiliation(s)
- Shao-An Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | - Chia-Yang Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | - Jian-Ying Chuang
- Neural Regenerative Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Chang Chang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan; Center for Infectious Disease and Signal Transduction, National Cheng-Kung University, Tainan 701, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-I Hsu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Center for Infectious Disease and Signal Transduction, National Cheng-Kung University, Tainan 701, Taiwan
| | - Jan-Jong Hung
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan; Center for Infectious Disease and Signal Transduction, National Cheng-Kung University, Tainan 701, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
52
|
Zhang R, Wang Y, Li J, Jin H, Song S, Huang C. The Chinese herb isolate yuanhuacine (YHL-14) induces G2/M arrest in human cancer cells by up-regulating p21 protein expression through an p53 protein-independent cascade. J Biol Chem 2014; 289:6394-6403. [PMID: 24451377 DOI: 10.1074/jbc.m113.513960] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yuanhuacine (YHL-14), the major component of daphnane diterpene ester isolated from the flower buds of Daphne genkwa, has been reported to have activity against cell proliferation in various cancer cell lines. Nevertheless, the potential mechanism has not been explored yet. Here we demonstrate that YHL-14 inhibits bladder and colon cancer cell growth through up-regulation of p21 expression in an Sp1-dependent manner. We found that YHL-14 treatment resulted in up-regulation of p21 expression and a significant G2/M phase arrest in T24T and HCT116 cells without affecting p53 protein expression and activation. Further studies indicate that p21 induction by YHL-14 occurs at the transcriptional level via up-regulation of Sp1 protein expression. Moreover, our results show that p38 is essential for YHL-14-mediated Sp1 protein stabilization, G2/M growth arrest induction, and anchorage-independent growth inhibition of cancer cells. Taken together, our studies demonstrate a novel mechanism of YHL-14 against cancer cell growth in bladder and colon cancer cell lines, which provides valuable information for the design and synthesis of other new conformation-constrained derivatives on the basis of the structure of YHL-14 for cancer therapy.
Collapse
Affiliation(s)
- Ruowen Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987; Key Laboratory of Structure-based Drug Design and Discovery, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yulei Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Shaojiang Song
- Key Laboratory of Structure-based Drug Design and Discovery, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.
| |
Collapse
|
53
|
Yang L, Huang K, Li X, Du M, Kang X, Luo X, Gao L, Wang C, Zhang Y, Zhang C, Tong Q, Huang K, Zhang F, Huang D. Identification of poly(ADP-ribose) polymerase-1 as a cell cycle regulator through modulating Sp1 mediated transcription in human hepatoma cells. PLoS One 2013; 8:e82872. [PMID: 24367566 PMCID: PMC3868549 DOI: 10.1371/journal.pone.0082872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022] Open
Abstract
The transcription factor Sp1 is implicated in the activation of G0/G1 phase genes. Modulation of Sp1 transcription activities may affect G1-S checkpoint, resulting in changes in cell proliferation. In this study, our results demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP-1) promoted cell proliferation by inhibiting Sp1 signaling pathway. Cell proliferation and cell cycle assays demonstrated that PARP inhibitors or PARP-1 siRNA treatment significantly inhibited proliferation of hepatoma cells and induced G0/G1 cell cycle arrest in hepatoma cells, while overexpression of PARP-1 or PARP-1 activator treatment promoted cell cycle progression. Simultaneously, inhibition of PARP-1 enhanced the expression of Sp1-mediated checkpoint proteins, such as p21 and p27. In this study, we also showed that Sp1 was poly(ADP-ribosyl)ated by PARP-1 in hepatoma cells. Poly(ADP-ribosyl)ation suppressed Sp1 mediated transcription through preventing Sp1 binding to the Sp1 response element present in the promoters of target genes. Taken together, these data indicated that PARP-1 inhibition attenuated the poly(ADP-ribosyl)ation of Sp1 and significantly increased the expression of Sp1 target genes, resulting in G0/G1 cell cycle arrest and the decreased proliferative ability of the hepatoma cells.
Collapse
Affiliation(s)
- Liu Yang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangrao Li
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Du
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Kang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangsong Tong
- Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
54
|
Okada M, Sato A, Shibuya K, Watanabe E, Seino S, Suzuki S, Seino M, Narita Y, Shibui S, Kayama T, Kitanaka C. JNK contributes to temozolomide resistance of stem-like glioblastoma cells via regulation of MGMT expression. Int J Oncol 2013; 44:591-9. [PMID: 24316756 DOI: 10.3892/ijo.2013.2209] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/18/2013] [Indexed: 11/05/2022] Open
Abstract
While elimination of the cancer stem cell population is increasingly recognized as a key to successful treatment of cancer, the high resistance of cancer stem cells to conventional chemoradiotherapy remains a therapeutic challenge. O6-methylguanine DNA methyltransferase (MGMT), which is frequently expressed in cancer stem cells of glioblastoma, has been implicated in their resistance to temozolomide, the first-line chemotherapeutic agent against newly diagnosed glioblastoma. However, much remains unknown about the molecular regulation that underlies MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. Here, we identified JNK as a novel player in the control of MGMT expression and temozolomide resistance of glioblastoma cancer stem cells. We showed that inhibition of JNK, either pharmacologically or by RNA interference, in stem-like glioblastoma cells derived directly from glioblastoma tissues reduces their MGMT expression and temozolomide resistance. Importantly, sensitization of stem-like glioblastoma cells to temozolomide by JNK inhibition was dependent on MGMT expression, implying that JNK controls temozolomide resistance of stem-like glioblastoma cells through MGMT expression. Our findings suggest that concurrent use of JNK inhibitors with temozolomide may be a rational therapeutic approach to effectively target the cancer stem cell population in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Atsushi Sato
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Keita Shibuya
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Eriko Watanabe
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Manabu Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Soichiro Shibui
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takamasa Kayama
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
55
|
Liao CK, Jeng CJ, Wang HS, Wang SH, Wu JC. Lipopolysaccharide induces degradation of connexin43 in rat astrocytes via the ubiquitin-proteasome proteolytic pathway. PLoS One 2013; 8:e79350. [PMID: 24236122 PMCID: PMC3827358 DOI: 10.1371/journal.pone.0079350] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/30/2013] [Indexed: 11/20/2022] Open
Abstract
The astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway. In the present study, treatment of astrocytes with LPS resulted in a significant increase in levels of the phosphorylated forms of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) -1, -2, and -3 for up to 18 h. An increase in nuclear transcription factor NF-κB levels was also observed after 8 h of LPS treatment and was sustained for up to 18 h. The LPS-induced decrease in Cx43 protein levels and inhibition of GJIC were blocked by the SAPK/JNK inhibitor SP600125, but not by the NF-κB inhibitor BAY11-7082. Following blockade of de novo protein synthesis by cycloheximide, LPS accelerated Cx43 degradation. Moreover, the LPS-induced downregulation of Cx43 was blocked following inhibition of 26S proteasome activity using the reversible proteasome inhibitor MG132 or the irreversible proteasome inhibitor lactacystin. Immunoprecipitation analyses revealed an increased association of Cx43 with both ubiquitin and E3 ubiquitin ligase Nedd4 in astrocytes after LPS stimulation for 6 h and this effect was prevented by SP600125. Taken together, these results suggest that LPS stimulation leads to downregulation of Cx43 expression and GJIC in rat astrocytes by activation of SAPK/JNK and the ubiquitin-proteasome proteolytic pathway.
Collapse
Affiliation(s)
- Chih-Kai Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiahn-Chun Wu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
56
|
Tajitsu Y, Ikeda R, Nishizawa Y, Mataki H, Che XF, Sumizawa T, Nitta M, Yamaguchi T, Yamamoto M, Tabata S, Akiyama SI, Yamada K, Furukawa T, Takeda Y. Molecular basis for the expression of major vault protein induced by hyperosmotic stress in SW620 human colon cancer cells. Int J Mol Med 2013; 32:703-8. [PMID: 23820674 DOI: 10.3892/ijmm.2013.1428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/09/2013] [Indexed: 11/05/2022] Open
Abstract
Major vault protein (MVP) is identical to lung resistance-related protein (LRP), which is the major component of vaults. Vaults are considered to play a protective role against xenobiotics and other types of stress. In a previous study, we reported that the expression levels of MVP in SW620 human colon cancer cells were increased in hypertonic culture medium with sucrose. However, the molecular mechanism behind the induction of MVP expression by osmotic stress has not yet been elucidated. Therefore, in the present study, we investigated the mechanism behind the induction of MVP expression by osmotic stress. Under hyperosmotic stress conditions, the ubiquitination of specificity protein 1 (Sp1) decreased, Sp1 protein levels increased, its binding to the MVP promoter was enhanced, and small interfering RNA (siRNA) for Sp1 suppressed the induction of MVP expression. The inhibition of c-jun N-terminal kinase (JNK) by SP600125, a specific JNK inhibitor, decreased the expression of MVP and Sp1 under hyperosmotic conditions. Our data indicate that the stabilization and upregulation of Sp1 protein expression by JNK participate in the inhibition of the ubiquitination and degradation of Sp1, and thus in the induction of MVP expression under hyperosmotic conditions.
Collapse
Affiliation(s)
- Yusuke Tajitsu
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Vlachostergios PJ, Voutsadakis IA, Papandreou CN. The role of ubiquitin-proteasome system in glioma survival and growth. Growth Factors 2013; 31:106-13. [PMID: 23688106 DOI: 10.3109/08977194.2013.799156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High-grade gliomas represent a group of aggressive brain tumors with poor prognosis due to an inherent capacity of persistent cell growth and survival. The ubiquitin-proteasome system (UPS) is an intracellular machinery responsible for protein turnover. Emerging evidence implicates various proteins targeted for degradation by the UPS in key survival and proliferation signaling pathways of these tumors. In this review, we discuss the involvement of UPS in the regulation of several mediators and effectors of these pathways in malignant gliomas.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Larissa, Greece.
| | | | | |
Collapse
|
58
|
Pang L, Zhang Y, Yu Y, Zhang S. Resistin promotes the expression of vascular endothelial growth factor in ovary carcinoma cells. Int J Mol Sci 2013; 14:9751-66. [PMID: 23652833 PMCID: PMC3676810 DOI: 10.3390/ijms14059751] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 12/16/2022] Open
Abstract
Resistin is a novel hormone that is secreted by human adipocytes and mononuclear cells and is associated with obesity, insulin resistance and inflammation. Recently, resistin has been postulated to play a role in angiogenesis. Here, we investigated the hypothesis that resistin regulates ovary carcinoma production of vascular endothelial growth factor (VEGF) and the angiogenic processes. We found that in human ovarian epithelial carcinoma cells (HO-8910), resistin (10–150 ng/mL) enhanced both VEGF protein and mRNA expression in a time- and concentration-dependent manner, as well as promoter activity. Furthermore, resistin enhanced DNA-binding activity of Sp1 with VEGF promoter in a PI3K/Akt-dependent manner. PI3K/Akt activated by resistin led to increasing interaction with Sp1, triggering a progressive phosphorylation of Sp1 on Thr453 and Thr739, resulting in the upregulation of VEGF expression. In an in vitro angiogenesis system for endothelial cells (EA.hy926) co-cultured with HO-8910 cells, we observed that the addition of resistin stimulated endothelial cell tube formation, which could be abolished by VEGF neutralizing antibody. Our findings suggest that the PI3K/Akt-Sp1 pathway is involved in resistin-induced VEGF expression in HO-8910 cells and indicates that antiangiogenesis therapy may be beneficial treatment against ovarian epithelial carcinoma, especially in obese patients.
Collapse
Affiliation(s)
- Li Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China; E-Mail:
| | - Yu Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-24-966-151-41211
| |
Collapse
|
59
|
Chuang CW, Pan MR, Hou MF, Hung WC. Cyclooxygenase-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 in breast cancer cells. J Cell Physiol 2013; 228:341-8. [PMID: 22718198 DOI: 10.1002/jcp.24136] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Up-regulation of cyclooxygenase-2 (COX-2) is frequently found in human cancers and is significantly associated with tumor metastasis. Our previous results demonstrate that COX-2 and its metabolite prostaglandin E2 (PGE2) stimulate the expression of CCR7 chemokine receptor via EP2/EP4 receptors to promote lymphatic invasion in breast cancer cells. In this study, we address the underlying mechanism of COX-2/PGE2-induced CCR7 expression. We find that COX-2/PGE2 increase CCR7 expression via the AKT signaling pathway in breast cancer cells. Promoter deletion and mutation assays identify the Sp1 site located at the -60/-57 region of CCR7 gene promoter is critical for stimulation. Chromatin immunoprecipitation (ChIP) assay confirms that in vivo binding of Sp1 to human CCR7 promoter is increased by COX-2 and PGE2. Knockdown of Sp1 by shRNA reduces the induction of CCR7 by PGE2. We demonstrate for the first time that AKT may directly phosphorylate Sp1 at S42, T679, and S698. Phosphorylation-mimic Sp1 protein harboring S42D, T679D, and S698D mutation strongly activates CCR7 expression. In contrast, change of these three residues to alanine completely blocks the induction of CCR7 by PGE2. Pathological investigation demonstrates that CCR7 expression is strongly associated with phospho-AKT and Sp1 in 120 breast cancer tissues. Collectively, our results demonstrate that COX-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 and this pathway is highly activated in metastatic breast cancer.
Collapse
Affiliation(s)
- Chun-Wei Chuang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
60
|
Functional role of post-translational modifications of Sp1 in tumorigenesis. J Biomed Sci 2012; 19:94. [PMID: 23148884 PMCID: PMC3503885 DOI: 10.1186/1423-0127-19-94] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 12/17/2022] Open
Abstract
Specific protein 1 (Sp1), the first transcription factor to be isolated, regulates the expression of numerous genes involved in cell proliferation, apoptosis, and differentiation. Recent studies found that an increase in Sp1 transcriptional activity is associated with the tumorigenesis. Moreover, post-translational modifications of Sp1, including glycosylation, phosphorylation, acetylation, sumoylation, ubiquitination, and methylation, regulate Sp1 transcriptional activity and modulate target gene expression by affecting its DNA binding activity, transactivation activity, or protein level. In addition, recent studies have investigated several compounds with anti-cancer activity that could inhibit Sp1 transcriptional activity. In this review, we describe the effect of various post-translational modifications on Sp1 transcriptional activity and discuss compounds that inhibit the activity of Sp1.
Collapse
|
61
|
Transcriptional regulation by post-transcriptional modification—Role of phosphorylation in Sp1 transcriptional activity. Gene 2012; 508:1-8. [DOI: 10.1016/j.gene.2012.07.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/22/2012] [Accepted: 07/16/2012] [Indexed: 01/05/2023]
|
62
|
Hsu TI, Wang MC, Chen SY, Huang ST, Yeh YM, Su WC, Chang WC, Hung JJ. Betulinic Acid Decreases Specificity Protein 1 (Sp1) Level via Increasing the Sumoylation of Sp1 to Inhibit Lung Cancer Growth. Mol Pharmacol 2012; 82:1115-28. [DOI: 10.1124/mol.112.078485] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
63
|
Saito M, Kohara M, Tsukiyama-Kohara K. Hepatitis C virus promotes expression of the 3β-hydroxysterol δ24-reductase through Sp1. J Med Virol 2012; 84:733-46. [PMID: 22431021 DOI: 10.1002/jmv.23250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus (HCV) establishes chronic infection, which often causes hepatocellular carcinoma. Overexpression of 3β-hydroxysterol Δ24-reductase (DHCR24) by HCV has been shown to impair the p53-mediated cellular response, resulting in tumorigenesis. In the present study, the molecular mechanism by which HCV promotes the expression of DHCR24 was investigated. A significant increase in DHCR24 mRNA transcription was observed in a cell line expressing complete HCV genome, whereas no significant difference in the expression of DHCR24 was seen in cell lines expressing individual viral proteins. The 5'-flanking genomic region of DHCR24 was characterized to explore the genomic region and host factor(s) involved in the transcriptional regulation of DHCR24. As a result, the HCV response element (-167/-140) was identified, which contains AP-2α, MZF-1, and Sp1 binding motifs. The binding affinity of the host factor to this response element was increased in nuclear extracts from cells infected with HCV and corresponded with augmented affinity of Sp1. Both mithramycin A (Sp1 inhibitor) and small interfering RNA targeting Sp1 prevented the binding of host factors to the response element. Silencing of Sp1 also downregulated the increased expression of DHCR24. The binding affinity of Sp1 to the response element was augmented by oxidative stress, whereas upregulation of DHCR24 in cells expressing HCV was blocked significantly by a reactive oxygen species scavenger. Elevated phosphorylation of Sp1 in response to oxidative stress was mediated by the ATM kinase. Thus, activation of Sp1 by oxidative stress is involved in the promotion of expression of DHCR24 by HCV.
Collapse
Affiliation(s)
- Makoto Saito
- Department of Experimental Phylaxiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | | |
Collapse
|
64
|
Hepatitis C virus sensitizes host cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 via a MEK1-dependent pathway. PLoS One 2012; 7:e37700. [PMID: 22662193 PMCID: PMC3360765 DOI: 10.1371/journal.pone.0037700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/22/2012] [Indexed: 12/20/2022] Open
Abstract
Background Hepatitis C virus (HCV) is the leading cause of liver fibrosis, cirrhosis and hepatocellular carcinoma. It is believed that continuous liver cell apoptosis contributes to HCV pathogenesis. Recent studies have shown that HCV infection can sensitize host cells to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis, but the mechanism by which HCV regulates the TRAIL pathway remains unclear. Methods and Results Using a sub-genomic replicon and full length virus, JFH-1, we demonstrate that HCV can sensitize host cells to TRAIL-induced apoptosis by up-regulating two TRAIL receptors, death receptor 4 (DR4) and death receptor 5 (DR5). Furthermore, the HCV replicon enhanced transcription of DR5 via Sp1, and the HCV-mediated up-regulation of DR4 and DR5 required MEK1 activity. HCV infection also stimulated the activity of MEK1, and the inhibition of MEK1 activity or the knockdown of MEK1 increased the replication of HCV. Conclusions Our studies demonstrate that HCV replication sensitizes host cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 via a MEK1 dependent pathway. These findings may help to further understand the pathogenesis of HCV infection and provide a therapeutic target.
Collapse
|
65
|
Park JH, Kim SR, An HJ, Kim WJ, Choe M, Han JA. Esculetin promotes type I procollagen expression in human dermal fibroblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem 2012; 368:61-7. [PMID: 22581442 DOI: 10.1007/s11010-012-1342-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/03/2012] [Indexed: 11/24/2022]
Abstract
Type I collagen is the major constituent of the skin and the reduction of dermal type I collagen content is closely associated with the intrinsic skin aging. We here found that esculetin, 6,7-dihydroxycoumarin, strongly induces type I procollagen expression in human dermal fibroblasts. Esculetin not only increased protein levels of type I procollagen but also increased mRNA levels of COL1A1 but not COL1A2. Esculetin activated the MAPKs (ERK1/2, p38, JNK) and PI3K/Akt pathways, through which it promoted the type I procollagen expression. We also demonstrated that the binding motifs for transcription factor Sp1 occur with the highest frequency in the COL1A1 promoter and that esculetin increases the Sp1 expression through the MAPK and PI3K/Akt pathways. These results suggest that esculetin promotes type I procollagen expression through the MAPK and PI3K/Akt pathways and that Sp1 might be involved in the esculetin-induced type I procollagen expression via activation of the COL1A1 transcription.
Collapse
Affiliation(s)
- Jung Hae Park
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon 200-701, South Korea
| | | | | | | | | | | |
Collapse
|
66
|
Nishiyama A, Dey A, Tamura T, Ko M, Ozato K. Activation of JNK triggers release of Brd4 from mitotic chromosomes and mediates protection from drug-induced mitotic stress. PLoS One 2012; 7:e34719. [PMID: 22567088 PMCID: PMC3342290 DOI: 10.1371/journal.pone.0034719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 03/08/2012] [Indexed: 01/11/2023] Open
Abstract
Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK) pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2-/- embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress.
Collapse
Affiliation(s)
- Akira Nishiyama
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Kanagawa, Japan
- Section on Developmental Genomics and Aging, Laboratory of Genetics, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Anup Dey
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Minoru Ko
- Section on Developmental Genomics and Aging, Laboratory of Genetics, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Keiko Ozato
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
67
|
Ribas VT, Gonçalves BS, Linden R, Chiarini LB. Activation of c-Jun N-terminal kinase (JNK) during mitosis in retinal progenitor cells. PLoS One 2012; 7:e34483. [PMID: 22496813 PMCID: PMC3319587 DOI: 10.1371/journal.pone.0034483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/05/2012] [Indexed: 01/19/2023] Open
Abstract
Most studies of c-Jun N-terminal Kinase (JNK) activation in retinal tissue were done in the context of neurodegeneration. In this study, we investigated the behavior of JNK during mitosis of progenitor cells in the retina of newborn rats. Retinal explants from newborn rats were kept in vitro for 3 hours and under distinct treatments. Sections of retinal explants or freshly fixed retinal tissue were used to detect JNK phosphorylation by immunohistochemistry, and were examined through both fluorescence and confocal microscopy. Mitotic cells were identified by chromatin morphology, histone-H3 phosphorylation, and location in the retinal tissue. The subcellular localization of proteins was analyzed by double staining with both a DNA marker and an antibody to each protein. Phosphorylation of JNK was also examined by western blot. The results showed that in the retina of newborn rats (P1), JNK is phosphorylated during mitosis of progenitor cells, mainly during the early stages of mitosis. JNK1 and/or JNK2 were preferentially phosphorylated in mitotic cells. Inhibition of JNK induced cell cycle arrest, specifically in mitosis. Treatment with the JNK inhibitor decreased the number of cells in anaphase, but did not alter the number of cells in either prophase/prometaphase or metaphase. Moreover, cells with aberrant chromatin morphology were found after treatment with the JNK inhibitor. The data show, for the first time, that JNK is activated in mitotic progenitor cells of developing retinal tissue, suggesting a new role of JNK in the control of progenitor cell proliferation in the retina.
Collapse
Affiliation(s)
| | | | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brasil
| | | |
Collapse
|
68
|
JNK1 inhibits GluR1 expression and GluR1-mediated calcium influx through phosphorylation and stabilization of Hes-1. J Neurosci 2012; 32:1826-46. [PMID: 22302822 DOI: 10.1523/jneurosci.3380-11.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The GluR1 subunit of the AMPA receptor plays an important role in excitatory synaptic transmission and synaptic plasticity in the brain, but the regulation mechanism for GluR1 expression is largely unknown. Hairy and enhancer of split 1 (Hes-1) is a mammalian transcription repressor that regulates neuronal differentiation and development, but the role of Hes-1 in differentiated neurons is also less known. Here, we examined the molecular mechanism in regulation of GluR1 expression in rat cultured cortical neurons. We found that Hes-1 suppressed GluR1 promoter activity and decreased GluR1 expression through direct binding to the N-box and through preventing Mash1/E47 from binding to the E-box of GluR1 promoter. We also found that Hes-1 could be regulated by c-Jun N-terminal kinase (JNK1). JNK1 directly phosphorylates Hes-1 at Ser-263. Furthermore, JNK1 phosphorylation of Hes-1 stabilized the Hes-1 protein and enhanced the suppressing effect of Hes-1 on GluR1 expression. These effects were demonstrated both in the soma and at the synapse. Moreover, this JNK1-mediated signaling pathway was found to inhibit AMPA-evoked calcium influx in cortical neurons and this regulation mechanism is Notch independent. Here, we provided the first evidence that Hes-1 plays an important role in synaptic function in differentiated neurons. We also identified a novel JNK1-Hes-1 signaling pathway that regulates GluR1 expression involved in synaptic function in rat cortical neurons.
Collapse
|
69
|
Feng J, Zhang Y, Xing D. Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 2012; 24:1116-25. [PMID: 22326662 DOI: 10.1016/j.cellsig.2012.01.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/10/2012] [Accepted: 01/26/2012] [Indexed: 12/11/2022]
Abstract
Angiogenesis, the growth of new blood vessels from pre-existing vessels, represents an excellent therapeutic target for the treatment of wound healing and cardiovascular disease. Herein, we report that LPLI (low-power laser irradiation) activates ERK/Sp1 (extracellular signal-regulated kinase/specificity protein 1) pathway to promote VEGF expression and vascular endothelial cell proliferation. We demonstrate for the first time that LPLI enhances DNA-binding and transactivation activity of Sp1 on VEGF promoter in vascular endothelial cells. Moreover, Sp1-regulated transcription is in an ERK-dependent manner. Activated ERK by LPLI translocates from cytoplasm to nuclear and leads to increasing interaction with Sp1, triggering a progressive phosphorylation of Sp1 on Thr453 and Thr739, resulting in the upregulation of VEGF expression. Furthermore, selective inhibition of Sp1 by mithramycin-A or shRNA suppresses the promotion effect of LPLI on cell cycle progression and proliferation, which is also significantly abolished by inhibition of ERK activity. These findings highlight the important roles of ERK/Sp1 pathway in angiogenesis, supplying potential strategy for angiogenesis-related diseases with LPLI treatment.
Collapse
Affiliation(s)
- Jie Feng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
70
|
Chuang JY, Wang SA, Yang WB, Yang HC, Hung CY, Su TP, Chang WC, Hung JJ. Sp1 phosphorylation by cyclin-dependent kinase 1/cyclin B1 represses its DNA-binding activity during mitosis in cancer cells. Oncogene 2012; 31:4946-59. [PMID: 22266860 DOI: 10.1038/onc.2011.649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sp1 is important for the transcription of many genes. Our previous studies have shown that Sp1 is degraded in normal cell, but it is preserved in cancer cells during mitosis and exists a priori in the daughter cells, ready to engage in gene transcription and thereby contributes to the proliferation and survival of cancer cells. The mechanism by which Sp1 is preserved in cancer cells during mitosis remains unknown. In this study, we observed that Sp1 strongly colocalized with cyclin-dependent kinase 1 (CDK1)/cyclin B1 during mitosis. Moreover, we showed that Sp1 is a novel mitotic substrate of CDK1/cyclin B1 and is phosphorylated by it at Thr 739 before the onset of mitosis. Phospho-Sp1 reduced its DNA-binding ability and facilitated the chromatin condensation process during mitosis. Mutation of Thr739 to alanine resulted in Sp1 remaining in the chromosomes, delayed cell-cycle progression, and eventually led to apoptosis. Screening of Sp1-associated proteins during mitosis by using liquid chromatography/mass spectrometry indicated the tethering of Sp1 to myosin/F-actin. Furthermore, phospho-Sp1 and myosin/F-actin appeared to exist as a congregated ring at the periphery of the chromosome. However, at the end of mitosis and the beginning of interphase, Sp1 was dephosphorylated by PP2A and returned to the chromatin. These results indicate that cancer cells use CDK1 and PP2A to regulate the movement of Sp1 in and out of the chromosomes during cell-cycle progression, which may benefit cancer-cell proliferation.
Collapse
Affiliation(s)
- J-Y Chuang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Ushijima H, Maeda M. Inhibitors of protein kinases affecting cAMP-dependent proteolysis of GATA-6. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abc.2012.24051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
72
|
Chuang JY, Chang WC, Hung JJ. Hydrogen peroxide induces Sp1 methylation and thereby suppresses cyclin B1 via recruitment of Suv39H1 and HDAC1 in cancer cells. Free Radic Biol Med 2011; 51:2309-18. [PMID: 22036763 DOI: 10.1016/j.freeradbiomed.2011.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 12/31/2022]
Abstract
Sp1 is an important transcription factor for a number of genes that regulate cell growth and survival. Sp1 is an anchor protein that recruits other factors to regulate its target genes positively or negatively, but the mechanism of its functional switch by which positive or negative coregulators are recruited is not clear. In this study, we found that Sp1 could be methylated and that methylation was maintained by treatment with pargyline, a lysine-specific demethylase 1 (LSD1) inhibitor or knock LSD1 down directly. Hydrogen peroxide treatment increased the methylation of Sp1 and repressed Sp1 transcriptional activity. Investigation of the mechanism by which methylation decreased Sp1 activity found that methylation of Sp1 increased the recruitment of Su(var) 3-9 homologue 1(Suv39H1) and histone deacetylase 1 (HDAC1) to the cyclin B1 promoter, resulting in deacetylation and methylation of histone H3 and subsequent downregulation of cyclin B1. Finally, downregulation of cyclin B1 led to cell cycle arrest at the G2 phase. These results show that methylation of Sp1 causes it to act as a negative regulator by recruiting Suv39H1 and HDAC1 to induce chromatin remodeling. This finding that methylation acts as a functional switch provides new insight into the modulation of Sp1 transcriptional activity.
Collapse
Affiliation(s)
- Jian-Ying Chuang
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
73
|
Abstract
The role of specificity protein 1 (Sp1) in controlling gene expression in lung tumor development and metastasis is not well understood. In this study, we showed that the Sp1 level was highly increased and required for lung tumor growth in transgenic mice bearing Kras-induced lung tumors under the control of doxycycline. Furthermore, the Sp1 level was highly upregulated in lung adenocarcinoma cells with low invasiveness and in patients with stage I lung cancer. We also demonstrated that Sp1 was downregulated in lung adenocarcinoma cells with high invasiveness and in patients with stage IV lung adenocarcinoma. Moreover, Sp1 inversely regulated migration, invasion and metastasis of lung adenocarcinoma cells in vivo. In addition, a decrease in the Sp1 level in highly invasive lung adenocarcinoma cells resulted from instability of the Sp1 protein. Furthermore, overexpression of Sp1 in highly invasive lung adenocarcinoma cells increased expression of E-cadherin, a suppressor of metastasis, and attenuated the translocation of β-catenin into the cellular nucleus that leads to tumor malignancy. Taken together, Sp1 level accumulated strongly in early stage and then declined in late stage, which is important for lung cancer cell proliferation and metastasis during tumorigenesis.
Collapse
|
74
|
Lin PY, Lin YL, Huang CC, Chen SS, Liu YW. Inorganic arsenic in drinking water accelerates N-butyl-N-(4-hydroxybutyl)nitrosamine-induced bladder tissue damage in mice. Toxicol Appl Pharmacol 2011; 259:27-37. [PMID: 22178741 DOI: 10.1016/j.taap.2011.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
Abstract
Epidemiological studies have revealed that exposure to an arsenic-contaminated environment correlates with the incidence of bladder cancer. Bladder cancer is highly recurrent after intravesical therapy, and most of the deaths from this disease are due to invasive metastasis. In our present study, the role of inorganic arsenic in bladder carcinogenesis is characterized in a mouse model. This work provides the first evidence that inorganic arsenic in drinking water promotes N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced bladder tissue damage, including the urothelium and submucosal layer. This damage to the bladder epithelium induced by BBN includes thickening of the submucosal layer, the loss of the glycosaminoglycan layer and an increase in both the deoxyguanosine oxidation and cytosine methylation levels in the DNA. Further, when 10ppm inorganic arsenic is combined with BBN, the number of bladder submucosal capillaries is increased. In addition, inorganic arsenic also increases the deoxyguanosine oxidation level, alters the cytosine methylation state, decreases the activities of glutathione reductase and glucose-6-phosphate dehydrogenase, decreases the protein expression of NAD(P)H quinone oxidoreductase-1 (NQO-1) and increases the protein expression of specific protein 1 (Sp1) in bladder tissues. In summary, our data reveal that inorganic arsenic in drinking water promotes the BBN-induced pre-neoplastic damage of bladder tissue in mice, and that the 8-hydroxy-2'-deoxyguanosine, 5-methylcytosine, NQO-1 protein and Sp1 protein levels may be pre-neoplastic markers of bladder tumors.
Collapse
Affiliation(s)
- Paul-Yann Lin
- Department of Pathology, Chang Gung Memorial Hospital at Chiayi, Chang Gung University, Chiayi, Taiwan
| | | | | | | | | |
Collapse
|
75
|
Wang YT, Yang WB, Chang WC, Hung JJ. Interplay of Posttranslational Modifications in Sp1 Mediates Sp1 Stability during Cell Cycle Progression. J Mol Biol 2011; 414:1-14. [DOI: 10.1016/j.jmb.2011.09.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 07/08/2011] [Accepted: 09/14/2011] [Indexed: 12/11/2022]
|
76
|
Stress-stimulated mitogen-activated protein kinases control the stability and activity of the Cdt1 DNA replication licensing factor. Mol Cell Biol 2011; 31:4405-16. [PMID: 21930785 DOI: 10.1128/mcb.06163-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA replication is tightly coordinated both with cell cycle cues and with responses to extracellular signals to maintain genome stability. We discovered that human Cdt1, an essential origin licensing protein whose activity must be restricted to G(1) phase, is a substrate of the stress-activated mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). These MAP kinases phosphorylate Cdt1 both during unperturbed G(2) phase and during an acute stress response. Phosphorylation renders Cdt1 resistant to ubiquitin-mediated degradation during S phase and after DNA damage by blocking Cdt1 binding to the Cul4 adaptor, Cdt2. Mutations that block normal cell cycle-regulated MAP kinase-mediated phosphorylation interfere with rapid Cdt1 reaccumulation at the end of S phase. Phosphomimetic mutations recapitulate the stabilizing effects of Cdt1 phosphorylation but also reduce the ability of Cdt1 to support origin licensing. Two other CRL4(Cdt2) targets, the cyclin-dependent kinase (CDK) inhibitor p21 and the methyltransferase PR-Set7/Set8, are similarly stabilized by MAP kinase activity. These findings support a model in which MAP kinase activity in G(2) promotes reaccumulation of a low-activity Cdt1 isoform after replication is complete.
Collapse
|
77
|
Fulciniti M, Amin S, Nanjappa P, Rodig S, Prabhala R, Li C, Minvielle S, Tai YT, Tassone P, Avet-Loiseau H, Hideshima T, Anderson KC, Munshi NC. Significant biological role of sp1 transactivation in multiple myeloma. Clin Cancer Res 2011; 17:6500-9. [PMID: 21856768 DOI: 10.1158/1078-0432.ccr-11-1036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The transcription factor specificity protein 1 (Sp1) controls number of cellular processes by regulating the expression of critical cell cycle, differentiation, and apoptosis-related genes containing proximal GC/GT-rich promoter elements. We here provide experimental and clinical evidence that Sp1 plays an important regulatory role in multiple myeloma (MM) cell growth and survival. EXPERIMENTAL DESIGN We have investigated the functional Sp1 activity in MM cells using a plasmid with Firefly luciferase reporter gene driven by Sp1-responsive promoter. We have also used both siRNA- and short hairpin RNA-mediated Sp1 knockdown to investigate the growth and survival effects of Sp1 on MM cells and further investigated the anti-MM activity of terameprocol (TMP), a small molecule that specifically competes with Sp1-DNA binding in vitro and in vivo. RESULTS We have confirmed high Sp1 activity in MM cells that is further induced by adhesion to bone marrow stromal cells (BMSC). Sp1 knockdown decreases MM cell proliferation and induces apoptosis. Sp1-DNA binding inhibition by TMP inhibits MM cell growth both in vitro and in vivo, inducing caspase-9-dependent apoptosis and overcoming the protective effects of BMSCs. CONCLUSIONS Our results show Sp1 as an important transcription factor in myeloma that can be therapeutically targeted for clinical application by TMP.
Collapse
Affiliation(s)
- Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Augustin R, Lichtenthaler SF, Greeff M, Hansen J, Wurst W, Trümbach D. Bioinformatics identification of modules of transcription factor binding sites in Alzheimer's disease-related genes by in silico promoter analysis and microarrays. Int J Alzheimers Dis 2011; 2011:154325. [PMID: 21559189 PMCID: PMC3090009 DOI: 10.4061/2011/154325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/15/2011] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.
Collapse
Affiliation(s)
- Regina Augustin
- Institute of Developmental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH), Technical University Munich, Ingolstädter Landstraße 1, Munich 85764, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
79
|
Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway. Biochem Biophys Res Commun 2011; 407:587-92. [DOI: 10.1016/j.bbrc.2011.03.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
|
80
|
Xu J, Zhu D, He S, Spee C, Ryan SJ, Hinton DR. Transcriptional regulation of bone morphogenetic protein 4 by tumor necrosis factor and its relationship with age-related macular degeneration. FASEB J 2011; 25:2221-33. [PMID: 21411747 DOI: 10.1096/fj.10-178350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic protein-4 (BMP4) may be involved in the molecular switch that determines which late form of age-related macular degeneration (AMD) an individual develops. BMP4 expression is high in retinal pigment epithelium (RPE) cells in late, dry AMD patients, while BMP4 expression is low in the wet form of the disease, characterized by choroidal neovascularization (CNV). Here, we sought to determine the mechanism by which BMP4 is down-regulated in CNV. BMP4 expression was decreased within laser-induced CNV lesions in mice at a time when tumor necrosis factor (TNF) expression was high (7 d postlaser) and was reexpressed in RPE when TNF levels declined (14 d postlaser). We found that TNF, an important angiogenic stimulus, significantly down-regulates BMP4 expression in cultured human fetal RPE cells, ARPE-19 cells, and RPE cells in murine posterior eye cup explants. We identified two specificity protein 1 (Sp1) binding sites in the BMP4 promoter that are required for basal expression of BMP4 and its down-regulation by TNF. Through c-Jun NH(2)-terminal kinase (JNK) activation, TNF modulates Sp1 phosphorylation, thus decreasing its affinity to the BMP4 promoter. The down-regulation of BMP4 expression by TNF in CNV and mechanisms established might be useful for defining novel targets for AMD therapy.
Collapse
Affiliation(s)
- Jing Xu
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
81
|
Lu XF, Li EM, Du ZP, Xie JJ, Guo ZY, Gao SY, Liao LD, Shen ZY, Xie D, Xu LY. Specificity protein 1 regulates fascin expression in esophageal squamous cell carcinoma as the result of the epidermal growth factor/extracellular signal-regulated kinase signaling pathway activation. Cell Mol Life Sci 2010; 67:3313-29. [PMID: 20502940 PMCID: PMC11115853 DOI: 10.1007/s00018-010-0382-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 04/10/2010] [Accepted: 04/21/2010] [Indexed: 02/05/2023]
Abstract
The overexpression of fascin in human carcinomas is associated with aggressive clinical phenotypes and poor prognosis. However, the molecular mechanism underlying the increased expression of fascin in cancer cells is largely unknown. Here, we identified a Sp1 binding element located at -70 to -60 nts of the FSCN1 promoter and validated that Sp1 specifically bound to this element in esophageal carcinoma cells. Fascin expression was enhanced by Sp1 overexpression and blocked by Sp1 RNAi knockdown. Specific inhibition of ERK1/2 decreased phosphorylation levels of Sp1, and thus suppressed the transcription of the FSCN1, resulting in the down-regulation of fascin. Stimulation with EGF could enhance fascin expression via activating the ERK1/2 pathway and increasing phosphorylation levels of Sp1. These data suggest that FSCN1 transcription may be subjected to the regulation of the EGF/EGFR signaling pathway and can be used as a viable biomarker to predict the efficacy of EGFR inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiao-Feng Lu
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Ze-Peng Du
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Zhang-Yan Guo
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Shu-Ying Gao
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Zhong-Ying Shen
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| | - Dong Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, People’s Republic of China
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041 People’s Republic of China
| |
Collapse
|
82
|
Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat 2010; 192:275-83. [PMID: 20810260 DOI: 10.1016/j.aanat.2010.07.010] [Citation(s) in RCA: 448] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Sp1 and Sp3 are transcription factors expressed in all mammalian cells. These factors are involved in regulating the transcriptional activity of genes implicated in most cellular processes. Dysregulation of Sp1 and Sp3 is observed in many cancers and diseases. Due to the amino acid sequence similarity of the DNA binding domains, Sp1 and Sp3 recognize and associate with the same DNA element with similar affinity. However, others and our laboratory demonstrated that these two factors possess different properties and exert different functional roles. Both Sp1 and Sp3 can interact with and recruit a large number of proteins including the transcription initiation complex, histone modifying enzymes and chromatin remodeling complexes, which strongly suggest that Sp1 and Sp3 are important transcription factors in the remodeling chromatin and the regulation of gene expression. In this review, the role of Sp1 and Sp3 in normal and cancer cell biology and the multiple mechanisms deciding the functional roles of Sp1 and Sp3 will be presented.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | |
Collapse
|
83
|
Gutierrez GJ, Tsuji T, Cross JV, Davis RJ, Templeton DJ, Jiang W, Ronai ZA. JNK-mediated phosphorylation of Cdc25C regulates cell cycle entry and G(2)/M DNA damage checkpoint. J Biol Chem 2010; 285:14217-28. [PMID: 20220133 DOI: 10.1074/jbc.m110.121848] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Jun NH(2)-terminal Kinases (JNKs) play a central role in the cellular response to a wide variety of stress signals. After their activation, JNKs induce phosphorylation of substrates, which control proliferation, migration, survival, and differentiation. Recent studies suggest that JNKs may also play a role in cell cycle control, although the underlying mechanisms are largely unexplored. Here we show that JNK directly phosphorylates Cdc25C at serine 168 during G(2) phase of the cell cycle. Cdc25C phosphorylation by JNK negatively regulates its phosphatase activity and thereby Cdk1 activation, enabling a timely control of mitosis onset. Unrestrained phosphorylation by JNK, as obtained by a cell cycle-stabilized form of JNK or as seen in some human tumors, results in aberrant cell cycle progression. Additionally, UV irradiation-induced G(2)/M checkpoint requires inactivation of Cdc25C by JNK phosphorylation. JNK phosphorylation of Cdc25C as well as Cdc25A establishes a novel link between stress signaling and unperturbed cell cycle and checkpoint pathways.
Collapse
Affiliation(s)
- Gustavo J Gutierrez
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Takabe W, Li R, Ai L, Yu F, Berliner JA, Hsiai TK. Oxidized low-density lipoprotein-activated c-Jun NH2-terminal kinase regulates manganese superoxide dismutase ubiquitination: implication for mitochondrial redox status and apoptosis. Arterioscler Thromb Vasc Biol 2010; 30:436-41. [PMID: 20139358 DOI: 10.1161/atvbaha.109.202135] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Oxidized low-density lipoprotein (oxLDL) modulates intracellular redox status and induces apoptosis in endothelial cells. However, the signal pathways and molecular mechanism remain unknown. In this study, we investigated the role of manganese superoxide dismutase (Mn-SOD) on oxLDL-induced apoptosis via c-Jun NH2-terminal kinase (JNK)-mediated ubiquitin/proteasome pathway. METHODS AND RESULTS OxLDL induced JNK phosphorylation that peaked at 30 minutes in human aortic endothelial cells. Fluorescence-activated cell sorting analysis revealed that oxLDL increased mitochondrial superoxide production by 1.88+/-0.19-fold and mitochondrial membrane potential by 18%. JNK small interference RNA (siJNK) reduced oxLDL-induced mitochondrial superoxide production by 88.4% and mitochondrial membrane potential by 61.7%. OxLDL did not affect Mn-SOD mRNA expression, but it significantly reduced Mn-SOD protein level, which was restored by siJNK. Immunoprecipitation by ubiquitin antibody revealed that oxLDL increased ubiquitination of Mn-SOD, which was inhibited by siJNK. OxLDL-induced caspase-3 activities were also attenuated by siJNK but were enhanced by Mn-SOD small interfering RNA. Furthermore, overexpression of Mn-SOD abrogated oxLDL-induced caspase-3 activities. CONCLUSIONS OxLDL-induced JNK activation regulates mitochondrial redox status and Mn-SOD protein degradation via JNK-dependent ubiquitination, leading to endothelial cell apoptosis.
Collapse
Affiliation(s)
- Wakako Takabe
- Department of Biomedical Engineering and Division of Cardiovascular Medicine, School of Medicine and School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
85
|
Distinct regulation of insulin receptor substrate-1 and -2 by 90-kDa heat-shock protein in adrenal chromaffin cells. Neurochem Int 2010; 56:42-50. [DOI: 10.1016/j.neuint.2009.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/24/2009] [Accepted: 08/31/2009] [Indexed: 12/16/2022]
|
86
|
JNK-mediated turnover and stabilization of the transcription factor p45/NF-E2 during differentiation of murine erythroleukemia cells. Proc Natl Acad Sci U S A 2009; 107:52-7. [PMID: 19966288 DOI: 10.1073/pnas.0909153107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of the homeostatic concentrations of specific sets of transcription factors is essential for correct programming of cell proliferation and differentiation. We have characterized the signal transduction pathways regulating the catabolisis of p45/NF-E2, a bZIP factor activating the erythroid and megakaryocytic gene transcription. Through use of different approaches including nano-scale proteomics, we show that activated-JNK, or Phospho-JNK (P-JNK), physically interacts with p45/NF-E2 and phosphorylates its Ser157 residue. This reaction leads to the poly-ubiquitination of p45/NF-E2 at one or more of six Lys residues, one of which being also a sumoylation site, and its degradation through the proteasome pathway. Significantly, this regulatory pathway of p45/NF-E2 by P-JNK exists only in uninduced murine erythroleukemia (MEL) cells but not in differentiated MEL cells in which JNK is inactivated on DMSO induction. Based on the above data and analysis of the chromatin-binding kinetics of p45/NF-E2 and the erythroid gene repressor Bach1 during the early phase of MEL differentiation, we suggest a model for the regulation of erythroid maturation. In the model, the posttranslational modifications and turnover of p45/NF-E2, as mediated by P-JNK, contribute to the control of its homeostatic concentration and consequently, its regulatory functions in the progression of erythroid differentiation and erythroid gene expression.
Collapse
|
87
|
Dey A, Nishiyama A, Karpova T, McNally J, Ozato K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell 2009; 20:4899-909. [PMID: 19812244 DOI: 10.1091/mbc.e09-05-0380] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
On entry into mitosis, many transcription factors dissociate from chromatin, resulting in global transcriptional shutdown. During mitosis, some genes are marked to ensure the inheritance of their expression in the next generation of cells. The nature of mitotic gene marking, however, has been obscure. Brd4 is a double bromodomain protein that localizes to chromosomes during mitosis and is implicated in holding mitotic memory. In interphase, Brd4 interacts with P-TEFb and functions as a global transcriptional coactivator. We found that throughout mitosis, Brd4 remained bound to the transcription start sites of many M/G1 genes that are programmed to be expressed at the end of, or immediately after mitosis. In contrast, Brd4 did not bind to genes that are expressed at later phases of cell cycle. Brd4 binding to M/G1 genes increased at telophase, the end phase of mitosis, coinciding with increased acetylation of histone H3 and H4 in these genes. Increased Brd4 binding was accompanied by the recruitment of P-TEFb and de novo M/G1 gene transcription, the events impaired in Brd4 knockdown cells. In sum, Brd4 marks M/G1 genes for transcriptional memory during mitosis, and upon exiting mitosis, this mark acts as a signal for initiating their prompt transcription in daughter cells.
Collapse
Affiliation(s)
- Anup Dey
- Laboratory of Molecular Growth Regulation, Program in Genomics of Differentiation, National Institute of Child Health and Human Development and Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
88
|
Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, Meunier J, Michallet MC, Laugraud A, Ah-Soon C, Wierinckx A, Castellazzi M, Lachuer J, Gautier C, Marvel J, Leverrier Y. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS One 2009; 4:e7035. [PMID: 19753117 PMCID: PMC2737146 DOI: 10.1371/journal.pone.0007035] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/13/2009] [Indexed: 11/18/2022] Open
Abstract
Background The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. Methodology and Principal Findings We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. Conclusion This study shows that the binding to DNA of overexpressed Sp1 induces an inhibition of cell cycle progression that precedes apoptosis and a transcriptional response targeting genes containing Sp1 binding sites in their promoter or not suggesting both direct Sp1-driven transcription and indirect mechanisms.
Collapse
Affiliation(s)
- Emmanuelle Deniaud
- Inserm, U851, Lyon, France
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
| | - Joël Baguet
- Inserm, U851, Lyon, France
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
| | - Roxane Chalard
- Inserm, U851, Lyon, France
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
| | - Bariza Blanquier
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
| | - Lilia Brinza
- Inserm, U851, Lyon, France
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
| | - Julien Meunier
- Inserm, U851, Lyon, France
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
| | - Marie-Cécile Michallet
- Inserm, U851, Lyon, France
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
| | | | | | | | - Marc Castellazzi
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
- Inserm, U758, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | - Jacqueline Marvel
- Inserm, U851, Lyon, France
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
- * E-mail: (JM); (YL)
| | - Yann Leverrier
- Inserm, U851, Lyon, France
- Université Lyon1, IFR128, Lyon, France
- Université de Lyon, Lyon, France
- * E-mail: (JM); (YL)
| |
Collapse
|
89
|
Chuang JY, Wu CH, Lai MD, Chang WC, Hung JJ. Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int J Cancer 2009; 125:2066-76. [PMID: 19588484 DOI: 10.1002/ijc.24563] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Numerous studies have documented that Sp1 expression level were elevated in various human cancers. However, the promoters of many pro-apoptotic genes have been found to contain the Sp1 binding elements and are activated by Sp1 overexpression. To better understand the role and the mechanism of increased Sp1 levels on apoptosis, we used adenovirus to ectopically express GFP-Sp1 protein in various cancer cell lines. First, in HeLa and A549 cells, we found that Sp1 overexpression suppressed the cell growth and increased the detection of sub-G1 fraction, caspase-3 cleavage, and annexin-V signal revealed that apoptosis occurred. Furthermore, when cells entered the mitotic stage, the cell apoptosis was induced by Sp1 overexpression through affecting mitotic chromatin packaging. We also verified that p53 protein was accumulated and activated the p53-dependent apoptotic pathways in the wild-type p53 cells but not in the p53-mutated or p53-deleted cell lines when these cells were infected with adeno-GFP-Sp1 virus. In addition, A549 (p53(+/+)) cells could be protected from apoptosis under Sp1 overexpression when p53 was knockdown by p53 shRNA. Finally, H1299 (p53(-/-)) cell viability was significantly inhibited by adeno-GFP-Sp1 virus infection in the expression of p53. In conclusion, p53 was an essential factor for Sp1 overexpression-induced apoptotic cell death in transforming cells.
Collapse
Affiliation(s)
- Jian-Ying Chuang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
90
|
Huang PH, Wang D, Chuang HC, Wei S, Kulp SK, Chen CS. alpha-Tocopheryl succinate and derivatives mediate the transcriptional repression of androgen receptor in prostate cancer cells by targeting the PP2A-JNK-Sp1-signaling axis. Carcinogenesis 2009; 30:1125-31. [PMID: 19420015 DOI: 10.1093/carcin/bgp112] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of our effort to understand the mechanism underlying alpha-tocopheryl succinate [vitamin E succinate (VES)]-mediated antitumor effects, we investigated the signaling pathway by which VES suppresses androgen receptor (AR) expression in prostate cancer cells. VES and, to a greater extent, its truncated derivative TS-1 mediated transcriptional repression of AR in prostate cancer cells but not in normal prostate epithelial cells; a finding that underscores the differential susceptibility of normal versus malignant cells to the antiproliferative effect of these agents. This AR repression was attributable to the ability of VES and TS-1 to facilitate the proteasomal degradation of the transcription factor Sp1. This mechanistic link was corroborated by the finding that proteasome inhibitors or ectopic expression of Sp1 protected cells against drug-induced AR ablation. Furthermore, evidence suggests that the destabilization of Sp1 by VES and TS-1 resulted from the inactivation of Jun N-terminal kinases (JNKs) as a consequence of increased phosphatase activity of protein phosphatase 2A (PP2A). Stable transfection of LNCaP cells with the dominant-negative JNK1 plasmid mimicked drug-induced Sp1 repression, whereas constitutive activation of JNK kinase activity or inhibition of PP2A activity by okadaic acid protected Sp1 from VES- and TS-1-induced degradation. From a mechanistic perspective, the ability of VES and TS-1 to activate PP2A activity underscores their broad spectrum of effects on multiple signaling mechanisms, including those mediated by Akt, mitogen-activated protein kinases, nuclear factor kappaB, Sp1 and AR. This pleiotropic effect in conjunction with low toxicity suggests the translational potential for developing TS-1 into potent PP2A-activating agents for cancer therapy.
Collapse
Affiliation(s)
- Po-Hsien Huang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
91
|
Wei S, Chuang HC, Tsai WC, Yang HC, Ho SR, Paterson AJ, Kulp SK, Chen CS. Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up-regulation of beta-transducin repeat-containing protein. Mol Pharmacol 2009; 76:47-57. [PMID: 19372209 DOI: 10.1124/mol.109.055376] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This study investigated the mechanism by which the transcription factor Sp1 is degraded in prostate cancer cells. We recently developed a thiazolidinedione derivative, (Z)-5-(4-hydroxy-3-trifluoromethylbenzylidene)-3-(1-methylcyclohexyl)-thiazolidine-2,4-dione (OSU-CG12), that induces Sp1 degradation in a manner paralleling that of glucose starvation. Based on our finding that thiazolidinediones suppress beta-catenin and cyclin D1 by up-regulating the E3 ligase SCF(beta-TrCP), we hypothesized that beta-transducin repeat-containing protein (beta-TrCP) targets Sp1 for proteasomal degradation in response to glucose starvation or OSU-CG12. Here we show that either treatment of LNCaP cells increased specific binding of Sp1 with beta-TrCP. This direct binding was confirmed by in vitro pull-down analysis with bacterially expressed beta-TrCP. Although ectopic expression of beta-TrCP enhanced the ability of OSU-CG12 to facilitate Sp1 degradation, suppression of endogenous beta-TrCP function by a dominant-negative mutant or small interfering RNA-mediated knockdown blocked OSU-CG12-facilitated Sp1 ubiquitination and/or degradation. Sp1 contains a C-terminal conventional DSG destruction box ((727)DSGAGS(732)) that mediates beta-TrCP recognition and encompasses a glycogen synthase kinase 3beta (GSK3beta) phosphorylation motif (SXXXS). Pharmacological and molecular genetic approaches and mutational analyses indicate that extracellular signal-regulated kinase-mediated phosphorylation of Thr739 and GSK3beta-mediated phosphorylation of Ser728 and Ser732 were critical for Sp1 degradation. The ability of OSU-CG12 to mimic glucose starvation to activate beta-TrCP-mediated Sp1 degradation has translational potential to foster novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Shuo Wei
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Kim HS, Lim IK. Phosphorylated extracellular signal-regulated protein kinases 1 and 2 phosphorylate Sp1 on serine 59 and regulate cellular senescence via transcription of p21Sdi1/Cip1/Waf1. J Biol Chem 2009; 284:15475-86. [PMID: 19318349 DOI: 10.1074/jbc.m808734200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of p21(Sdi1) downstream of p53 is essential for induction of cellular senescence, although cancer cell senescence can also occur in the p53 null condition. We report herein that senescence-associated phosphorylated extracellular signal-regulated protein kinases 1 and 2 (SA-pErk1/2) enhanced p21(Sdi1) transcription by phosphorylating Sp1 on Ser(59) downstream of protein kinase C (PKC) alpha. Reactive oxygen species (ROS), which was increased in cellular senescence, significantly activated both PKCalpha and PKCbetaI. However, PKCalpha, but not PKCbetaI, regulated ROS generation and cell proliferation in senescent cells along with activation of cdk2, proven by siRNAs. PKCalpha-siRNA also reduced SA-pErk1/2 expression in old human diploid fibroblast cells, accompanied with changes of senescence phenotypes to young cell-like. Regulation of SA-pErk1/2 was also confirmed by using catalytically active PKCalpha and its DN-mutant construct. These findings strongly suggest a new pathway to regulate senescence phenotypes by ROS via Sp1 phosphorylation between PKCalpha and SA-pErk1/2: employing GST-Sp1 mutants and MEK inhibitor analyses, we found that SA-pErk1/2 regulated Sp1 phosphorylation on the Ser(59) residue in vivo, but not threonine, in cellular senescence, which regulated transcription of p21(Sdi1) expression. In summary, PKCalpha, which was activated in senescent cells by ROS strongly activated Erk1/2, and the SA-pErk1/2 in turn phosphorylated Sp1 on Ser(59). Sp1-enhanced transcription of p21(Sdi1) resulted in regulation of cellular senescence in primary human diploid fibroblast cells.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, Korea
| | | |
Collapse
|
93
|
|
94
|
Wang SA, Chuang JY, Yeh SH, Wang YT, Liu YW, Chang WC, Hung JJ. Heat shock protein 90 is important for Sp1 stability during mitosis. J Mol Biol 2009; 387:1106-19. [PMID: 19245816 DOI: 10.1016/j.jmb.2009.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 01/08/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Our previous study has revealed that heat shock protein (Hsp) 90 can interact with Sp1 to regulate the transcriptional activity of 12(S)-lipoxygenase. Herein, we further found that the interaction between Hsp90 and Sp1 occurred during mitosis. By geldanamycin (GA) treatment and knockdown of Hsp90, we found that this interaction during mitosis was involved in the maintenance of Sp1 stability, and that the phospho-c-Jun N-terminal kinase (JNK)-1 level also decreased. As the JNK-1 was knocked down by the shRNA of JNK-1, Sp1 was degraded through a ubiquitin-dependent proteasome pathway. In addition, for mutation of the JNK-1 phosphorylated residues of Sp1, namely, Sp1(T278/739A) and Sp1(T278/739D), the effect of GA on Sp1 stability was reversed. Finally, based on the involvement of Hsp90 in Sp1 stability, the transcriptional activities of p21(WAF1/CIP1) and 12(S)-lipoxygenase under GA treatment were observed to have decreased. Taken together, Hsp90 is important for maintaining Sp1 stability during mitosis by the JNK-1-mediated phosphorylation of Sp1 to enable division into daughter cells and to regulate the expression of related genes in the interphase.
Collapse
Affiliation(s)
- Shao-An Wang
- Institute of Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
95
|
Delcuve GP, He S, Davie JR. Mitotic partitioning of transcription factors. J Cell Biochem 2008; 105:1-8. [PMID: 18459122 DOI: 10.1002/jcb.21806] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitosis is a highly orchestrated process involving numerous protein kinases and phosphatases. At the onset of mitosis, the chromatin condensation into metaphase chromosomes is correlated with global phosphorylation of histone H3. The bulk of transcription is silenced while many of the transcription-associated proteins, including transcription and chromatin remodeling factors, are excluded from chromatin, typically as a consequence of their phosphorylation. Components of the transcription machinery and regulatory proteins are recycled and equally partitioned between newly divided cells by mechanisms that may involve microtubules, microfilaments or intermediate filaments. However, as demonstrated in the case of Runx2, a subset of transcription factors involved in lineage-specific control, likely remain associated with their target genes to direct the deposition or removal of epigenetic marks. The displacement and re-entry into daughter cells of transcription and chromatin remodeling factors are temporally defined and regulated. Reformation of daughter nuclei is a critical time to re-establish the proper gene expression pattern. The mechanisms involved in the marking and re-establishment of gene expression has been elucidated for few genes. The elucidation of how the memory of a programmed expression profile is transmitted to daughter cells represents a challenge.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0V9
| | | | | |
Collapse
|
96
|
Katz S, Boland R, Santillán G. Purinergic (ATP) signaling stimulates JNK1 but not JNK2 MAPK in osteoblast-like cells: contribution of intracellular Ca2+ release, stress activated and L-voltage-dependent calcium influx, PKC and Src kinases. Arch Biochem Biophys 2008; 477:244-52. [PMID: 18625195 DOI: 10.1016/j.abb.2008.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/23/2008] [Accepted: 06/25/2008] [Indexed: 12/30/2022]
Abstract
This work shows that ATP activates JNK1, but not JNK2, in rat osteoblasts and ROS-A 17/2.8 osteoblast-like cells. In ROS-A 17/2.8 cells ATP induced JNK1 phosphorylation in a dose- and time-dependent manner. JNK1 phosphorylation also increased after osteoblast stimulation with ATPgammaS and UTP, but not with ADPbetaS. RT-PCR studies supported the expression of P2Y(2) receptor subtype. ATP-induced JNK1 activation was reduced by PI-PLC, IP(3) receptor, PKC and Src inhibitors and by gadolinium, nifedipine and verapamil or a Ca(2+)-free medium. ERK 1/2 or p38 MAPK inhibitors diminished JNK1 activation by ATP, suggesting a cross-talk between these pathways. ATP stimulated osteoblast-like cell proliferation consistent with the participation of P2Y(2) receptors. These results show that P2Y(2) receptor stimulation by ATP induces JNK1 phosphorylation in ROS-A 17/2.8 cells in a way dependent on PI-PLC/IP(3)/intracellular Ca(2+) release and Ca(2+) influx through stress activated and L-type voltage-dependent calcium channels and involves PKC and Src kinases.
Collapse
Affiliation(s)
- Sebastián Katz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina
| | | | | |
Collapse
|
97
|
Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process. J Mol Biol 2008; 380:869-85. [PMID: 18572193 DOI: 10.1016/j.jmb.2008.05.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 11/22/2022]
Abstract
Although specificity protein 1 (Sp1) accumulation has been found in various tumor strains, its mechanism is still not very clear. Herein, we found that modification of Sp1 by SUMO-1 facilitates Sp1 degradation. Our findings revealed that, although the amounts of Sp1 and Sp1 mutant (K16R) [Sp1(K16R)] mRNA in cells were equal, the protein level of Sp1(K16R) was higher than that of wild-type Sp1. We also proved that this sumoylation site was not the residue at which ubiquitination occurred. Invitro and in vivo pull-down assays revealed that more sumoylated Sp1 was localized in the cytoplasm, and the interaction between SUMO-1-Sp1 and the proteasome subunit rpt6 in HeLa cells was enhanced. In addition, although Sp1 accumulated in the tumorous cervical tissue, it was not prone to sumoylation. Finally, by overexpression of HA (hemagglutinin)-SUMO-1-Sp1-myc, HA-Sp1-myc, and HA-Sp1(K16R), we found that modification of Sp1 by SUMO-1 was important for Sp1 proteolysis. In conclusion, modification of Sp1 by SUMO-1 altered its localization and then increased its interaction with rpt6. This interaction increased the efficiency of Sp1 proteolytic processing and ubiquitination and then resulted in Sp1 degradation. Therefore, sumoylation of Sp1 is attenuated during tumorigenesis in order to increase Sp1 stability.
Collapse
|