51
|
Freed DM, Bessman NJ, Kiyatkin A, Salazar-Cavazos E, Byrne PO, Moore JO, Valley CC, Ferguson KM, Leahy DJ, Lidke DS, Lemmon MA. EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell 2017; 171:683-695.e18. [PMID: 28988771 DOI: 10.1016/j.cell.2017.09.017] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor (EGFR) regulates many crucial cellular programs, with seven different activating ligands shaping cell signaling in distinct ways. Using crystallography and other approaches, we show how the EGFR ligands epiregulin (EREG) and epigen (EPGN) stabilize different dimeric conformations of the EGFR extracellular region. As a consequence, EREG or EPGN induce less stable EGFR dimers than EGF-making them partial agonists of EGFR dimerization. Unexpectedly, this weakened dimerization elicits more sustained EGFR signaling than seen with EGF, provoking responses in breast cancer cells associated with differentiation rather than proliferation. Our results reveal how responses to different EGFR ligands are defined by receptor dimerization strength and signaling dynamics. These findings have broad implications for understanding receptor tyrosine kinase (RTK) signaling specificity. Our results also suggest parallels between partial and/or biased agonism in RTKs and G-protein-coupled receptors, as well as new therapeutic opportunities for correcting RTK signaling output.
Collapse
Affiliation(s)
- Daniel M Freed
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Nicholas J Bessman
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Anatoly Kiyatkin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Emanuel Salazar-Cavazos
- Department of Pathology and UNM Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jason O Moore
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Christopher C Valley
- Department of Pathology and UNM Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Kathryn M Ferguson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Daniel J Leahy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Diane S Lidke
- Department of Pathology and UNM Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
52
|
Two-Color Single-Molecule Tracking in Live Cells. Methods Mol Biol 2017. [PMID: 28924664 DOI: 10.1007/978-1-4939-7265-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Measuring the kinetics of protein-protein interactions between molecules in the plasma membrane of live cells provides valuable information for understanding dynamic processes, like cellular signaling, on a molecular scale. Two-color single-molecule tracking is a fluorescence microscopy-based method to detect and quantify specific protein-protein interactions on a single-event level, providing sensitivity to heterogeneities and rare events. Fundamentally, it allows following the movement of single molecules of two different protein species in live cells with a localization precision beyond the diffraction limit of light in real time. It hence provides information about the diffusion behavior of every protein as well as about their dimerization kinetics. Here, we describe all the necessary steps to obtain two-color tracking data of plasma membrane-associated proteins in live cells using SNAP-tag and HaloTag fusion constructs and total internal reflection fluorescence (TIRF) microscopy. Also, we outline the main steps needed for analyzing the recorded data.
Collapse
|
53
|
Abstract
To orchestrate the function and development of multicellular organisms, cells integrate intra- and extracellular information. This information is processed via signal networks in space and time, steering dynamic changes in cellular structure and function. Defects in those signal networks can lead to developmental disorders or cancer. However, experimental analysis of signal networks is challenging as their state changes dynamically and differs between individual cells. Thus, causal relationships between network components are blurred if lysates from large cell populations are analyzed. To directly study causal relationships, perturbations that target specific components have to be combined with measurements of cellular responses within individual cells. However, using standard single-cell techniques, the number of signal activities that can be monitored simultaneously is limited. Furthermore, diffusion of signal network components limits the spatial precision of perturbations, which blurs the analysis of spatiotemporal processing in signal networks. Hybrid strategies based on optogenetics, surface patterning, chemical tools, and protein design can overcome those limitations and thereby sharpen our view into the dynamic spatiotemporal state of signal networks and enable unique insights into the mechanisms that control cellular function in space and time.
Collapse
Affiliation(s)
- Dominic Kamps
- Department for Systemic Cell Biology, Max
Planck Institute of Molecular Physiology and Fakultät für
Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Leif Dehmelt
- Department for Systemic Cell Biology, Max
Planck Institute of Molecular Physiology and Fakultät für
Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
54
|
Yu S, Zhang Y, Pan Y, Cheng C, Sun Y, Chen H. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive. Onco Targets Ther 2017; 10:4507-4515. [PMID: 28979142 PMCID: PMC5602469 DOI: 10.2147/ott.s131999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes ("pan-negative" patients). METHODS Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR) kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD). Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors. RESULTS In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E). EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models. CONCLUSION Here, a new EGFR driver mutation, M277E, was identified in the ECD of a lung adenocarcinoma specimen. For patients with M277E-mutant lung adenocarcinoma who experienced disease recurrence, treatment with an EGFR tyrosine kinase inhibitor may predict good prognosis.
Collapse
Affiliation(s)
- Su Yu
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yang Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yunjian Pan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Cheng
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
55
|
Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS. Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 2017; 28:3397-3414. [PMID: 28855374 PMCID: PMC5687039 DOI: 10.1091/mbc.e17-06-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Cross-linking of immunoglobulin E-bound FcεRI triggers multiple cellular responses, including degranulation and cytokine production. Signaling is dependent on recruitment of Syk via docking of its dual SH2 domains to phosphorylated tyrosines within the FcεRI immunoreceptor tyrosine-based activation motifs. Using single-molecule imaging in live cells, we directly visualized and quantified the binding of individual mNeonGreen-tagged Syk molecules as they associated with the plasma membrane after FcεRI activation. We found that Syk colocalizes transiently to FcεRI and that Syk-FcεRI binding dynamics are independent of receptor aggregate size. Substitution of glutamic acid for tyrosine between the Syk SH2 domains (Syk-Y130E) led to an increased Syk-FcεRI off-rate, loss of site-specific Syk autophosphorylation, and impaired downstream signaling. Genome edited cells expressing only Syk-Y130E were deficient in antigen-stimulated calcium release, degranulation, and production of some cytokines (TNF-a, IL-3) but not others (MCP-1, IL-4). We propose that kinetic discrimination along the FcεRI signaling pathway occurs at the level of Syk-FcεRI interactions, with key outcomes dependent upon sufficiently long-lived Syk binding events.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mark J Olah
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Peter K Relich
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Genevieve K Phillips
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 .,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
56
|
Langhammer S, Scheerer J. Breaking the crosstalk of the cellular tumorigenic network: Hypothesis for addressing resistances to targeted therapies in advanced NSCLC. Oncotarget 2017; 8:43555-43570. [PMID: 28402937 PMCID: PMC5522169 DOI: 10.18632/oncotarget.16674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
In the light of current treatment developments for non-small cell lung cancer (NSCLC), the idea of a plastic cellular tumorigenic network bound by key paracrine signaling pathways mediating resistances to targeted therapies is brought forward. Based on a review of available preclinical and clinical data in NSCLC combinational approaches to address drivers of this network with marketed drugs are discussed. Five criteria for selecting drug combination regimens aiming at its disruption and thereby overcoming resistances are postulated.
Collapse
|
57
|
Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells 2017; 6:cells6020013. [PMID: 28574446 PMCID: PMC5492017 DOI: 10.3390/cells6020013] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays vital roles in cellular processes including cell proliferation, survival, motility, and differentiation. The dysregulated activation of the receptor is often implicated in human cancers. EGFR is synthesized as a single-pass transmembrane protein, which consists of an extracellular ligand-binding domain and an intracellular kinase domain separated by a single transmembrane domain. The receptor is activated by a variety of polypeptide ligands such as epidermal growth factor and transforming growth factor α. It has long been thought that EGFR is activated by ligand-induced dimerization of the receptor monomer, which brings intracellular kinase domains into close proximity for trans-autophosphorylation. An increasing number of diverse studies, however, demonstrate that EGFR is present as a pre-formed, yet inactive, dimer prior to ligand binding. Furthermore, recent progress in structural studies has provided insight into conformational changes during the activation of a pre-formed EGFR dimer. Upon ligand binding to the extracellular domain of EGFR, its transmembrane domains rotate or twist parallel to the plane of the cell membrane, resulting in the reorientation of the intracellular kinase domain dimer from a symmetric inactive configuration to an asymmetric active form (the “rotation model”). This model is also able to explain how oncogenic mutations activate the receptor in the absence of the ligand, without assuming that the mutations induce receptor dimerization. In this review, we discuss the mechanisms underlying the ligand-induced activation of the preformed EGFR dimer, as well as how oncogenic mutations constitutively activate the receptor dimer, based on the rotation model.
Collapse
|
58
|
Hydration effects on the efficacy of the Epidermal growth factor receptor kinase inhibitor afatinib. Sci Rep 2017; 7:1540. [PMID: 28484248 PMCID: PMC5431542 DOI: 10.1038/s41598-017-01491-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/28/2017] [Indexed: 12/25/2022] Open
Abstract
Small molecules targeting the EGFR tyrosine kinase domain have been used with some success at treating patients with non-small cell lung cancer driven by activating mutations in the kinase domain. The initial class of inhibitors displaced ATP noncovalently but were rendered ineffective due to the development of resistance mutations in the kinase domain. These were overcome by the development of covalent inhibitors such as afatinib which also bind in the ATP pocket. However pooled analysis of two recent clinical trials LUX-3 and LUX-6 demonstrated an unprecedented overall survival benefit of afatinib over chemotherapy for the EGFR19del, but not the EGFRL858R. In the current study we use modelling and simulations to show that structural constraints in EGFR19del deletion result in significantly attenuated flexibilities in the binding pocket resulting in strong hydrogen and halogen bonds with afatinib in the EGFR19del; these constraints are modulated by buried water and result in the differential affinities of afatinib for the different mutants. SNP analysis of residues surrounding the buried water points to the likelihood of further differential effects of afatinib and provides a compelling case for investigating the effects of the SNPs towards further stratification of patients for ensuring the most effective use of afatinib.
Collapse
|
59
|
Valley CC, Lewis AK, Sachs JN. Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1398-1416. [PMID: 28089689 DOI: 10.1016/j.bbamem.2017.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
The challenge of crystallizing single-pass plasma membrane receptors has remained an obstacle to understanding the structural mechanisms that connect extracellular ligand binding to cytosolic activation. For example, the complex interplay between receptor oligomerization and conformational dynamics has been, historically, only inferred from static structures of isolated receptor domains. A fundamental challenge in the field of membrane receptor biology, then, has been to integrate experimentally observable dynamics of full-length receptors (e.g. diffusion and conformational flexibility) into static structural models of the disparate domains. In certain receptor families, e.g. the ErbB receptors, structures have led somewhat linearly to a putative model of activation. In other families, e.g. the tumor necrosis factor (TNF) receptors, structures have produced divergent hypothetical mechanisms of activation and transduction. Here, we discuss in detail these and other related receptors, with the goal of illuminating the current challenges and opportunities in building comprehensive models of single-pass receptor activation. The deepening understanding of these receptors has recently been accelerated by new experimental and computational tools that offer orthogonal perspectives on both structure and dynamics. As such, this review aims to contextualize those technological developments as we highlight the elegant and complex conformational communication between receptor domains. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
| | - Andrew K Lewis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
60
|
Kaplan M, Narasimhan S, de Heus C, Mance D, van Doorn S, Houben K, Popov-Čeleketić D, Damman R, Katrukha EA, Jain P, Geerts WJC, Heck AJR, Folkers GE, Kapitein LC, Lemeer S, van Bergen En Henegouwen PMP, Baldus M. EGFR Dynamics Change during Activation in Native Membranes as Revealed by NMR. Cell 2016; 167:1241-1251.e11. [PMID: 27839865 DOI: 10.1016/j.cell.2016.10.038] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/08/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.
Collapse
Affiliation(s)
- Mohammed Kaplan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Cecilia de Heus
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Sander van Doorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Klaartje Houben
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Dušan Popov-Čeleketić
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Reinier Damman
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Purvi Jain
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Willie J C Geerts
- Biomolecular Imaging, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
61
|
Dokala A, Thakur SS. Extracellular region of epidermal growth factor receptor: a potential target for anti-EGFR drug discovery. Oncogene 2016; 36:2337-2344. [PMID: 27775071 DOI: 10.1038/onc.2016.393] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor with tyrosine kinase activity involved in regulation of cellular multiplication, survival, differentiation and metastasis. Our knowledge about function and complex management of these receptors has driving the development of specific and targeted treatment modalities for human cancers in the last 20 years. EGFR is the first receptor target against which monoclonal antibodies (mAb) have been evolved for cancer treatment. Here we review the biology of ErbB receptors, including their architecture, signaling, regulation and therapeutic strategies and the mechanisms of resistances offered by the receptors against small-molecule tyrosine kinases and resistance overcome implications of mAbs. The efficacy of EGFR-specific mAb in cancer depends on site specific extracellular region of EGFR, which has crucial role in process of dimerization and activation. This review highlights evolution of various resistance mechanisms due to consequences of current small-molecule anti-EGFR therapies.
Collapse
Affiliation(s)
- A Dokala
- Proteomics and Cell Signaling, CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - S S Thakur
- Proteomics and Cell Signaling, CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| |
Collapse
|
62
|
Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery. Chembiochem 2016; 17:2103-2114. [DOI: 10.1002/cbic.201600357] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 12/12/2022]
|
63
|
Day EK, Sosale NG, Lazzara MJ. Cell signaling regulation by protein phosphorylation: a multivariate, heterogeneous, and context-dependent process. Curr Opin Biotechnol 2016; 40:185-192. [PMID: 27393828 PMCID: PMC4975652 DOI: 10.1016/j.copbio.2016.06.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 02/08/2023]
Abstract
Proper spatiotemporal regulation of protein phosphorylation in cells and tissues is required for normal development and homeostasis, but aberrant protein phosphorylation regulation leads to various diseases. The study of signaling regulation by protein phosphorylation is complicated in part by the sheer scope of the kinome and phosphoproteome, dependence of signaling protein functionality on cellular localization, and the complex multivariate relationships that exist between protein phosphorylation dynamics and the cellular phenotypes they control. Additional complexities arise from the ability of microenvironmental factors to influence phosphorylation-dependent signaling and from the tendency for some signaling processes to occur heterogeneously among cells. These considerations should be taken into account when measuring cell signaling regulation by protein phosphorylation.
Collapse
Affiliation(s)
- Evan K Day
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Nisha G Sosale
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew J Lazzara
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
64
|
Huang Y, Bharill S, Karandur D, Peterson SM, Marita M, Shi X, Kaliszewski MJ, Smith AW, Isacoff EY, Kuriyan J. Molecular basis for multimerization in the activation of the epidermal growth factor receptor. eLife 2016; 5. [PMID: 27017828 PMCID: PMC4902571 DOI: 10.7554/elife.14107] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/27/2016] [Indexed: 12/18/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if this is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation. DOI:http://dx.doi.org/10.7554/eLife.14107.001
Collapse
Affiliation(s)
- Yongjian Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Shashank Bharill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Sean M Peterson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Morgan Marita
- Department of Chemistry, University of Akron, Akron, United States
| | - Xiaojun Shi
- Department of Chemistry, University of Akron, Akron, United States
| | | | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, United States
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
65
|
McCabe Pryor M, Steinkamp MP, Halasz AM, Chen Y, Yang S, Smith MS, Zahoransky-Kohalmi G, Swift M, Xu XP, Hanein D, Volkmann N, Lidke DS, Edwards JS, Wilson BS. Orchestration of ErbB3 signaling through heterointeractions and homointeractions. Mol Biol Cell 2015; 26:4109-23. [PMID: 26378253 PMCID: PMC4710241 DOI: 10.1091/mbc.e14-06-1114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
Members of the ErbB family of receptor tyrosine kinases are capable of both homointeractions and heterointeractions. Because each receptor has a unique set of binding sites for downstream signaling partners and differential catalytic activity, subtle shifts in their combinatorial interplay may have a large effect on signaling outcomes. The overexpression and mutation of ErbB family members are common in numerous human cancers and shift the balance of activation within the signaling network. Here we report the development of a spatial stochastic model that addresses the dynamics of ErbB3 homodimerization and heterodimerization with ErbB2. The model is based on experimental measures for diffusion, dimer off-rates, kinase activity, and dephosphorylation. We also report computational analysis of ErbB3 mutations, generating the prediction that activating mutations in the intracellular and extracellular domains may be subdivided into classes with distinct underlying mechanisms. We show experimental evidence for an ErbB3 gain-of-function point mutation located in the C-lobe asymmetric dimerization interface, which shows enhanced phosphorylation at low ligand dose associated with increased kinase activity.
Collapse
Affiliation(s)
- Meghan McCabe Pryor
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Mara P Steinkamp
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131
| | - Adam M Halasz
- Department of Mathematics, West Virginia University, Morgantown, WV 25606
| | - Ye Chen
- Department of Mathematics, West Virginia University, Morgantown, WV 25606
| | - Shujie Yang
- Department of OB/GYN, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | | | | | - Mark Swift
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Xiao-Ping Xu
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Dorit Hanein
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Niels Volkmann
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131
| | - Jeremy S Edwards
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131 Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131 Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|