51
|
Mohr AE, Gumpricht E, Sears DD, Sweazea KL. Recent advances and health implications of dietary fasting regimens on the gut microbiome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G847-G863. [PMID: 33729005 DOI: 10.1152/ajpgi.00475.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calorie restriction is a primary dietary intervention demonstrated over many decades in cellular and animal models to modulate aging pathways, positively affect age-associated diseases and, in clinical studies, to promote beneficial health outcomes. Because long-term compliance with daily calorie restriction has proven problematic in humans several intermittent fasting regimens, including alternate day fasting and time-restricted feeding, have evolved revealing similar clinical benefits as calorie restriction. Despite significant research on the cellular and physiological mechanisms contributing to, and responsible for, these observed benefits, relatively little research has investigated the impact of these various fasting protocols on the gut microbiome (GM). Reduced external nutrient supply to the gut may beneficially alter the composition and function of a "fed" gut microflora. Indeed, the prevalent, obesogenic Western diet can promote deleterious changes in the GM, signaling intermediates involved in lipid and glucose metabolism, and immune responses in the gastrointestinal tract. This review describes recent preclinical and clinical effects of varying fasting regimens on GM composition and associated physiology. Although the number of preclinical and clinical interventions are limited, significant data thus far suggest fasting interventions impact GM composition and physiology. However, there are considerable heterogeneities of study design, methodological considerations, and practical implications. Ongoing research on the health impact of fasting regimens on GM modulation is warranted.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona.,Isagenix International LLC, Gilbert, Arizona
| | | | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona.,School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
52
|
Fukuda T, Bouchi R, Takeuchi T, Amo-Shiinoki K, Kudo A, Tanaka S, Tanabe M, Akashi T, Hirayama K, Odamaki T, Igarashi M, Kimura I, Tanabe K, Tanizawa Y, Yamada T, Ogawa Y. Importance of Intestinal Environment and Cellular Plasticity of Islets in the Development of Postpancreatectomy Diabetes. Diabetes Care 2021; 44:1002-1011. [PMID: 33627367 DOI: 10.2337/dc20-0864] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/18/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To elucidate the pathogenesis of postpancreatectomy diabetes mellitus (PPDM). RESEARCH DESIGN AND METHODS Forty-eight patients without diabetes undergoing either pancreatoduodenectomy (PD) (n = 20) or distal pancreatectomy (DP) (n = 28) were included. A 75-g oral glucose tolerance test was performed every 6 months. Microbiome composition and short-chain fatty acids (SCFAs) in feces were examined before and 6 months after surgery. The association of histological characteristics of the resected pancreas with PPDM was examined. RESULTS During follow-up (median 3.19 years), 2 of 20 PD patients and 16 of 28 DP patients developed PPDM. Proteobacteria relative abundance, plasma glucagon-like peptide 1 (GLP-1), and fecal butyrate levels increased only after PD. Postsurgical butyrate levels were correlated with postsurgical GLP-1 levels. With no significant difference in the volume of the resected pancreas between the surgical procedures, both β-cell and α-cell areas in the resected pancreas were significantly higher in DP patients than in PD patients. In DP patients, the progressors to diabetes showed preexisting insulin resistance compared with nonprogressors, and both increased α- and β-cell areas were predictors of PPDM. Furthermore, in DP patients, α-cell and β-cell areas were associated with ALDH1A3 expression in islets. CONCLUSIONS We postulate that a greater removal of β-cells contributes to the development of PPDM after DP. Islet expansion along with preexisting insulin resistance is associated with high cellular plasticity, which may predict the development of PPDM after DP. In contrast, PD is associated with alterations of gut microbiome and increases in SCFA production and GLP-1 secretion, possibly protecting against PPDM development.
Collapse
Affiliation(s)
- Tatsuya Fukuda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryotaro Bouchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan .,Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan.,Diabetes and Metabolism Information Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takato Takeuchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kikuko Amo-Shiinoki
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Akashi
- Department of Human Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshitaka Odamaki
- R&D Division, Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan .,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,AMED-CREST, Tokyo, Japan
| |
Collapse
|
53
|
Jaimes JD, Slavíčková A, Hurych J, Cinek O, Nichols B, Vodolánová L, Černý K, Havlík J. Stool metabolome-microbiota evaluation among children and adolescents with obesity, overweight, and normal-weight using 1H NMR and 16S rRNA gene profiling. PLoS One 2021; 16:e0247378. [PMID: 33765008 PMCID: PMC7993802 DOI: 10.1371/journal.pone.0247378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Characterization of metabolites and microbiota composition from human stool provides powerful insight into the molecular phenotypic difference between subjects with normal weight and those with overweight/obesity. The aim of this study was to identify potential metabolic and bacterial signatures from stool that distinguish the overweight/obesity state in children/adolescents. Using 1H NMR spectral analysis and 16S rRNA gene profiling, the fecal metabolic profile and bacterial composition from 52 children aged 7 to 16 was evaluated. The children were classified into three groups (16 with normal-weight, 17 with overweight, 19 with obesity). The metabolomic analysis identified four metabolites that were significantly different (p < 0.05) among the study groups based on one-way ANOVA testing: arabinose, butyrate, galactose, and trimethylamine. Significantly different (p < 0.01) genus-level taxa based on edgeR differential abundance tests were genus Escherichia and Tyzzerella subgroup 3. No significant difference in alpha-diversity was detected among the three study groups, and no significant correlations were found between the significant taxa and metabolites. The findings support the hypothesis of increased energy harvest in obesity by human gut bacteria through the growing observation of increased fecal butyrate in children with overweight/obesity, as well as an increase of certain monosaccharides in the stool. Also supported is the increase of trimethylamine as an indicator of an unhealthy state.
Collapse
Affiliation(s)
- José Diógenes Jaimes
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrea Slavíčková
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Ondřej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic.,Department of Paediatrics, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Ben Nichols
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Lucie Vodolánová
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Karel Černý
- Olivova Children's Medical Institution, Říčany, Czech Republic
| | - Jaroslav Havlík
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
54
|
Shanahan ER, McMaster JJ, Staudacher HM. Conducting research on diet-microbiome interactions: A review of current challenges, essential methodological principles, and recommendations for best practice in study design. J Hum Nutr Diet 2021; 34:631-644. [PMID: 33639033 DOI: 10.1111/jhn.12868] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Diet is one of the strongest modulators of the gut microbiome. However, the complexity of the interactions between diet and the microbial community emphasises the need for a robust study design and continued methodological development. This review aims to summarise considerations for conducting high-quality diet-microbiome research, outline key challenges unique to the field, and provide advice for addressing these in a practical manner useful to dietitians, microbiologists, gastroenterologists and other diet-microbiome researchers. Searches of databases and references from relevant articles were conducted using the primary search terms 'diet', 'diet intervention', 'dietary analysis', 'microbiome' and 'microbiota', alone or in combination. Publications were considered relevant if they addressed methods for diet and/or microbiome research, or were a human study relevant to diet-microbiome interactions. Best-practice design in diet-microbiome research requires appropriate consideration of the study population and careful choice of trial design and data collection methodology. Ongoing challenges include the collection of dietary data that accurately reflects intake at a timescale relevant to microbial community structure and metabolism, measurement of nutrients in foods pertinent to microbes, improving ability to measure and understand microbial metabolic and functional properties, adequately powering studies, and the considered analysis of multivariate compositional datasets. Collaboration across the disciplines of nutrition science and microbiology is crucial for high-quality diet-microbiome research. Improvements in our understanding of the interaction between nutrient intake and microbial metabolism, as well as continued methodological innovation, will facilitate development of effective evidence-based personalised dietary treatments.
Collapse
Affiliation(s)
- Erin R Shanahan
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - Heidi M Staudacher
- IMPACT (The Institute for Mental and Physical Health and Clinical Translation) Food & Mood Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
55
|
Dahl WJ, Auger J, Alyousif Z, Miller JL, Tompkins TA. Adults with Prader-Willi syndrome exhibit a unique microbiota profile. BMC Res Notes 2021; 14:51. [PMID: 33549146 PMCID: PMC7866703 DOI: 10.1186/s13104-021-05470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022] Open
Abstract
Objective Adults with Prader–Willi syndrome (PWS) require less energy intake to maintain body weight than the general adult population. This, combined with their altered gastrointestinal transit time, may impact microbiota composition. The aim of the study was to determine if the fecal microbiota composition of adults with PWS differed from non-affected adults. Using usual diet/non-interventional samples, fecal microbiota composition was analyzed using 16S rRNA gene amplicon sequencing and data from adults with PWS were merged with four other adult cohorts that differed by geographical location and age. QIIME 2™ sample-classifier, machine learning algorithms were used to cross-train the samples and predict from which dataset the taxonomic profiles belong. Taxa that most distinguished between all datasets were extracted and a visual inspection of the R library PiratePlots was performed to select the taxa that differed in abundance specific to PWS. Results Fecal microbiota composition of adults with PWS showed low Blautia and enhanced RF39 (phyla Tenericutes), Ruminococcaceae, Alistipes, Erysipelotrichacaea, Parabacteriodes and Odoribacter. Higher abundance of Tenericutes, in particular, may be a signature characteristic of the PWS microbiota although its relationship, if any, to metabolic health is not yet known.
Collapse
Affiliation(s)
- Wendy J Dahl
- Department of Food Science and Human Nutrition, University of Florida, 359 Newell Drive, Gainesville, FL, 32611, USA.
| | - Jérémie Auger
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Zainab Alyousif
- Department of Food Science and Human Nutrition, University of Florida, 359 Newell Drive, Gainesville, FL, 32611, USA
| | - Jennifer L Miller
- Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount, Montreal, QC, H4P 2R2, Canada
| |
Collapse
|
56
|
Olaisen M, Flatberg A, Granlund AVB, Røyset ES, Martinsen TC, Sandvik AK, Fossmark R. Bacterial Mucosa-associated Microbiome in Inflamed and Proximal Noninflamed Ileum of Patients With Crohn's Disease. Inflamm Bowel Dis 2021; 27:12-24. [PMID: 32448900 PMCID: PMC7737161 DOI: 10.1093/ibd/izaa107] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microbiota is most likely essential in the pathogenesis of Crohn's disease (CD). Fecal diversion after ileocecal resection (ICR) protects against CD recurrence, whereas infusion of fecal content triggers inflammation. After ICR, the majority of patients experience endoscopic recurrence in the neoterminal ileum, and the ileal microbiome is of particular interest. We have assessed the mucosa-associated microbiome in the inflamed and noninflamed ileum in patients with CD. METHODS Mucosa-associated microbiome was assessed by 16S rRNA sequencing of biopsies sampled 5 and 15 cm orally of the ileocecal valve or ileocolic anastomosis. RESULTS Fifty-one CD patients and forty healthy controls (HCs) were included in the study. Twenty CD patients had terminal ileitis, with endoscopic inflammation at 5 cm, normal mucosa at 15 cm, and no history of upper CD involvement. Crohn's disease patients (n = 51) had lower alpha diversity and separated clearly from HC on beta diversity plots. Twenty-three bacterial taxa were differentially represented in CD patients vs HC; among these, Tyzzerella 4 was profoundly overrepresented in CD. The microbiome in the inflamed and proximal noninflamed ileal mucosa did not differ according to alpha diversity or beta diversity. Additionally, no bacterial taxa were differentially represented. CONCLUSIONS The microbiome is similar in the inflamed and proximal noninflamed ileal mucosa within the same patients. Our results support the concept of CD-specific microbiota alterations and demonstrate that neither ileal sublocation nor endoscopic inflammation influence the mucosa-associated microbiome.
Collapse
Affiliation(s)
- Maya Olaisen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s Hospital, Trondheim University Hospital, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elin Synnøve Røyset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olav’s Hospital, Trondheim University Hospital, Norway
| | - Tom Christian Martinsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s Hospital, Trondheim University Hospital, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s Hospital, Trondheim University Hospital, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Reidar Fossmark
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s Hospital, Trondheim University Hospital, Norway
| |
Collapse
|
57
|
Larsson SC, Mason AM, Kar S, Vithayathil M, Carter P, Baron JA, Michaëlsson K, Burgess S. Genetically proxied milk consumption and risk of colorectal, bladder, breast, and prostate cancer: a two-sample Mendelian randomization study. BMC Med 2020; 18:370. [PMID: 33261611 PMCID: PMC7709312 DOI: 10.1186/s12916-020-01839-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Observational studies have shown that milk consumption is inversely associated with colorectal, bladder, and breast cancer risk, but positively associated with prostate cancer. However, whether the associations reflect causality remains debatable. We investigated the potential causal associations of milk consumption with the risk of colorectal, bladder, breast, and prostate cancer using a genetic variant near the LCT gene as proxy for milk consumption. METHODS We obtained genetic association estimates for cancer from the UK Biobank (n = 367,643 women and men), FinnGen consortium (n = 135,638 women and men), Breast Cancer Association Consortium (n = 228,951 women), and Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium (n = 140,254 men). Milk consumption was proxied by a genetic variant (rs4988235 or rs182549) upstream of the gene encoding lactase, which catalyzes the breakdown of lactose. RESULTS Genetically proxied milk consumption was associated with a reduced risk of colorectal cancer. The odds ratio (OR) for each additional milk intake increasing allele was 0.95 (95% confidence interval [CI] 0.91-0.99; P = 0.009). There was no overall association of genetically predicted milk consumption with bladder (OR 0.99; 95% CI 0.94-1.05; P = 0.836), breast (OR 1.01; 95% CI 1.00-1.02; P = 0.113), and prostate cancer (OR 1.01; 95% CI 0.99-1.02; P = 0.389), but a positive association with prostate cancer was observed in the FinnGen consortium (OR 1.07; 95% CI 1.01-1.13; P = 0.026). CONCLUSIONS Our findings strengthen the evidence for a protective role of milk consumption on colorectal cancer risk. There was no or limited evidence that milk consumption affects the risk of bladder, breast, and prostate cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Paul Carter
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John A Baron
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karl Michaëlsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
58
|
Madison AA, Andridge R, Padin AC, Wilson S, Bailey MT, Alfano CM, Povoski SP, Lipari AM, Agnese DM, Carson WE, Malarkey WB, Kiecolt-Glaser JK. Endotoxemia coupled with heightened inflammation predicts future depressive symptoms. Psychoneuroendocrinology 2020; 122:104864. [PMID: 33166799 PMCID: PMC7721058 DOI: 10.1016/j.psyneuen.2020.104864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cross-sectional data have linked gut barrier abnormalities and endotoxemia with depression, even among those without gastrointestinal symptoms. This study examined longitudinal associations between endotoxemia markers and depressive symptoms, as well as the role of inflammation in this relationship. DESIGN At three annual visits, 315 women (n=209 breast cancer survivors, n = 106 non-cancer patient controls, M=55 years old) completed the Center for Epidemiological Studies Depression questionnaire (CES-D) and provided blood samples to assess inflammatory markers - interleukin-6, tumor necrosis factor-alpha, and C-reactive protein - and endotoxemia markers - lipopolysaccharide-binding protein (LBP), soluble CD14 (sCD14), and their ratio. RESULTS Adjusting for key demographic variables, health behaviors, visit 1 depressive symptoms, and cancer status and treatment, women with higher visit 1 LBP and LBP/sCD14 had more depressive symptoms at the two subsequent annual visits. Illustrating the notable impact, a woman at the 75th percentile for LBP or LBP/sCD14 at visit 1 was 18 % more likely to report clinically significant depressive symptoms (CES-D ≥16) at follow-up than a woman in the lowest quartile. Cancer status and treatment type did not modulate this relationship. In contrast, visit 1 depressive symptoms did not predict endotoxemia at follow-up. A significant interaction between LBP/sCD14 and inflammatory burden suggested that visit 1 endotoxemia fueled depressive symptoms only in the context of elevated inflammation. CONCLUSION These results suggest that endotoxemia, combined with systemic inflammation, can drive depressive symptoms. These findings may implicate bacterial endotoxin translocation from the gut to the bloodstream in depression etiology. Interventions that reduce endotoxemia and inflammation may lessen the risk of depression.
Collapse
Affiliation(s)
- Annelise A. Madison
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,,Department of Psychology, The Ohio State University
| | - Rebecca Andridge
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,,College of Public Health, The Ohio State University
| | - Avelina C. Padin
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,,Department of Psychology, The Ohio State University
| | | | - Michael T. Bailey
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,,Department of Pediatrics, The Ohio State University College of Medicine,,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital
| | | | | | | | | | | | - William B. Malarkey
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,,Department of Internal Medicine, The Ohio State University College of Medicine
| | - Janice K. Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,,Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine
| |
Collapse
|
59
|
Ford AL, Nagulesapillai V, Piano A, Auger J, Girard SA, Christman M, Tompkins TA, Dahl WJ. Microbiota Stability and Gastrointestinal Tolerance in Response to a High-Protein Diet with and without a Prebiotic, Probiotic, and Synbiotic: A Randomized, Double-Blind, Placebo-Controlled Trial in Older Women. J Acad Nutr Diet 2020; 120:500-516.e10. [PMID: 32199523 DOI: 10.1016/j.jand.2019.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Higher protein intakes may help reduce sarcopenia and facilitate recovery from illness and injury in older adults. However, high-protein diets (HPDs) including animal-sourced foods may negatively perturb the microbiota, and provision of probiotics and prebiotics may mitigate these effects. OBJECTIVE The aim of this study was to examine the effects of HPD, with and without a probiotic and/or prebiotic, on gut microbiota and wellness in older women. DESIGN We conducted an 18-week, double-blind, placebo-controlled, crossover study. PARTICIPANTS/SETTING Participants were healthy, older women (mean age±standard deviation=73.7±5.6 years; n=26) recruited from Florida. INTERVENTION Participants received a weight-maintenance HPD for 2-week periods and the following, in random order: HPD alone (1.5 to 2.2 g/kg/day protein); HPD plus multistrain probiotic formulation (1.54×109Bifidobacterium bifidum HA-132, 4.62×109Bifidobacterium breve HA-129, 4.62×109Bifidobacterium longum HA-135, 4.62×109Lactobacillus acidophilus HA-122, and 4.62×109Lactobacillus plantarum HA-119), HPD plus prebiotic (5.6 g inulin), and HPD plus synbiotic (probiotic plus inulin), separated by 2-week washouts. Stools were collected per period for quantitative polymerase chain reaction (strain recovery) and 16S ribosomal RNA gene amplicon sequencing analyses (microbiota profile). Measures of gastrointestinal and general wellness were assessed. MAIN OUTCOME MEASURES Microbiota composition and probiotic strain recovery were measured. STATISTICAL ANALYSES Microbiota composition was analyzed by Wilcoxon signed-rank test and t test. Secondary outcomes were analyzing using generalized linear mixed models. RESULTS The microbiota profile demonstrated relative stability with the HPD; representation of Lactobacillus, Lactococcus, and Streptococcus were enhanced, whereas butyrate producers, Roseburia and Anaerostipes, were suppressed. Lactococcus was suppressed with synbiotic vs other HPD periods. Recovery was confirmed for all probiotic strains. Indicators of wellness were unchanged, with the exception of a minimal increase in gastrointestinal distress with inulin. Fat-free mass increased from baseline to study end. CONCLUSIONS An HPD adhering to the recommended acceptable macronutrient distribution ranges maintains wellness in healthy older women and exerts minor perturbations to the microbiome profile, a group that may benefit from a higher protein intake. ClinicalTrials.gov ID: NCT #02445560.
Collapse
|
60
|
Zheng J, Hoffman KL, Chen JS, Shivappa N, Sood A, Browman GJ, Dirba DD, Hanash S, Wei P, Hebert JR, Petrosino JF, Schembre SM, Daniel CR. Dietary inflammatory potential in relation to the gut microbiome: results from a cross-sectional study. Br J Nutr 2020; 124:931-942. [PMID: 32475373 PMCID: PMC7554089 DOI: 10.1017/s0007114520001853] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diet has direct and indirect effects on health through inflammation and the gut microbiome. We investigated total dietary inflammatory potential via the literature-derived index (Dietary Inflammatory Index (DII®)) with gut microbiota diversity, composition and function. In cancer-free patient volunteers initially approached at colonoscopy and healthy volunteers recruited from the medical centre community, we assessed 16S ribosomal DNA in all subjects who provided dietary assessments and stool samples (n 101) and the gut metagenome in a subset of patients with residual fasting blood samples (n 34). Associations of energy-adjusted DII scores with microbial diversity and composition were examined using linear regression, permutational multivariate ANOVA and linear discriminant analysis. Spearman correlation was used to evaluate associations of species and pathways with DII and circulating inflammatory markers. Across DII levels, α- and β-diversity did not significantly differ; however, Ruminococcus torques, Eubacterium nodatum, Acidaminococcus intestini and Clostridium leptum were more abundant in the most pro-inflammatory diet group, while Akkermansia muciniphila was enriched in the most anti-inflammatory diet group. With adjustment for age and BMI, R. torques, E. nodatum and A. intestini remained significantly associated with a more pro-inflammatory diet. In the metagenomic and fasting blood subset, A. intestini was correlated with circulating plasminogen activator inhibitor-1, a pro-inflammatory marker (rho = 0·40), but no associations remained significant upon correction for multiple testing. An index reflecting overall inflammatory potential of the diet was associated with specific microbes, but not overall diversity of the gut microbiome in our study. Findings from this preliminary study warrant further research in larger samples and prospective cohorts.
Collapse
Affiliation(s)
- Jiali Zheng
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Kristi L Hoffman
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030, USA
| | - Jiun-Sheng Chen
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Quantitative Sciences Program, The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX77030, USA
| | - Nitin Shivappa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC29208, USA
| | - Akhil Sood
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Internal Medicine, University of Texas Medical Branch, Galveston, TX77555, USA
| | - Gladys J Browman
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Danika D Dirba
- Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Peng Wei
- Quantitative Sciences Program, The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - James R Hebert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC29208, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030, USA
| | - Susan M Schembre
- Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Department of Family and Community Medicine, University of Arizona, Tucson, AZ85721, USA
| | - Carrie R Daniel
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Quantitative Sciences Program, The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX77030, USA
| |
Collapse
|
61
|
McKenzie ND, Hong H, Ahmad S, Holloway RW. The gut microbiome and cancer immunotherapeutics: A review of emerging data and implications for future gynecologic cancer research. Crit Rev Oncol Hematol 2020; 157:103165. [PMID: 33227575 DOI: 10.1016/j.critrevonc.2020.103165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Investigation of the gynecologic tract microbial milieu has revealed potential new biomarkers. Simultaneously, immunotherapeutics are establishing their place in the treatment of gynecologic malignancies. The interplay between the microbiome, the tumor micro-environment and response to therapy is a burgeoning area of interest. There is evidence to support that microbes, through their genetic make-up, gene products, and metabolites affect human physiology, metabolism, immunity, disease susceptibility, response to pharmacotherapy, and the severity of disease-related side effects. Specifically, the richness and diversity of the gut microbiome appears to affect carcinogenesis, response to immunotherapy, and modulate severity of immune-mediated adverse effects. These effects have best been described in other tumor types and these have shown compelling results. This review summarizes the current understanding and scope of the interplay between the human microbiome, host factors, cancer, and response to treatments. These findings support further exploring whether these associations exist for gynecologic malignancies.
Collapse
Affiliation(s)
- Nathalie D McKenzie
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| | - Hannah Hong
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA; Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA.
| | - Robert W Holloway
- AdventHealth Cancer Institute, Division of Gynecologic Oncology, Orlando, FL, 32804, USA
| |
Collapse
|
62
|
Zhang Z, Taylor L, Shommu N, Ghosh S, Reimer R, Panaccione R, Kaur S, Hyun JE, Cai C, Deehan EC, Hotte N, Madsen KL, Raman M. A Diversified Dietary Pattern Is Associated With a Balanced Gut Microbial Composition of Faecalibacterium and Escherichia/Shigella in Patients With Crohn's Disease in Remission. J Crohns Colitis 2020; 14:1547-1557. [PMID: 32343765 DOI: 10.1093/ecco-jcc/jjaa084] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is associated with alterations in gut microbial composition and function. The present controlled-intervention study investigated the relationship between patterns of dietary intake and baseline gut microbiota in CD patients in remission and examined the effects of a dietary intervention in patients consuming a non-diversified diet [NDD]. METHODS Forty outpatients with quiescent CD were recruited in Calgary, Alberta, Canada. Based on 3-day food records, patients consuming a lower plant-based and higher red and processed meat-based diet were assigned to the NDD group [n = 15] and received a 12-week structured dietary intervention; all other patients were assigned to the diversified diet [DD] control group [n = 25] and received conventional management. Faecal microbiota composition, short chain fatty acids [SCFAs] and calprotectin were measured. RESULTS At baseline the NDD and DD groups had a different faecal microbial beta-diversity [p = 0.003, permutational multivariate analysis of variance]. The NDD group had lower Faecalibacterium and higher Escherichia/Shigella relative abundances compared to the DD group [3.3 ± 5.4% vs. 8.5 ± 10.6%; 6.9 ± 12.2% vs. 1.6 ± 4.4%; p ≤ 0.03, analysis of covariance]. These two genera showed a strong negative correlation [rs = -0.60, q = 0.0002]. Faecal butyrate showed a positive correlation with Faecalibacterium [rs = 0.52, q = 0.002], and an inhibitory relationship with Escherichia/Shigella abundance [four-parameter sigmoidal model, R = -0.83; rs = -0.44, q = 0.01], respectively. After the 12 weeks of dietary intervention, no difference in microbial beta-diversity between the two groups was observed [p = 0.43]. The NDD group demonstrated an increase in Faecalibacterium [p < 0.05, generalized estimated equation model], and resembled the DD group at the end of the intervention [p = 0.84, t-test with permutation]. We did not find an association of diet with faecal SCFAs or calprotectin. CONCLUSIONS Dietary patterns are associated with specific gut microbial compositions in CD patients in remission. A diet intervention in patients consuming a NDD modifies gut microbial composition to resemble that seen in patients consuming a DD. These results show that diet is important in shaping the microbial dysbiosis signature in CD towards a balanced community.
Collapse
Affiliation(s)
- Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Lorian Taylor
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nusrat Shommu
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Subrata Ghosh
- Institute of Translational Medicine, NIHR Biomedical Research Centre, University of Birmingham and Birmingham University Hospitals, Birmingham, UK
| | - Raylene Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Remo Panaccione
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sandeep Kaur
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jae Eun Hyun
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Chenxi Cai
- Program for Pregnancy and Postpartum Health, Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Edward C Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Maitreyi Raman
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
63
|
Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Burokas A, Contreras-Rodríguez O, Blasco G, Coll C, Biarnés C, Miranda-Olivos R, Latorre J, Moreno-Navarrete JM, Castells-Nobau A, Sabater M, Palomo-Buitrago ME, Puig J, Pedraza S, Gich J, Pérez-Brocal V, Ricart W, Moya A, Fernández-Real X, Ramió-Torrentà L, Pamplona R, Sol J, Jové M, Portero-Otin M, Maldonado R, Fernández-Real JM. Obesity Impairs Short-Term and Working Memory through Gut Microbial Metabolism of Aromatic Amino Acids. Cell Metab 2020; 32:548-560.e7. [PMID: 33027674 DOI: 10.1016/j.cmet.2020.09.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiome has been linked to fear extinction learning in animal models. Here, we aimed to explore the gut microbiome and memory domains according to obesity status. A specific microbiome profile associated with short-term memory, working memory, and the volume of the hippocampus and frontal regions of the brain differentially in human subjects with and without obesity. Plasma and fecal levels of aromatic amino acids, their catabolites, and vegetable-derived compounds were longitudinally associated with short-term and working memory. Functionally, microbiota transplantation from human subjects with obesity led to decreased memory scores in mice, aligning this trait from humans with that of recipient mice. RNA sequencing of the medial prefrontal cortex of mice revealed that short-term memory associated with aromatic amino acid pathways, inflammatory genes, and clusters of bacterial species. These results highlight the potential therapeutic value of targeting the gut microbiota for memory impairment, specifically in subjects with obesity.
Collapse
Affiliation(s)
- María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain; Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oren Contreras-Rodríguez
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Psychiatry Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERSAM, Barcelona, Spain
| | - Gerard Blasco
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Carles Biarnés
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
| | - Romina Miranda-Olivos
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Psychiatry Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERSAM, Barcelona, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - José-Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain; Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Mònica Sabater
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - María Encarnación Palomo-Buitrago
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Jordi Gich
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain; Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Xavier Fernández-Real
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain; Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Lleida Biomedical Research Institute (IRBLleida)-Universitat de Lleida, Lleida, Spain
| | - Joaquim Sol
- Metabolic Pathophysiology Research Group, Lleida Biomedical Research Institute (IRBLleida)-Universitat de Lleida, Lleida, Spain
| | - Mariona Jové
- Metabolic Pathophysiology Research Group, Lleida Biomedical Research Institute (IRBLleida)-Universitat de Lleida, Lleida, Spain
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Research Group, Lleida Biomedical Research Institute (IRBLleida)-Universitat de Lleida, Lleida, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain; Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain.
| |
Collapse
|
64
|
Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern Population. Nutrients 2020; 12:nu12102938. [PMID: 32992776 PMCID: PMC7600083 DOI: 10.3390/nu12102938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Diet plays an important role in shaping gut microbiota. However, much remains to be learned regarding this association. We analyzed dietary intake and gut microbiota in a community-dwelling cohort of 441 Colombians. Diet quality, intake of food groups and nutrient consumption were paired with microbial diversity and composition using linear regressions, Procrustes analyses and a random-forest machine-learning algorithm. Analyses were adjusted for potential confounders, including the five cities from where the participants originated, sex (male, female), age group (18-40 and 41-62 years), BMI (lean, overweight, obese) and socioeconomic status. Microbial diversity was higher in individuals with increased intake of nutrients obtained from plant-food sources, whereas the intake of food groups and nutrients correlated with microbiota structure. Random-forest regressions identified microbial communities associated with different diet components. Two remarkable results confirmed previous expectations regarding the link between diet and microbiota: communities composed of short-chain fatty acid (SCFA) producers were more prevalent in the microbiota of individuals consuming diets rich in fiber and plant-food sources, such as fruits, vegetables and beans. In contrast, an inflammatory microbiota composed of bile-tolerant and putrefactive microorganisms along with opportunistic pathogens thrived in individuals consuming diets enriched in animal-food sources and of low quality, i.e., enriched in ultraprocessed foods and depleted in dietary fiber. This study expands our understanding of the relationship between dietary intake and gut microbiota. We provide evidence that diet is strongly associated with the gut microbial community and highlight generalizable connections between them.
Collapse
|
65
|
Gurwara S, Dai A, Ajami NJ, Graham DY, White DL, Chen L, Jang A, Chen E, El-Serag HB, Petrosino JF, Jiao L. Alcohol use alters the colonic mucosa-associated gut microbiota in humans. Nutr Res 2020; 83:119-128. [PMID: 33096423 DOI: 10.1016/j.nutres.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Alcohol misuse is a risk factor for many adverse health outcomes. Alcohol misuse has been associated with an imbalance of gut microbiota in preclinical models and alcoholic diseases. We hypothesized that daily alcohol use would change the community composition and structure of the human colonic gut microbiota. Thirty-four polyp-free individuals donated 97 snap-frozen colonic biopsies. Microbial DNA was sequenced for the 16S ribosomal RNA gene hypervariable region 4. The SILVA database was used for operational taxonomic unit classification. Alcohol use was assessed using a food frequency questionnaire. We compared the biodiversity and relative abundance of the taxa among never drinkers (ND, n = 9), former drinkers (FD, n = 10), current light drinkers (LD, <2 drinks daily, n = 9), and current heavy drinkers (HD, ≥2 drinks daily, n = 6). False discovery rate-adjusted P values (q values) < .05 indicated statistical significance. HD had the lowest α diversity (Shannon index q value < 0.001), and HD's microbial composition differed the most from the other groups (P value = .002). LD had the highest relative abundance of Akkermansia (q values < 0.001). HD had the lowest relative abundance of Subdoligranulum, Roseburia, and Lachnospiraceaeunc91005 but the highest relative abundance of Lachnospiraceaeunc8895 (all q values < 0.05). The multivariable negative binomial regression model supported these observations. ND and FD had a similar microbial profile. Heavy alcohol use was associated with impaired gut microbiota that may partially mediate its effect on health outcomes.
Collapse
Affiliation(s)
- Shawn Gurwara
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Annie Dai
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - David Y Graham
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| | - Donna L White
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| | - Liang Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA.
| | - Albert Jang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Ellie Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA.
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Michael E. DeBakey VA Medical Center, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Innovations in Quality, Effectiveness and Safety, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA.
| |
Collapse
|
66
|
Watanabe D, Murakami H, Ohno H, Tanisawa K, Konishi K, Tsunematsu Y, Sato M, Miyoshi N, Wakabayashi K, Watanabe K, Miyachi M. Association between dietary intake and the prevalence of tumourigenic bacteria in the gut microbiota of middle-aged Japanese adults. Sci Rep 2020; 10:15221. [PMID: 32939005 PMCID: PMC7495490 DOI: 10.1038/s41598-020-72245-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
The relative contribution of diet to colorectal cancer (CRC) incidence is higher than that for other cancers. Animal models have revealed that Escherichia coli containing polyketide synthase (pks+ E. coli) in the gut participates in CRC development. The purpose of this cross-sectional study was to examine the relationship between dietary intake and the prevalence of pks+ E. coli isolated from the microbiota in faecal samples of 223 healthy Japanese individuals. Dietary intake was assessed using a previously validated brief-type self-administered diet history questionnaire. The prevalence of pks+ E. coli was evaluated using faecal samples collected from participants and specific primers that detected pks+ E. coli. The prevalence of pks+ E. coli was 26.9%. After adjusting for baseline confounders, the prevalence of pks+ E. coli was negatively associated with the intake of green tea (odds ratio [OR], 0.59 [95% confidence interval (CI) 0.30-0.88] per 100 g/1,000 kcal increment) and manganese (OR, 0.43 [95% CI 0.22-0.85] per 1 mg/1,000 kcal increment) and was positively associated with male sex (OR, 2.27 [95% CI 1.05-4.91]). While futher studies are needed to validate these findings, these results provide insight into potential dietary interventions for the prevention of CRC.
Collapse
Affiliation(s)
- Daiki Watanabe
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Harumi Ohno
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Kana Konishi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Noriyuki Miyoshi
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Keiji Wakabayashi
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan.
| |
Collapse
|
67
|
Nakajima H, Takewaki F, Hashimoto Y, Kajiyama S, Majima S, Okada H, Senmaru T, Ushigome E, Nakanishi N, Hamaguchi M, Yamazaki M, Tanaka Y, Oikawa Y, Nakajima S, Ohno H, Fukui M. The Effects of Metformin on the Gut Microbiota of Patients with Type 2 Diabetes: A Two-Center, Quasi-Experimental Study. Life (Basel) 2020; 10:life10090195. [PMID: 32932871 PMCID: PMC7555986 DOI: 10.3390/life10090195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Metformin is reported to affect human gut microbiota; however, the nature of this association in Japanese patients with type 2 diabetes mellitus (T2DM) is unknown. We enrolled 31 patients with T2DM who took metformin for the first time in this study. We compared them before and after four weeks of taking metformin. Fecal samples were collected and 16S rDNA sequences were performed to identify the gut microbiota. Blood samples and Gastrointestinal Symptom Rating Scale (GSRS) questionnaire results, denoting gastro-intestinal symptoms, were also collected. In the whole-group analysis, no significant differences were found at the phylum level. In a subgroup of 21 patients that excluding those using medications affecting gut microbiota, there was a significant decrease of the phylum Firmicutes (p = 0.042) and of the ratio of the Firmicutes and Bacteroidetes abundances (p = 0.04) after taking metformin. Changes in abdominal pain (r = −0.56, p = 0.008) and regurgitation (r = −0.53, p = 0.01) were associated with Parabacteroides. Despite there being no direct association with abdominal symptoms, our study revealed that the composition of gut microbiota in Japanese individuals with T2DM partially changed after starting metformin.
Collapse
Affiliation(s)
- Hanako Nakajima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Fumie Takewaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
- Correspondence:
| | - Shizuo Kajiyama
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
- Kajiyama Clinic, Kyoto 600-8898, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
- Department of Internal Medicine, Matsushita Memorial Hospital, Moriguchi 570-8540, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 650-0021, Japan; (Y.T.); (Y.O.); (S.N.); (H.O.)
| | - Yousuke Oikawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 650-0021, Japan; (Y.T.); (Y.O.); (S.N.); (H.O.)
| | - Shunji Nakajima
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 650-0021, Japan; (Y.T.); (Y.O.); (S.N.); (H.O.)
| | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 650-0021, Japan; (Y.T.); (Y.O.); (S.N.); (H.O.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| |
Collapse
|
68
|
Sadeghi O, Milajerdi A, Siadat SD, Keshavarz SA, Sima AR, Vahedi H, Adibi P, Esmaillzadeh A. Effects of soy milk consumption on gut microbiota, inflammatory markers, and disease severity in patients with ulcerative colitis: a study protocol for a randomized clinical trial. Trials 2020; 21:565. [PMID: 32576228 PMCID: PMC7310397 DOI: 10.1186/s13063-020-04523-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background Several strategies are recommended to alleviate clinical symptoms of ulcerative colitis (UC). Soy milk may affect UC through its anti-inflammatory properties. However, no study has examined the effects of soy milk consumption on gut microbiota and inflammatory biomarkers in patients with UC. The current study will be done to examine the effects of soy milk consumption on UC symptoms, inflammation, and gut microbiota in patients with UC. Methods This study is a randomized clinical trial, in which thirty patients with mild to moderate severity of UC will be randomly allocated to receive either 250 mL/day soy milk plus routine treatments (n = 15) or only routine treatments (n = 15) for 4 weeks. Assessment of anthropometric measures and biochemical indicators including serum concentrations of high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon gamma (IFN-γ) will be done at the study baseline and end of trial. In addition, the quantity of butyrate-producing bacteria including Clostridium cluster IV, Faecalibacterium prausnitzii, and Roseburia spp.; prebiotic bacteria including Lactobacillus spp. and Bifidobacteria spp.; and mucus-degrading bacteria including Akkermansia muciniphila, Bacteroides fragilis, and Ruminococcus spp., as well as calprotectin and lactoferrin levels, will be explored in fecal samples. Also, the Firmicutes to Bacteroidetes ratio which is of significant relevance in human gut microbiota composition will be assessed. Discussion Altered gut microbiota has been reported as an important contributing factor to inflammation in patients with inflammatory bowel disease (IBD). Soy milk contains several components such as phytoestrogens with potential anti-inflammatory properties. This product might affect gut microbiota through its protein and fiber content. Therefore, soy milk might beneficially affect systemic inflammation, gut microbiota, and then clinical symptoms in patients with UC. Trial registration Iranian Registry of Clinical Trials (www.irct.ir) IRCT20181205041859N1. Registered on 27 January 2019.
Collapse
Affiliation(s)
- Omid Sadeghi
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Alireza Milajerdi
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Sima
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Homayoon Vahedi
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Adibi
- Integrative Functional Gastroenterology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran. .,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
69
|
Maskarinec G, Hullar MAJ. Understanding the Interaction of Diet Quality with the Gut Microbiome and Their Effect on Disease. J Nutr 2020; 150:654-655. [PMID: 32006026 PMCID: PMC7138650 DOI: 10.1093/jn/nxaa015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Gertraud Maskarinec
- University of Hawaii Cancer Center, Honolulu, HI, USA,Address correspondence to GM (e-mail: )
| | - Meredith A J Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
70
|
Chen E, Kalavar A, Bui-Thanh NA, Opekun AR, White DL, Rosen D, Graham DY, Rumbaut RE, El-Serag HB, Jiao L. Serum Levels of Lipopolysaccharides and Risk of Advanced Colorectal Adenoma. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-6. [DOI: 10.14218/erhm.2020.00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
71
|
Rizowy GM, Poloni S, Colonetti K, Donis KC, Dobbler PT, Leistner-Segal S, Roesch LFW, Schwartz IVD. Is the gut microbiota dysbiotic in patients with classical homocystinuria? Biochimie 2020; 173:3-11. [PMID: 32105814 DOI: 10.1016/j.biochi.2020.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Classical homocystinuria (HCU) is characterized by increased plasma levels of total homocysteine (tHcy) and methionine (Met). Treatment may involve supplementation of B vitamins and essential amino acids, as well as restricted Met intake. Dysbiosis has been described in some inborn errors of metabolism, but has not been investigated in HCU. The aim of this study was to investigate the gut microbiota of HCU patients on treatment. Six unrelated HCU patients (males = 5, median age = 25.5 years) and six age-and-sex-matched healthy controls (males = 5, median age = 24.5 years) had their fecal microbiota characterized through partial 16S rRNA gene sequencing. Fecal pH, a 3-day dietary record, medical history, and current medications were recorded for both groups. All patients were nonresponsive to pyridoxine and were on a Met-restricted diet and presented with high tHcy. Oral supplementation of folate (n = 6) and pyridoxine (n = 5), oral intake of betaine (n = 4), and IM vitamin B12 supplementation (n = 4), were reported only in the HCU group. Patients had decreased daily intake of fat, cholesterol, vitamin D, and selenium compared to controls (p < 0.05). There was no difference in alpha and beta diversity between the groups. HCU patients had overrepresentation of the Eubacterium coprostanoligenes group and underrepresentation of the Alistipes, Family XIII UCG-001, and Parabacteroidetes genera. HCU patients and controls had similar gut microbiota diversity, despite differential abundance of some bacterial genera. Diet, betaine, vitamin B supplementation, and host genetics may contribute to these differences in microbial ecology.
Collapse
Affiliation(s)
- Gustavo Mottin Rizowy
- PostGraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Soraia Poloni
- Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karina Colonetti
- PostGraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karina Carvalho Donis
- PostGraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Priscila Thiago Dobbler
- Interdisciplinary Research Center on Biotechnology (CIP-Biotec), Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Sandra Leistner-Segal
- Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Fernando Wurdig Roesch
- Interdisciplinary Research Center on Biotechnology (CIP-Biotec), Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Ida Vanessa Doederlein Schwartz
- PostGraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
72
|
Gut dysbiosis is prevailing in Sjögren's syndrome and is related to dry eye severity. PLoS One 2020; 15:e0229029. [PMID: 32059038 PMCID: PMC7021297 DOI: 10.1371/journal.pone.0229029] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
Objective To investigate gut dysbiosis in patients with Sjögren’s syndrome (SS) or dry eye syndrome (DES) compared to normal subjects and to evaluate the association of dysbiosis with dry eye severity. Methods 10 subjects with SS, 14 subjects with DES and 12 controls were enrolled. Corneal staining, tear break up time (TBUT) and tear secretion were evaluated. Bacterial genomic 16s rRNA from stool samples were analyzed. Main outcomes were microbiome compositional differences among groups and their correlation to dry eye signs. Results Gut microbiome analysis revealed significant compositional differences in SS compared to controls and DES. In phylum, Bacteriodetes increased, while Firmicutes/Bacteroidetes ratio and Actinobacteria decreased (p<0.05). In genus, Bifidobacterium was reduced (vs controls; p = 0.025, vs DES; p = 0.026). Beta diversity of SS also showed significant distances from controls and DES (p = 0.007 and 0.019, respectively). SS showed decreased genus of Blautia (p = 0.041), Dorea (p = 0.025) and Agathobacter (p = 0.035) compared to controls and increased genus of Prevotella (p = 0.026), Odoribacter (p = 0.028) and Alistipes (p = 0.46) compared to DES. On the other hand, DES only had increased genus Veillonella (p = 0.045) and reduced Subdoligranulum (p = 0.035) compared to controls. Bacteroidetes, Actinobacteria and Bifidobacterium were significantly related with dry eye signs (p<0.05). After adjustment of age, gender and group classification, multivariate linear regression analysis revealed tear secretion was strongly affected by Prevotella (p = 0.025). With additional adjustment of hydroxychloroquine use, TBUT was markedly affected by Prevotella (p = 0.037) and Actinobacteria (p = 0.001). Conclusions Sjögren’s syndrome showed significant gut dysbiosis compared to controls and environmental dry eye syndrome, while dry eye patients showed compositional changes of gut microbiome somewhere in between Sjögren’s syndrome and controls. Dysbiosis of the gut microbiota was partly correlated to dry eye severity.
Collapse
|
73
|
Barger K, Langsetmo L, Orwoll ES, Lustgarten MS. Investigation of the Diet-Gut-Muscle Axis in the Osteoporotic Fractures in Men Study. J Nutr Health Aging 2020; 24:445-452. [PMID: 32242213 PMCID: PMC7524010 DOI: 10.1007/s12603-020-1344-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the association between dietary fiber density (grams of fiber consumed per 100 kcal) with the gut-muscle axis in older adult men. DESIGN Cross-sectional study. SETTING Osteoporotic Fractures in Men (MrOS) cohort participants at Visit 4 (2014-16). PARTICIPANTS Older adult men (average age, 85y) from the MrOS study. MEASUREMENTS Men who were in the highest tertiles for dietary fiber density and the percentage of whole body lean mass were defined as T3T3 (n=42), whereas men who were in the lowest and intermediate tertiles for these variables were defined as T1T1 (n=32), T1T3 (n=24), and T3T1 (n=13), respectively. Additionally, measures of physical function, including the short physical performance battery (SPPB) score and grip strength were higher in T3T3 when compared with T1T1. Gut bacterial abundance was quantified with use of 16S v4 rRNA sequencing, and the bacterial functional potential was derived from the 16S data with PICRUSt. Chao1, ACE, Shannon, Simpson, and Fisher indices were used as measures of α-diversity. Weighted and unweighted Unifrac, and Bray-Curtis were used as measures of β-diversity. Age, physical activity score, smoking, and number of medications-adjusted DESeq2 models were used to identify bacteria and functions that were different when comparing T3T3 with T1T1, but that were not also different when comparing T3T3 with T1T3 or T3T1. RESULTS α-diversity was not different, but significant differences for β-diversity (unweighted UniFrac, Bray-Curtis) were identified when comparing T3T3 with T1T1. Known butyrate-producing bacteria, including Ruminococcus, Lachnospira, and Clostridia, and gene counts for butyrate production (KEGG IDs: K01034, K01035) were higher in T3T3, when compared with T1T1. CONCLUSION These data suggest that a high-fiber diet may positively impact butyrate-producing genera and gene counts, which collectively may be involved in mechanisms related to the percentage of whole body lean mass and physical functioning in older adult men. Future studies aimed at testing the causative role of this hypothesis are of interest.
Collapse
Affiliation(s)
- K Barger
- Michael S. Lustgarten, Ph.D. Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA, Phone: (617) 556-3019, Fax: (617) 556-3083,
| | | | | | | |
Collapse
|