51
|
Xin M, Dong XW, Guo XL. Role of the interaction between galectin-3 and cell adhesion molecules in cancer metastasis. Biomed Pharmacother 2014; 69:179-85. [PMID: 25661355 DOI: 10.1016/j.biopha.2014.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 12/15/2022] Open
Abstract
Galectin-3, a unique chimera-type member of the β-galactoside-binding soluble lectin family, is present in both normal and cancer cells and plays a crucial role in the regulation of cell adhesion. It is involved both in accelerating detachment of cells from primary tumor sites and promoting cancer cell adhesion and survival to anoikis in the blood stream. Cell adhesion molecules (CAMs) are membrane receptors that mediate cell-cell and cell-matrix interactions, and are essential for transducing intracellular signals responsible for adhesion, migration, invasion, angiogenesis, and organ-specific metastasis. This review will discuss the recent advances in our understanding the biological functions, mechanism and therapeutic implication of the interaction between galectin-3 and CAMs in cancer metastasis.
Collapse
Affiliation(s)
- Ming Xin
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xin-Wen Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
52
|
Kozyulina PY, Loskutov YV, Kozyreva VK, Rajulapati A, Ice RJ, Jones BC, Pugacheva EN. Prometastatic NEDD9 Regulates Individual Cell Migration via Caveolin-1-Dependent Trafficking of Integrins. Mol Cancer Res 2014; 13:423-38. [PMID: 25319010 DOI: 10.1158/1541-7786.mcr-14-0353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. IMPLICATIONS This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins.
Collapse
Affiliation(s)
- Polina Y Kozyulina
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia. Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Yuriy V Loskutov
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Varvara K Kozyreva
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Anuradha Rajulapati
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Ryan J Ice
- Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Brandon C Jones
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Elena N Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia. Mary Babb Randolph Cancer Center, School of Medicine, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
53
|
Gupta R, Toufaily C, Annabi B. Caveolin and cavin family members: dual roles in cancer. Biochimie 2014; 107 Pt B:188-202. [PMID: 25241255 DOI: 10.1016/j.biochi.2014.09.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/04/2014] [Indexed: 12/16/2022]
Abstract
Caveolae are specialized plasma membrane subdomains with distinct lipid and protein compositions, which play an essential role in cell physiology through regulation of trafficking and signaling functions. The structure and functions of caveolae have been shown to require the proteins caveolins. Recently, members of the cavin protein family were found to be required, in concert with caveolins, for the formation and function of caveolae. Caveolins have a paradoxical role in the development of cancer formation. They have been involved in both tumor suppression and oncogenesis, depending on tumor type and progress stage. High expression of caveolins and cavins leads to inhibition of cancer-related pathways, such as growth factor signaling pathways. However, certain cancer cells that express caveolins and cavins have been shown to be more aggressive and metastatic because of their increased potential for anchorage-independent growth. Here, we will survey the functional roles of caveolins and of different cavin family members in cancer regulation.
Collapse
Affiliation(s)
- Reshu Gupta
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada.
| | - Chirine Toufaily
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Département de Chimie, Université du Québec à Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
54
|
Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavão MSG. Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 2014; 4:138. [PMID: 24982845 PMCID: PMC4058817 DOI: 10.3389/fonc.2014.00138] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022] Open
Abstract
Galectin-3, the only chimera galectin found in vertebrates, is one of the best-studied galectins. It is expressed in several cell types and is involved in a broad range of physiological and pathological processes, such as cell adhesion, cell activation and chemoattraction, cell cycle, apoptosis, and cell growth and differentiation. However, this molecule raises special interest due to its role in regulating cancer cell activities. Galectin-3 has high affinity for β-1,6-N-acetylglucosamine branched glycans, which are formed by the action of the β1,6-N-acetylglucosaminyltransferase V (Mgat5). Mgat5-related changes in protein/lipid glycosylation on cell surface lead to alterations in the clustering of membrane proteins through lattice formation, resulting in functional advantages for tumor cells. Galectin-3 presence enhances migration and/or invasion of many tumors. Galectin-3-dependent clustering of integrins promotes ligand-induced integrin activation, leading to cell motility. Galectin-3 binding to mucin-1 increases transendothelial invasion, decreasing metastasis-free survival in an experimental metastasis model. Galectin-3 also affects endothelial cell behavior by regulating capillary tube formation. This lectin is found in the tumor stroma, suggesting a role for microenvironmental galectin-3 in tumor progression. Galectin-3 also seems to be involved in the recruitment of tumor-associated macrophages, possibly contributing to angiogenesis and tumor growth. This lectin can be a relevant factor in turning bone marrow in a sanctuary for leukemia cells, favoring resistance to therapy. Finally, galectin-3 seems to play a relevant role in orchestrating distinct cell events in tumor microenvironment and for this reason, it can be considered a target in tumor therapies. In conclusion, this review aims to describe the processes of tumor progression and metastasis involving extracellular galectin-3 and its expression and regulation.
Collapse
Affiliation(s)
- Anneliese Fortuna-Costa
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Angélica M Gomes
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Eliene O Kozlowski
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Mariana P Stelling
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Mauro S G Pavão
- Programa de Glicobiologia, Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
55
|
Fridolfsson HN, Roth DM, Insel PA, Patel HH. Regulation of intracellular signaling and function by caveolin. FASEB J 2014; 28:3823-31. [PMID: 24858278 DOI: 10.1096/fj.14-252320] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022]
Abstract
Caveolae, flask-like invaginations of the plasma membrane, were discovered nearly 60 years ago. Originally regarded as fixation artifacts of electron microscopy, the functional role for these structures has taken decades to unravel. The discovery of the caveolin protein in 1992 (by the late Richard G.W. Anderson) accelerated progress in defining the contribution of caveolae to cellular physiology and pathophysiology. The three isoforms of caveolin (caveolin-1, -2, and -3) are caveolae-resident structural and scaffolding proteins that are critical for the formation of caveolae and their localization of signaling entities. A PubMed search for "caveolae" reveals ∼280 publications from their discovery in the 1950s to the early 1990s, whereas a search for "caveolae or caveolin" after 1990, identifies ∼7000 entries. Most work on the regulation of biological responses by caveolae and caveolin since 1990 has focused on caveolae as plasma membrane microdomains and the function of caveolin proteins at the plasma membrane. By contrast, our recent work and that of others has explored the localization of caveolins in multiple cellular membrane compartments and in the regulation of intracellular signaling. Cellular organelles that contain caveolin include mitochondria, nuclei and the endoplasmic reticulum. Such intracellular localization allows for a complexity of responses to extracellular stimuli by caveolin and the possibility of novel organelle-targeted therapeutics. This review focuses on the impact of intracellular localization of caveolin on signal transduction and cell regulation.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology
| | - David M Roth
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology
| | - Paul A Insel
- Medicine, and Pharmacology, University of California San Diego, La Jolla, California
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology,
| |
Collapse
|
56
|
Downregulation of galectin-3 causes a decrease in uPAR levels and inhibits the proliferation, migration and invasion of hepatocellular carcinoma cells. Oncol Rep 2014; 32:411-8. [PMID: 24807674 DOI: 10.3892/or.2014.3170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/04/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. Galectin-3 (Gal-3), a multifunctional β-galactoside-binding protein, is highly expressed and associated with the prognosis of HCC. However, the functions of Gal-3 in HCC cells are not fully understood. To address the function of Gal-3 in HCC cells, we used small interfering RNA (siRNA) to knock down Gal-3 expression in HepG2, an HCC cell line. We found that in vitro the silencing of Gal-3 decreased the proliferative activity, colony formation ability, migratory and invasive potential of HepG2 cells. The silencing of Gal-3 significantly decreased the mRNA and protein levels of urokinase-type plasminogen activator receptor (uPAR) as well as uPAR's downstream signaling transduction pathway, including phosphorylation of AKT. Furthermore, the downregulation of Gal-3 by siRNA resulted in significantly decreased activity of the MEK/ERK signaling pathway, and the treatment of HepG2 cells with MEK/ERK inhibitor U0126 significantly reduced the mRNA and protein levels of uPAR. Taken together, our results suggest that Gal-3 modulates uPAR expression via the MEK/ERK pathway, and that Gal-3 may be a potential therapeutic target for the treatment of HCC.
Collapse
|
57
|
|
58
|
Jiang K, Rankin CR, Nava P, Sumagin R, Kamekura R, Stowell SR, Feng M, Parkos CA, Nusrat A. Galectin-3 regulates desmoglein-2 and intestinal epithelial intercellular adhesion. J Biol Chem 2014; 289:10510-10517. [PMID: 24567334 DOI: 10.1074/jbc.m113.538538] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The desmosomal cadherins, desmogleins, and desmocollins mediate strong intercellular adhesion. Human intestinal epithelial cells express the desmoglein-2 isoform. A proteomic screen for Dsg2-associated proteins in intestinal epithelial cells identified a lectin referred to as galectin-3 (Gal3). Gal3 bound to N-linked β-galactosides in Dsg2 extracellular domain and co-sedimented with caveolin-1 in lipid rafts. Down-regulation of Gal3 protein or incubation with lactose, a galactose-containing disaccharide that competitively inhibits galectin binding to Dsg2, decreased intercellular adhesion in intestinal epithelial cells. In the absence of functional Gal3, Dsg2 protein was internalized from the plasma membrane and degraded in the proteasome. These results report a novel role of Gal3 in stabilizing a desmosomal cadherin and intercellular adhesion in intestinal epithelial cells.
Collapse
Affiliation(s)
- Kun Jiang
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Carl R Rankin
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Porfirio Nava
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322; Department of Physiology, Biophysics and Neuroscience, CINVESTAV IPN., Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Ciudad de México, Distrito Federal, México
| | - Ronen Sumagin
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Ryuta Kamekura
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Mingli Feng
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Charles A Parkos
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322
| | - Asma Nusrat
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30322.
| |
Collapse
|