51
|
Choi HY, Chang JE. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int J Mol Sci 2023; 24:13618. [PMID: 37686423 PMCID: PMC10487969 DOI: 10.3390/ijms241713618] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The development of targeted therapies has revolutionized cancer treatment, offering improved efficacy with reduced side effects compared with traditional chemotherapy. This review highlights the current landscape of targeted therapy in lung cancer, colorectal cancer, and prostate cancer, focusing on key molecular targets. Moreover, it aligns with US Food and Drug Administration (FDA)-approved drugs and drug candidates. In lung cancer, mutations in the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) gene rearrangements have emerged as significant targets. FDA-approved drugs like osimertinib and crizotinib specifically inhibit these aberrant pathways, providing remarkable benefits in patients with EGFR-mutated or ALK-positive lung cancer. Colorectal cancer treatment has been shaped by targeting the vascular endothelial growth factor (VEGF) and EGFR. Bevacizumab and cetuximab are prominent FDA-approved agents that hinder VEGF and EGFR signaling, significantly enhancing outcomes in metastatic colorectal cancer patients. In prostate cancer, androgen receptor (AR) targeting is pivotal. Drugs like enzalutamide, apalutamide, and darolutamide effectively inhibit AR signaling, demonstrating efficacy in castration-resistant prostate cancer. This review further highlights promising targets like mesenchymal-epithelial transition (MET), ROS1, BRAF, and poly(ADP-ribose) polymeras (PARP) in specific cancer subsets, along with ongoing clinical trials that continue to shape the future of targeted therapy.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
52
|
Wu Y, Ren K, Wan Y, Lin HM. Economic burden in patients with anaplastic lymphoma kinase ( ALK)-positive non-small cell lung cancer (NSCLC), with or without brain metastases, receiving first-line ALK inhibitors. J Oncol Pharm Pract 2023; 29:1418-1427. [PMID: 36131505 PMCID: PMC10540485 DOI: 10.1177/10781552221126174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION This observational study describes the real-world economic burden in patients with anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer (NSCLC) receiving a first-line ALK inhibitor, and the economic impact of brain metastases (BM). METHODS Administrative claims data (Truven Health MarketScan® Commercial Claims and Encounters database and Medicare Supplemental and Coordination of Benefits database; January 1, 2015-March 31, 2020) for adult patients with ALK+ NSCLC who received a first-line ALK inhibitor were retrospectively reviewed. Healthcare costs and resource utilization were calculated on a per-patient-per-month (PPPM) basis and stratified by the presence or absence of BM prior to first-line ALK inhibitor. Factors associated with costs were identified. RESULTS A total of 496 patients were eligible for analysis. Mean PPPM total healthcare costs were $21,961 for all patients receiving up to 1 year of a first-line ALK inhibitor. Patients were significantly more likely to have higher mean PPPM total costs if they had BM prior to first-line ALK inhibitor (vs. no BM; odds ratio: 1.11; 95% confidence interval: 1.02, 1.21; p = 0.013). Mean PPPM days of hospital stay (p = 0.0056), and inpatient hospital visits (p = 0.0030) were significantly higher for patients with BM compared to no BM. The main cost drivers for non-inpatient procedures for all patients were medications, radiation therapy, and other diagnostic procedures. CONCLUSIONS The economic burden in patients with ALK+ NSCLC receiving a first-line ALK inhibitor was high. Patients with ALK+ NSCLC and BM had higher healthcare costs and resource utilization than patients without BM.
Collapse
Affiliation(s)
- Yanyu Wu
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Kaili Ren
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Yin Wan
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Huamao M Lin
- Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| |
Collapse
|
53
|
Lee CK, Soon YY, Jeffree RL, Joshi R, Koh ES, Lam WS, Le H, Lwin Z, Pinkham MB, Siva S, Ng E, John T. Management Paradigm of Central Nervous System Metastases in NSCLC: An Australian Perspective. JTO Clin Res Rep 2023; 4:100553. [PMID: 37663675 PMCID: PMC10472312 DOI: 10.1016/j.jtocrr.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Life-prolonging central nervous system active systemic therapies for metastatic NSCLC have increased the complexity of managing brain metastases (BMs). Australian medical oncologists, radiation oncologists, and neurosurgeons discussed the evidence guiding the diverse clinical approaches to the management of BM in NSCLC. The Australian context is broadly applicable to other jurisdictions; therefore, we have documented these discussions as principles with broader applications. Patient management was stratified according to clinical and radiologic factors under two broad classifications of newly diagnosed BMs: symptomatic and asymptomatic. Other important considerations include the number and location of metastases, tumor histotypes, molecular subtype, and treatment purpose. Careful consideration of the pace and burden of symptoms, risk of worsening neurologic function at a short interval, and extracranial disease burden should determine whether central nervous system active systemic therapies are used alone or in combination with local therapies (surgery with or without radiation therapy). Most clinical trial evidence currently focuses on historical treatment options or a single treatment modality rather than the optimal sequencing of multiple modern therapies; therefore, an individualized approach is key in a rapidly changing therapeutic landscape.
Collapse
Affiliation(s)
- Chee Khoon Lee
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Yu Yang Soon
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore
| | - Rosalind L. Jeffree
- Kenneth G Jamieson Department of Neurosurgery, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, St. Lucia, Queensland, Australia
| | - Rohit Joshi
- Medical Oncology, Lyell McEwin Hospital, University of Adelaide, Adelaide, South Australia, Australia
- Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Science, Adelaide, South Australia, Australia
| | - Eng-Siew Koh
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Wei-Sen Lam
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, South Australia, Australia
| | - Zarnie Lwin
- Faculty of Medicine, University of Queensland, St. Lucia, Queensland, Australia
- Department of Medical Oncology, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
| | - Mark B. Pinkham
- Faculty of Medicine, University of Queensland, St. Lucia, Queensland, Australia
- The Radiation Oncology Centre, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Evan Ng
- Department of Radiation Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Thomas John
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
54
|
Fong CH, Meti N, Kruser T, Weiss J, Liu ZA, Takami H, Narita Y, de Moraes FY, Dasgupta A, Ong CK, Yang JCH, Lee JH, Kosyak N, Pavlakis N, Kongkham P, Doherty M, Leighl NB, Shultz DB. Recommended first-line management of asymptomatic brain metastases from EGFR mutant and ALK positive non-small cell lung cancer varies significantly according to specialty: an international survey of clinical practice. J Thorac Dis 2023; 15:4367-4378. [PMID: 37691657 PMCID: PMC10482634 DOI: 10.21037/jtd-22-697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/17/2023] [Indexed: 09/12/2023]
Abstract
Background The role for radiotherapy or surgery in the upfront management of brain metastases (BrM) in epidermal growth factor receptor mutant (EGFRm) or anaplastic lymphoma kinase translocation positive (ALK+) non-small cell lung cancer (NSCLC) is uncertain because of a lack of prospective evidence supporting tyrosine kinase inhibitor (TKI) monotherapy. Further understanding of practice heterogeneity is necessary to guide collaborative efforts in establishing guideline recommendations. Methods We conducted an international survey among medical (MO), clinical (CO), and radiation oncologists (RO), as well as neurosurgeons (NS), of treatment recommendations for asymptomatic BrM (in non-eloquent regions) EGFRm or ALK+ NSCLC patients according to specific clinical scenarios. We grouped and compared treatment recommendations according to specialty. Responses were summarized using counts and percentages and analyzed using the Fisher exact test. Results A total of 449 surveys were included in the final analysis: 48 CO, 85 MO, 60 NS, and 256 RO. MO and CO were significantly more likely than RO and NS to recommend first-line TKI monotherapy, regardless of the number and/or size of asymptomatic BrM (in non-eloquent regions). Radiotherapy in addition to TKI as first-line management was preferred by all specialties for patients with ≥4 BrM. NS recommended surgical resection more often than other specialties for BrM measuring >2 cm. Conclusions Recommendations for the management of BrM from EGFRm or ALK+ NSCLC vary significantly according to oncology sub-specialties. Development of multidisciplinary guidelines and further research on establishing optimal treatment strategies is warranted.
Collapse
Affiliation(s)
- Chin Heng Fong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Nicholas Meti
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Timothy Kruser
- Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Jessica Weiss
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Hirokazu Takami
- Department of Neurosurgery, University of Tokyo Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Archya Dasgupta
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | | | - James C. H. Yang
- Graduate Institute of Oncology, National Taiwan University, Taipei
| | - Jih Hsiang Lee
- Graduate Institute of Oncology, National Taiwan University, Taipei
| | - Natalya Kosyak
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | | | - Paul Kongkham
- Department of Neurosurgery, University Health Network, Toronto, Canada
| | - Mark Doherty
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Natasha B. Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - David B. Shultz
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
55
|
Nieder C, Andratschke NH, Grosu AL. How we treat octogenarians with brain metastases. Front Oncol 2023; 13:1213122. [PMID: 37614511 PMCID: PMC10442834 DOI: 10.3389/fonc.2023.1213122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
Biologically younger, fully independent octogenarians are able to tolerate most oncological treatments. Increasing frailty results in decreasing eligibility for certain treatments, e.g., chemotherapy and surgery. Most brain metastases are not an isolated problem, but part of widespread cancer dissemination, often in combination with compromised performance status. Multidisciplinary assessment is key in this vulnerable patient population where age, frailty, comorbidity and even moderate additional deficits from brain metastases or their treatment may result in immobilization, hospitalization, need for nursing home care, termination of systemic anticancer treatment etc. Here, we provide examples of successful treatment (surgery, radiosurgery, systemic therapy) and best supportive care, and comment on the limitations of prognostic scores, which often were developed in all-comers rather than octogenarians. Despite selection bias in retrospective studies, survival after radiosurgery was more encouraging than after whole-brain radiotherapy. Prospective research with focus on octogenarians is warranted to optimize outcomes.
Collapse
Affiliation(s)
- Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital, Bodø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Nicolaus H. Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty, University Freiburg, Freiburg, Germany
| |
Collapse
|
56
|
Katgı N, Çimen P, Akyol M, Gürsoy P, Agüloğlu N. Comparison of Alectinib/Crizotinib Data in First-Line Therapy in Patients with Anaplastic LymphomakinasePositive Nonsmall Cell Lung Carcinoma with Poor Prognostic Features for Alectinib. THORACIC RESEARCH AND PRACTICE 2023; 24:180-185. [PMID: 37485706 PMCID: PMC10544624 DOI: 10.5152/thoracrespract.2023.22200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/05/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE Alectinib has a much better central nervous system transmission than crizotinib in patients diagnosed with anaplastic lymphoma kinase mutation-positive nonsmall cell lung carcinoma. We aimed to investigate alectinib's efficacy in the treatment and its place in the first-line treatment and report our real-life data. MATERIAL AND METHODS The data of 38 patients who were diagnosed with anaplastic lymphoma kinase-positive nonsmall cell lung carcinoma in our clinic between 2016 and 2021, who did not receive any treatment before were retrospectively analyzed. RESULTS Of the 19 patients who received alectinib, 14 had multiple, and 6 had pretreatment brain metastases. No newly emerging brain metastases were detected during the treatment period. The progression-free survival of patients was 23.5 ± 4.2 months, and overall survival was 24.6 ± 4.1 months. Progression was observed in 10 (52.6%) patients. Of the 19 patients who received crizotinib, 7 had multiple metastases, and brain metastases were detected in 1 patient before treatment and 6 patients during the treatment period. Progression-free survival of crizotinib patients was 17.1 ± 4.8 months and their overall survival was 26.5 ± 6.1 months. Progression was observed in 17 (89.5%) patients. The second line of alectinib could be given to 8 of these patients. Overall survival after second-line treatment of alectinib was 18.2 ± 7.0 months. Overall survival of the patients who could not receive second-line treatment of alectinib was 4.0 ± 2.0 months. CONCLUSION The progression rate was lower in alectinib than the crizotinib patients, although there were more patients with multiple metastases and brain metastases in the alectinib arm.
Collapse
Affiliation(s)
- Nuran Katgı
- Department of Pulmonology, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Pınar Çimen
- Department of Pulmonology, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| | - Murat Akyol
- Department of Medical Oncology, Bakırçay University, İzmir, Turkey
| | - Pınar Gürsoy
- Department of Medical Oncology, Ege University, İzmir, Turkey
| | - Nurşin Agüloğlu
- Department of Nuclear Medicine, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
57
|
Berger A, Mullen R, Bernstein K, Alzate JD, Silverman JS, Sulman EP, Donahue BR, Chachoua A, Shum E, Velcheti V, Sabari J, Golfinos JG, Kondziolka D. Extended Survival in Patients With Non-Small-Cell Lung Cancer-Associated Brain Metastases in the Modern Era. Neurosurgery 2023; 93:50-59. [PMID: 36722962 DOI: 10.1227/neu.0000000000002372] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Brain metastases (BM) have long been considered a terminal diagnosis with management mainly aimed at palliation and little hope for extended survival. Use of brain stereotactic radiosurgery (SRS) and/or resection, in addition to novel systemic therapies, has enabled improvements in overall and progression-free (PFS) survival. OBJECTIVE To explore the possibility of extended survival in patients with non-small-cell lung cancer (NSCLC) BM in the current era. METHODS During the years 2008 to 2020, 606 patients with NSCLC underwent their first Gamma Knife SRS for BM at our institution with point-of-care data collection. We reviewed clinical, molecular, imaging, and treatment parameters to explore the relationship of such factors with survival. RESULTS The median overall survival was 17 months (95% CI, 13-40). Predictors of increased survival in a multivariable analysis included age <65 years ( P < .001), KPS ≥80 ( P < .001), absence of extracranial metastases ( P < .001), fewer BM at first SRS (≤3, P = .003), and targeted therapy ( P = .005), whereas chemotherapy alone was associated with shorter survival ( P = .04). In a subgroup of patients managed before 2016 (n = 264), 38 (14%) were long-term survivors (≥5 years), of which 16% required no active cancer treatment (systemic or brain) for ≥3 years by the end of their follow-up. CONCLUSION Long-term survival in patients with brain metastases from NSCLC is feasible in the current era of SRS when combined with the use of effective targeted therapeutics. Of those living ≥5 years, the chance for living with stable disease without the need for active treatment for ≥3 years was 16%.
Collapse
Affiliation(s)
- Assaf Berger
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Reed Mullen
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Kenneth Bernstein
- Department of Radiation Oncology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Juan Diego Alzate
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Joshua S Silverman
- Department of Radiation Oncology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Bernadine R Donahue
- Department of Radiation Oncology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Abraham Chachoua
- Medical Oncology, Perlmutter Cancer Center, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Elaine Shum
- Medical Oncology, Perlmutter Cancer Center, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Vamsidhar Velcheti
- Medical Oncology, Perlmutter Cancer Center, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Joshua Sabari
- Medical Oncology, Perlmutter Cancer Center, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - John G Golfinos
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| |
Collapse
|
58
|
Siringo M, Gentile G, Caponnetto S, Sperduti I, Santini D, Cortesi E, Gelibter AJ. Evaluation of Efficacy of ALK Inhibitors According to Body Mass Index in ALK Rearranged NSCLC Patients-A Retrospective Observational Study. Cancers (Basel) 2023; 15:3422. [PMID: 37444532 DOI: 10.3390/cancers15133422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
No evidence exists as to whether body mass index (BMI) impairs clinical outcomes from ALK inhibitors (ALKi) in patients with ALK-rearranged non-small cell lung cancer (NSCLC). Retrospective data of patients affected by metastatic ALK-rearranged NSCLC treated with ALKi were collected. We divided patients into "low- BMI" (≤25 kg/m2) and "high- BMI" (>25 kg/m2) categories and correlated them with overall survival (OS) and progression-free survival (PFS). We included 40 patients treated with ALKi. We observed a 3-year OS of 81.5% in high-BMI vs. 49.6% in low-BMI categories (p = 0.049); the 3-year first-line PFS was superior in high-BMI vs. low-BMI patients (47% vs. 19%, p = 0.019). As expected, patients treated with Alectinib had a 55.6% 3-year PFS vs. 7.1% for others treated with ALKi (p = 0.025). High-BMI was associated with a 100% 3-year PFS rate vs. 25.4% in low-BMI Alectinib patients (p = 0.03). BMI was independently correlated with first-line PFS and OS at multivariate analysis with PS (HR 0.39, CI 95% 0.16-0.96, p = 0.042; HR 0.18, CI 95% 0.05-0.61, p = 0.006). High-BMI was associated with higher efficacy in ALK-rearranged patients. These results are particularly exciting for Alectinib and could be correlated to mechanisms that should be investigated in subsequent prospective studies.
Collapse
Affiliation(s)
- Marco Siringo
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, 28041 Madrid, Spain
| | - Gabriella Gentile
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Salvatore Caponnetto
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Isabella Sperduti
- Department of Biostatistics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Daniele Santini
- Medical Oncology Unit A, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Enrico Cortesi
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Alain Jonathan Gelibter
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
59
|
Huang Z, Wu F, Xu Q, Song L, Zhang X, Wang Z, Deng L, Zhang Y, Zeng L, Yang N. Intracranial activity of first-line immune checkpoint inhibitors combined with chemotherapy in advanced non-small cell lung cancer. Chin Med J (Engl) 2023; 136:1422-1429. [PMID: 37195128 PMCID: PMC10278740 DOI: 10.1097/cm9.0000000000002720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are increasingly used as first-line therapy for patients with advanced non-small cell lung cancer (NSCLC) harboring no actionable mutations; however, data on their efficacy among patients presenting with intracranial lesions are limited. This study aimed to explore the efficacy and safety of ICIs combined with chemotherapy in advanced NSCLC patients with measurable brain metastasis at initial diagnosis. METHODS Our study retrospectively analyzed clinical data of a total of 211 patients diagnosed with driver gene mutation-negative advanced NSCLC with measurable, asymptomatic brain metastasis at baseline from Hunan Cancer Hospital between January 1, 2019 and September 30, 2021. The patients were stratified into two groups according to the first-line treatment regimen received: ICI combined with chemotherapy ( n = 102) or chemotherapy ( n = 109). Systemic and intracranial objective response rates (ORRs) and progression-free survival (PFS) were analyzed. Adverse events were also compared between the groups. RESULTS Compared with the chemotherapy-based regimen, the ICI-containing regimen was associated with a significantly higher intracranial (44.1% [45/102] vs . 28.4% [31/109], χ2 = 5.620, P = 0.013) and systemic (49.0% [50/102] vs . 33.9% [37/109], χ2 = 4.942, P = 0.019) ORRs and longer intracranial (11.0 months vs . 7.0 months, P <0.001) and systemic (9.0 months vs . 5.0 months, P <0.001) PFS. Multivariable analysis consistently revealed an independent association between receiving ICI plus platinum-based chemotherapy as a first-line regimen and prolonged intracranial PFS (hazard ratio [HR] = 0.52, 95% confidence interval [CI]: 0.37-0.73, P <0.001) and systemic PFS (HR = 0.48, 95% CI: 0.35-0.66, P <0.001). No unexpected serious adverse effects were observed. CONCLUSION Our study provides real-world clinical evidence that ICI combined with chemotherapy is a promising first-line treatment option for driver gene mutation-negative advanced NSCLC patients who present with brain metastasis at initial diagnosis. CLINICAL TRIAL REGISTRATION https://www.clinicaltrials.gov/ , OMESIA, NCT05129202.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Fang Wu
- Department of Pathology, Immuno-Oncology Laboratory, School of Basic Medicine, Central South University, Changsha, Hunan 410013, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, Qinghai 810000, China
| | - Lianxi Song
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Department of Medical Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiangyu Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Department of Medical Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
- Department of Pathology, Immuno-Oncology Laboratory, School of Basic Medicine, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
60
|
Samacá-Samacá D, Prieto-Pinto L, Peréz AY, Valderrama C, Hernández F. Alectinib for treating patients with metastatic ALK-positive NSCLC: systematic review and network metanalysis. Lung Cancer Manag 2023; 12:LMT59. [PMID: 37287941 PMCID: PMC10242442 DOI: 10.2217/lmt-2022-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/21/2023] [Indexed: 06/09/2023] Open
Abstract
Aim To compare the efficacy and safety of alectinib with other ALK inhibitors in treating patients with metastatic or locally advanced ALK-positive NSCLC. Methods A systematic literature review was conducted up to November 2021. Network meta-analyses were performed using the frequentist method (random effects). GRADE evidence profile was conducted. Results 13 RCTs were selected. For overall survival, alectinib was found to reduce the risk of death compared with crizotinib. In progression-free survival, alectinib reduced the risk of death or progression compared with crizotinib and ceritinib. Subgroup analysis by brain metastasis at baseline showed the superiority of alectinib over crizotinib and a similar effect compared with second-and third-generation inhibitors. Alectinib showed a good safety profile compared with the other ALK inhibitors.
Collapse
Affiliation(s)
| | | | - Andrés Yepes Peréz
- Oncology Unit, Centro Oncológico de Antioquia & Clínica de Oncología Astorga, Medellín, Colombia
| | | | | |
Collapse
|
61
|
Tanaka M, Miura H, Ishimaru S, Furukawa G, Kawamura Y, Kozawa K, Yamada S, Ito F, Kudo K, Yoshikawa T. Future Perspective for ALK-Positive Anaplastic Large Cell Lymphoma with Initial Central Nervous System (CNS) Involvement: Could Next-Generation ALK Inhibitors Replace Brain Radiotherapy for the Prevention of Further CNS Relapse? Pediatr Rep 2023; 15:333-340. [PMID: 37368362 DOI: 10.3390/pediatric15020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Central nervous system (CNS) involvement in anaplastic large cell lymphoma (ALCL) at diagnosis is rare and leads to poor prognosis with the use of the standard ALCL99 protocol alone. CNS-directed intensive chemotherapy, such as an increased dose of intravenous MTX, increased dose of dexamethasone, intensified intrathecal therapy, and high-dose cytarabine, followed by cranial irradiation, has been shown to improve survival in this population. In this paper, the authors describe a 14-year-old male with an intracranial ALCL mass at onset who received CNS-directed chemotherapy followed by 23.4 Gy of whole-brain irradiation. After the first systemic relapse, the CNS-penetrating ALK inhibitor, alectinib, was applied; it has successfully maintained remission for 18 months without any adverse events. CNS-penetrating ALK inhibitor therapy might prevent CNS relapse in pediatric ALK-positive ALCL. Next-generation ALK inhibitors could be introduced as a promising treatment option, even for primary ALCL with CNS involvement, which could lead to the omission of cranial irradiation and avoid radiation-induced sequalae. Further evidence of CNS-penetrating ALK inhibitor combined therapy for primary ALK-positive ALCL is warranted to reduce radiation-induced sequalae in future treatments.
Collapse
Affiliation(s)
- Makito Tanaka
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Hiroki Miura
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Soichiro Ishimaru
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Gen Furukawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Kei Kozawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Seiji Yamada
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Fumitaka Ito
- Department of Radiation Oncology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Kazuko Kudo
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
62
|
Spitaleri G, Trillo Aliaga P, Attili I, Del Signore E, Corvaja C, Corti C, Crimini E, Passaro A, de Marinis F. Sustained Improvement in the Management of Patients with Non-Small-Cell Lung Cancer (NSCLC) Harboring ALK Translocation: Where Are We Running? Curr Oncol 2023; 30:5072-5092. [PMID: 37232842 DOI: 10.3390/curroncol30050384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
ALK translocation amounts to around 3-7% of all NSCLCs. The clinical features of ALK+ NSCLC are an adenocarcinoma histology, younger age, limited smoking history, and brain metastases. The activity of chemotherapy and immunotherapy is modest in ALK+ disease. Several randomized trials have proven that ALK inhibitors (ALK-Is) have greater efficacy with respect to platinum-based chemotherapy and that second/third generation ALK-Is are better than crizotinib in terms of improvements in median progression-free survival and brain metastases management. Unfortunately, most patients develop acquired resistance to ALK-Is that is mediated by on- and off-target mechanisms. Translational and clinical research are continuing to develop new drugs and/or combinations in order to raise the bar and further improve the results attained up to now. This review summarizes first-line randomized clinical trials of several ALK-Is and the management of brain metastases with a focus on ALK-I resistance mechanisms. The last section addresses future developments and challenges.
Collapse
Affiliation(s)
- Gianluca Spitaleri
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
63
|
Ou SHI, Lee ATM, Nagasaka M. From preclinical efficacy to 2022 updated CROWN trial, lorlatinib is the preferred 1 st-line treatment of advanced ALK+ NSCLC. Crit Rev Oncol Hematol 2023; 187:104019. [PMID: 37187318 DOI: 10.1016/j.critrevonc.2023.104019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Six ALK TKIs (crizotinib, ceritinib, alectinib, brigatinib, lorlatinib, ensartinib) have received first-line treatment indication of advanced ALK+ NSCLC in various countries. In Ba/F3 cells, lorlatinib achieved lowest IC50 among these 6 ALK TKIs against EML4-ALK variant 1 or 3. In 2022, 7 abstracts reported updated efficacy and safety data from CROWN. With a median follow-up time of 36.7 months, the 3-year progression-free survival (PFS) rate was 63.5%. The median PFS of lorlatinib still has not been reached. Post-lorlatinib treatment median PFS2 was 74.0% at 3-years. Lorlatinib-treated Asian patients achieved similar 3-year PFS rate as overall lorlatinib-treated patients. Median PFS was 33.3 months among lorlatinib-treated EML4-ALK v3 patients. CNS AE occurred fewer than 1 per patient over the median follow-up time of 36.7 months and most resolved without intervention. Altogether these data affirm our belief that lorlatinib should be the treatment of choice of advanced ALK+ NSCLC.
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- University of California Irvine School of Medicine, Orange, CA92868, USA; Chao Family Comprehensive Cancer Center, Orange, CA92868, USA.
| | - Alexandria T M Lee
- University of California Irvine School of Medicine, Orange, CA92868, USA
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Orange, CA92868, USA; Chao Family Comprehensive Cancer Center, Orange, CA92868, USA
| |
Collapse
|
64
|
Zhou Y, Yin Y, Xu J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. An update on Alectinib: a first line treatment for ALK-positive advanced lung cancer. Expert Opin Pharmacother 2023; 24:1361-1373. [PMID: 37278051 DOI: 10.1080/14656566.2023.2221786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Alectinib is a second-generation, anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) for the treatment of ALK+ non-small cell lung cancer (NSCLC) and is able to induce significant and durable CNS responses. However, long-term use of alectinib has been clinically reported to cause some serious and even life-threatening adverse events. There are currently no effective interventions for its adverse events, and this undoubtedly leads to delays in patient treatment and limits its long-term clinical use. AREAS COVERED Based on the clinical trials conducted so far, we summarize the efficacy and adverse events that occurred, especially those related to cardiovascular disorders, gastrointestinal disorders, hepatobiliary disorders, musculoskeletal and connective tissue disorders, skin and subcutaneous tissue disorders, and respiratory disorders. The factors that may influence alectinib selection are also described. Findings are based on a PubMed literature search of clinical and basic science research papers spanning 1998-2023. EXPERT OPINION The significant prolongation of patient survival compared with first-generation ALK inhibitor suggests its potential as a first-line treatment for the NSCLC, but the severe adverse events of alectinib limit its long-term clinical use. Future research should focus on the exact mechanisms of these toxicities, how to alleviate the adverse events caused by alectinib clinically, and the development of next-generation drugs with reduced toxicities.
Collapse
Affiliation(s)
- Yourong Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiangxin Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
65
|
Murciano-Goroff YR, Falcon CJ, Lin ST, Chacko C, Grimaldi G, Liu D, Wilhelm C, Iasonos A, Drilon A. Central Nervous System Disease in Patients With RET Fusion-Positive NSCLC Treated With Selpercatinib. J Thorac Oncol 2023; 18:620-627. [PMID: 36657661 PMCID: PMC10122712 DOI: 10.1016/j.jtho.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Central nervous system (CNS) metastases develop in nearly half of patients with RET fusion-positive NSCLCs and cause morbidity and mortality. The selective RET inhibitor selpercatinib treats existing intracranial disease, but no studies have investigated whether early initiation of selpercatinib is associated with decreased development of CNS metastases. METHODS A total of 61 patients with RET fusion-positive advanced NSCLC with and without CNS metastases treated with selpercatinib on the LIBRETTO-001 trial (NCT03157128) or the LIBRETTO-201 expanded access program (NCT03906331) were identified. Cumulative incidence rates (CIRs) for CNS metastases were assessed as an event of interest; systemic progression of disease and death were considered competing risks. RESULTS The median age was 65 years, and the most common 5' fusion partners were KIF5B (67%) and CCDC6 (18%). There were 24 patients (39%) who received prior platinum chemotherapy and 20 patients (33%) who received prior multikinase inhibition. The median time on selpercatinib was 21.8 months. Furthermore, 30 patients (49%) had CNS disease at baseline and 31 patients (51%) had no baseline CNS disease. CIRs of CNS progression among patients with baseline CNS disease were 3% (95% confidence interval [CI]: 0%-10%), 10% (95% CI: 0%-22%), 17% (3%-30%), 17% (3%-30%), and 20% (5%-35%) at 6, 12, 18, 24, and 36 months, respectively. CIR for CNS progression among patients without baseline CNS disease was 0% at 6, 12, 18, 24, and 36 months (95% CI: 0%-0%). CONCLUSIONS CNS progression was not observed with selpercatinib therapy in patients without baseline CNS disease. CNS progression on selpercatinib was rare in patients with baseline CNS disease. Early initiation of selpercatinib is associated with decreased rates of CNS metastasis formation and progression and may play a preventive role.
Collapse
Affiliation(s)
| | - Christina J Falcon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sabrina T Lin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Chacko
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Grace Grimaldi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dazhi Liu
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Clare Wilhelm
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
66
|
Miao E, Eichholz JE, Lebow ES, Flynn J, Zhang Z, Walch H, Hubbeling H, Beal K, Moss NS, Yu KK, Meng A, Kelly DW, Gomez DR, Li BT, Rimner A, Schultz N, Drilon A, Imber BS, Pike LRG. Characterization of Central Nervous System Clinico-Genomic Outcomes in ALK-Positive Non-Small Cell Lung Cancer Patients with Brain Metastases Treated with Alectinib. Lung Cancer 2023; 178:57-65. [PMID: 36780766 PMCID: PMC10065905 DOI: 10.1016/j.lungcan.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/11/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Highly effective brain-penetrant ALK-targeted tyrosine kinase inhibitors (TKIs) have been developed for the management of NSCLC patients with brain metastases (BM). Local therapy (LT) such as SRS or therapeutic craniotomy is increasingly being deferred for such patients. Herein we report detailed patient- and lesion-level intracranial outcomes and co-mutational genomic profiles from a cohort of NSCLC patients with BM treated with alectinib, with or without LT. METHODS We retrospectively reviewed ALK fusion-positive NSCLC patients with BMs who received alectinib at the diagnosis of BM from 1/2012 and 5/2021. Outcome variables included intracranial progression-free survival (iPFS), overall survival (OS), duration of TKI therapy, and CNS response rates. Genomic characteristics from tumor specimens were assessed with MSK-IMPACT, a next-generation sequencing (NGS)-based genomic profiling assay. RESULTS A total of 38 patients with 114 CNS lesions were included. Twelve of these patients also received contemporaneous LT (SRS, WBRT, or surgical resection). Maximal BM diameter in the TKI + LT group was greater (p < 0.003) but despite this difference, iPFS (TKI only, HR 1.21, 95 % CI 0.51-2.89; p = 0.66) and OS (TKI only, HR 5.99, 95 % CI 0.77-46.6; p = 0.052) were similar between groups and trended towards more favorable outcomes with the addition of LT. SMARCA4 co-alterations were associated with inferior OS (HR 8.76, 1.74-44.2; p = 0.009). CONCLUSIONS Our study demonstrated that patients with ALK fusion-positive NSCLC treated with TKI + LT had larger BM and higher likelihood of pre-treatment neurologic symptoms. Despite these differences, iPFS was similar between groups. Results should be interpreted with caution as our study was limited by an underpowered sample size. SMARCA4 co-alterations were associated with inferior OS and these findings warrant further investigation.
Collapse
Affiliation(s)
- Emily Miao
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States; Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jordan E Eichholz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States; Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Emily S Lebow
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Jessica Flynn
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Henry Walch
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Harper Hubbeling
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Nelson S Moss
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Kenny K Yu
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Alicia Meng
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Daniel W Kelly
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States; Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Bob T Li
- Memorial Sloan Kettering Cancer Center, New York, New York, United States; Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States; Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Brandon S Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Luke R G Pike
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States; Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States.
| |
Collapse
|
67
|
Hendriks LE, Kerr KM, Menis J, Mok TS, Nestle U, Passaro A, Peters S, Planchard D, Smit EF, Solomon BJ, Veronesi G, Reck M. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2023; 34:339-357. [PMID: 36872130 DOI: 10.1016/j.annonc.2022.12.009] [Citation(s) in RCA: 353] [Impact Index Per Article: 176.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Affiliation(s)
- L E Hendriks
- Department of Pulmonology, GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K M Kerr
- Aberdeen Royal Infirmary, Aberdeen University Medical School, Aberdeen, UK
| | - J Menis
- Medical Oncology Department, University and Hospital Trust of Verona, Verona, Italy
| | - T S Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - U Nestle
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - A Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - S Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - D Planchard
- Department of Medical Oncology, Thoracic Group, Gustave-Roussy Villejuif, France
| | - E F Smit
- Thoracic Oncology Service, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - B J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - G Veronesi
- Faculty of Medicine and Surgery-Vita-Salute San Raffaele University, Milan, Italy; Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, Lung Clinic, Grosshansdorf, Germany
| |
Collapse
|
68
|
Lai M, Li S, Li H, Hu Q, Li J, Zhou J, Ai R, Zhen J, Zhou Z, Wang L, Zhang Y, Hu W, Yuan L, Ma X, Zhang X, Song C, Li Z, Cai L. Lorlatinib for
ALK
‐fused, infant‐type hemispheric glioma with lung metastasis: a case report. Ann Clin Transl Neurol 2023; 10:836-841. [PMID: 37000961 DOI: 10.1002/acn3.51766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Infant-type hemispheric glioma, a new subtype of pediatric high-grade glioma, arises in the cerebral hemispheres. Despite better survival outcomes, the treatment of infant-type hemispheric glioma is still facing challenges. Here, we reported a case of QKI-ALK fusion, infant-type hemispheric glioma with lung metastasis who achieved a complete clinical response after lorlatinib treatment. This typical case demonstrated the importance of appropriate molecularly targeted treatments in ALK-fused tumors, and lorlatinib may serve as an effective complement to conventional chemotherapy and radiotherapy in primary glioma harboring ALK fusions and its metastasis.
Collapse
|
69
|
Desai A, Lovly CM. Strategies to overcome resistance to ALK inhibitors in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res 2023; 12:615-628. [PMID: 37057106 PMCID: PMC10087990 DOI: 10.21037/tlcr-22-708] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/20/2023] [Indexed: 04/15/2023]
Abstract
Background and Objective Anaplastic lymphoma kinase (ALK) rearrangements are detected in 3-7% of advanced non-small cell lung cancer (NSCLC). There are currently 5 U.S Food and Drug Administration (FDA)-approved ALK tyrosine kinase inhibitors (TKIs) for the treatment of patients with ALK-positive lung cancer in the advanced/metastatic disease setting. Despite these advances, most patients with ALK-positive lung cancer who are treated with ALK TKI therapy ultimately experience disease progression due to various mechanisms of drug resistance. In this review, we discuss strategies to address acquired therapeutic resistance to ALK inhibition, novel agents and combinatorial strategies in development for both on and off-target resistance, and some emerging approaches to prolong response to ALK inhibitors. Methods We performed a search of peer-reviewed literature in the English language, conference abstracts, and trial registrations from the MEDLINE (Ovid), Embase (Elsevier), and CENTRAL (Cochrane Library) databases and major international oncology meetings up to August 2022. We then screened for studies describing interventions to overcome ALK resistance based on review of each title and abstract. Key Content and Findings For patients with oligo-progression, treatment may include maintaining the same systemic treatment beyond progression while adding local therapies to progressing lesions. Strategies to combat ALK TKI resistance mediated by on-target resistance mechanisms include 4th generation TKIs (TPX-0131, NVL-655) and proteolysis-targeting chimeras (PROTACs) currently in development. While for those patients who develop tumor progression due to off-target (ALK independent) resistance, options may include combination therapies targeting ALK and other downstream or parallel pathways, novel antibody drug conjugates, or combinations of ALK inhibitors with chemotherapy and immunotherapy. Lastly, other potential strategies being explored in the clinic include circulating tumor DNA (ctDNA) surveillance to monitor for molecular mediators of drug resistance prior to frank progression on imaging studies and utilization of ALK TKIs in the adjuvant and neoadjuvant settings. Conclusions Strategies to overcome resistance to currently available ALK inhibitors are urgently needed. Given the variety of resistance mechanisms, tailormade approaches are required for disease control.
Collapse
Affiliation(s)
- Aakash Desai
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Christine M. Lovly
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
70
|
BalajiSubramanian S, Al Hajri T, Satyapal N, Laiq S, Al Hajri Z. Symptomatic Brain Radiation Necrosis in an Anaplastic Lymphoma Kinase (ALK)-Positive Non-small Cell Lung Cancer (NSCLC) Patient After Fractionated Stereotactic Radiotherapy While on Alectinib. Cureus 2023; 15:e35952. [PMID: 37038567 PMCID: PMC10082649 DOI: 10.7759/cureus.35952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) has a higher incidence of brain metastasis. Despite having a favorable prognosis and relatively long survival with second-generation ALK tyrosine kinase inhibitors (TKI), patients can have substantial morbidity, negatively affecting functional progression-free and symptom-free survival. Studies have shown that ALK-rearranged NSCLC is a risk factor for developing radiation necrosis (RN). Recently, second-generation TKI, especially lorlatinib, alectinib, and brigatinib, have demonstrated good central nervous system (CNS) penetration and overall response rates in patients with brain metastasis. However, to improve overall outcomes in symptomatic or limited brain metastases, stereotactic radiosurgery (SRS) is increasingly preferred over whole brain radiotherapy (WBRT) prior to systemic therapy to avoid significant cognitive deterioration. To improve the therapeutic ratio, fractionated stereotactic radiotherapy (FSRT) has been explored for brain metastasis. Herein, we report on one ALK-rearranged NSCLC patient who developed RN despite FSRT, one year after the completion of radiotherapy while on alectinib.
Collapse
|
71
|
Schneider JL, Lin JJ, Shaw AT. ALK-positive lung cancer: a moving target. NATURE CANCER 2023; 4:330-343. [PMID: 36797503 PMCID: PMC10754274 DOI: 10.1038/s43018-023-00515-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a potent oncogenic driver in lung cancer. ALK tyrosine kinase inhibitors yield significant benefit in patients with ALK fusion-positive (ALK+) lung cancers; yet the durability of response is limited by drug resistance. Elucidation of on-target resistance mechanisms has facilitated the development of next-generation ALK inhibitors, but overcoming ALK-independent resistance mechanisms remains a challenge. In this Review, we discuss the molecular underpinnings of acquired resistance to ALK-directed therapy and highlight new treatment approaches aimed at inducing long-term remission in ALK+ disease.
Collapse
Affiliation(s)
- Jaime L Schneider
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center and Department of Medicine, Boston, MA, USA.
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
72
|
Nelson TA, Wang N. Targeting lung cancer brain metastases: a narrative review of emerging insights for anaplastic lymphoma kinase ( ALK)-positive disease. Transl Lung Cancer Res 2023; 12:379-392. [PMID: 36895918 PMCID: PMC9989815 DOI: 10.21037/tlcr-22-638] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 02/07/2023]
Abstract
Background and Objective Lung cancer is commonly associated with brain metastasis formation, and certain subtypes, such as anaplastic lymphoma kinase (ALK) rearranged disease, have an especially high propensity for early and frequent central nervous system (CNS) involvement for which treatment can be challenging. Historical management has centered on surgery and radiation therapy (RT), which persist as mainstays of treatment for large, symptomatic lesions and widespread CNS disease. To date, sustained disease control remains elusive, and the role for effective systemic adjunctive therapies is clear. Here we discuss the epidemiology, genomics, pathophysiology, identification, and management of lung cancer brain metastases with a particular emphasis on systemic treatment of ALK-positive disease according to the best available evidence. Methods Review of PubMed and Google Scholar databases as well as ClinicalTrials.gov provided background and seminal trials for the local and systemic management of ALK rearranged lung cancer brain metastases. Key Content and Findings The development of effective, CNS-penetrant systemic agents-including alectinib, brigatinib, ceritinib, and lorlatinib-has dramatically changed the management and prevention of ALK rearranged brain metastases. Most notably, there is a burgeoning role for upfront systemic therapy for both symptomatic and incidentally discovered lesions. Conclusions Novel targeted therapies offer patients a pathway to delay, obviate, or supplement traditional local therapies while minimizing neurologic sequelae of treatment and may reduce the risk of brain metastasis formation. However, the selection of patients to whom local and targeted treatments is offered is not trivial, and the risks and benefits of both must be weighed carefully. More work is needed to establish treatment regimens that yield durable intra- and extracranial disease control.
Collapse
Affiliation(s)
- Thomas A Nelson
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Massachusetts General Hospital, Boston, MA, USA
| | - Nancy Wang
- Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
73
|
Riudavets M, Planchard D. An update on lorlatinib: a novel first line treatment for ALK-positive advanced lung cancer. Expert Opin Pharmacother 2023; 24:291-299. [PMID: 36542835 DOI: 10.1080/14656566.2022.2161880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) have significantly improved the prognosis of ALK-rearranged non-small cell lung cancer (NSCLC), but these patients will eventually develop resistance and progression of disease after 10 months of first-generation and more than 30 months after second-generation TKIs. Lorlatinib is a third-generation highly selective ALK-TKI capable of inducing significant and durable CNS responses and overcoming known ALK resistance mutations. AREAS COVERED This review summarizes the mechanism of action, efficacy, and safety of lorlatinib in ALK-positive NSCLC. The authors provide their expert opinions on the use of this drug, including its future prospects. EXPERT OPINION Lorlatinib has shown good efficacy and safety in ALK-positive NSCLC patients progressing to first- and second-generation ALK-TKIs. The phase III trial CROWN evaluating lorlatinib as first-line therapy has provided promising results; however, the comparing arm was crizotinib, supplanted now by second-generation agents. Whether lorlatinib can replace them as upfront strategy is a relevant question that still remains open. In our opinion, longer follow-up and face-to-face studies are required to determine which is the best treatment sequence strategy. The advent of liquid biopsy will contribute to treatment tailoring according to the genomic profile at progression.
Collapse
Affiliation(s)
- Mariona Riudavets
- Cancer Medicine Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - David Planchard
- Cancer Medicine Department, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
74
|
D’Aiello A, Miao E, Cheng H. Advances in the Management of Central Nervous System Metastases in Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15030844. [PMID: 36765802 PMCID: PMC9913558 DOI: 10.3390/cancers15030844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Central nervous system (CNS) metastases are common among patients with non-small cell lung cancer (NSCLC). While the presence of brain metastases has historically portended poor prognosis, recent advances in local and systemic therapies have greatly improved outcomes for NSCLC patients with CNS involvement. Stereotactic radiology surgery (SRS) has emerged as an effective radiotherapy technique with fewer toxicities compared to whole brain radiotherapy (WBRT). Furthermore, multi-generation tyrosine kinase inhibitors (TKIs) with CNS overall response rates (ORR) of up to 70-80% are now an accepted first-line approach for a subset of advanced NSCLC patients with targetable molecular alterations. In addition, while the CNS was once considered an immunologic sanctuary site, growing evidence shows that immune checkpoint inhibitors (ICIs) can induce durable responses in brain metastases as well. Ongoing efforts to optimize CNS metastases management are necessary to refine multimodal treatment approaches and develop new therapeutics with better CNS penetrance.
Collapse
Affiliation(s)
- Angelica D’Aiello
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emily Miao
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Haiying Cheng
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-718-430-2430
| |
Collapse
|
75
|
Ando K, Manabe R, Kishino Y, Kusumoto S, Yamaoka T, Tanaka A, Ohmori T, Sagara H. Comparative Efficacy of ALK Inhibitors for Treatment-Naïve ALK-Positive Advanced Non-Small Cell Lung Cancer with Central Nervous System Metastasis: A Network Meta-Analysis. Int J Mol Sci 2023; 24:2242. [PMID: 36768562 PMCID: PMC9917367 DOI: 10.3390/ijms24032242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Central nervous system (CNS) metastases and acquired resistance complicate the treatment of anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) advanced non-small cell lung cancer (NSCLC). Thus, this review aimed to provide a comprehensive overview of brain metastasis, acquired resistance, and prospects for overcoming these challenges. A network meta-analysis of relevant phase III randomized controlled trials was performed to compare the efficacies of multiple ALK inhibitors by drug and generation in overall patients with ALK-p untreated advanced NSCLC and a subgroup of patients with CNS metastases. The primary endpoint was progression-free survival (PFS). Generation-specific comparison results showed that third-generation ALK inhibitors were significantly more effective than second-generation ALK inhibitors in prolonging the PFS of the subgroup of patients with CNS metastases. Drug-specific comparison results demonstrated that lorlatinib was the most effective in prolonging PFS, followed by brigatinib, alectinib, ensartinib, ceritinib, crizotinib, and chemotherapy. While lorlatinib was superior to brigatinib for PFS in the overall patient population, no significant difference between the two was found in the subgroup of patients with CNS metastases. These results can serve as a foundation for basic, clinical, and translational research and guide clinical oncologists in developing individualized treatment strategies for patients with ALK-p, ALK inhibitor-naive advanced NSCLC.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Ryo Manabe
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Sojiro Kusumoto
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Toshimitsu Yamaoka
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Advanced Cancer Translational Research Institute, Hatanodai Campus, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akihiko Tanaka
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Tohru Ohmori
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Department of Medicine, Division of Respiratory Medicine, Tokyo Metropolitan Health and Hospitals Corporation, Ebara Hospital, 4-5-10 Higashiyukigaya, Ohta-ku, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| |
Collapse
|
76
|
Inno A, Marchetti F, Valerio M, Giaj Levra N, Alongi F, Foti G, Gori S. Activity of sotorasib against brain metastases from NSCLC harboring KRAS p.G12C mutation: a case report. Drug Target Insights 2023; 17:90-91. [PMID: 37408855 PMCID: PMC10318585 DOI: 10.33393/dti.2023.2593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
In the CodeBreaK 100 phase 2 study, sotorasib was active for patients with metastatic non-small cell lung cancer (NSCLC) harboring Kirsten rat sarcoma viral oncogene homologue (KRAS) p.G12C mutation. However, patients with untreated and/or active brain metastases were excluded from the trial, and the activity of sotorasib in the setting of brain metastases should be further investigated. Here we report the case of a KRAS p.G12C mutant NSCLC patient with three brain metastases, of whom one was untreated and the other two had progressed after radiotherapy with symptoms requiring steroids, that responded to sotorasib. Our report suggests that sotorasib may be active against untreated or progressive brain metastases, supporting further evaluation of sotorasib in this setting.
Collapse
Affiliation(s)
- Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR) - Italy
| | - Fabiana Marchetti
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR) - Italy
| | - Matteo Valerio
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR) - Italy
| | - Niccolò Giaj Levra
- Advanced Radiation Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR) - Italy
| | - Filippo Alongi
- Advanced Radiation Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR) - Italy
| | - Giovanni Foti
- Radiology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR) - Italy
| | - Stefania Gori
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR) - Italy
| |
Collapse
|
77
|
Rossi S, Marinello A, Pagliaro A, Franceschini D, Navarria P, Finocchiaro G, Toschi L, Scorsetti M, Santoro A. Current treatment approaches for brain metastases in ALK/ ROS1/ NTRK-positive non-small-cell lung cancer. Expert Rev Anticancer Ther 2023; 23:29-41. [PMID: 36548111 DOI: 10.1080/14737140.2023.2162044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Oncogene-addicted non-small cell lung cancer (NSCLC) patients present a high incidence of CNS metastases either at diagnosis or during the course of the disease. In this case, patients present with worse prognosis and are often excluded from clinical trials unless brain metastases are pre-treated or clinically stable. AREAS COVERED As a result of the discovery of several oncogenic drivers in ALK/ROS1/NTRK-positive NSCLC, targeted agents have been tested in several trials. We evaluate and compare the intracranial efficacy of available targeted agents in ALK/ROS1/NTRK-positive NSCLC based on subgroup analysis from pivotal trials. EXPERT OPINION Last-generation ALK inhibitors have shown slightly superior intracranial activity but pivotal trials do not consider the same endpoints for intracranial efficacy, therefore data are not comparable. Local treatments for BM including surgical resection, stereotactic radiosurgery (SRS) and WBRT, should be integrated with systemic therapies basing on specific criteria like presence of oligoprogression or symptomatic progression.
Collapse
Affiliation(s)
- Sabrina Rossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Arianna Marinello
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Arianna Pagliaro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Davide Franceschini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giovanna Finocchiaro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Toschi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
78
|
Cicin I, Martin C, Haddad CK, Kim SW, Smolin A, Abdillah A, Yang X. ALK TKI therapy in patients with ALK-positive non-small cell lung cancer and brain metastases: A review of the literature and local experiences. Crit Rev Oncol Hematol 2022; 180:103847. [DOI: 10.1016/j.critrevonc.2022.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
|
79
|
Jiang Y, Shi Y, Liu Y, Wang Z, Ma Y, Shi X, Lu L, Wang Z, Li H, Zhang Y, Liu C, Zhang S, Zhong Z, Lu J, Shi M, Shen B, Zhou G, Yin R, Galetta D, Grenda A, Romero A, Hughes BGM, Chen C, Wang X, Feng J. Efficacy and safety of alectinib in ALK-positive non-small cell lung cancer and blood markers for prognosis and efficacy: a retrospective cohort study. Transl Lung Cancer Res 2022; 11:2521-2538. [PMID: 36636415 PMCID: PMC9830262 DOI: 10.21037/tlcr-22-857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Background Alectinib is a second generation of ALK-tyrosine kinase inhibitors (ALK-TKIs), which has attracted much attention in the treatment of ALK-positive non-small cell lung cancer (NSCLC). At present, there are few reports on the efficacy and safety of alectinib in Chinese population. Moreover, biomarkers reflecting prognosis and efficacy are exceedingly needed. This study assessed the efficacy of alectinib in patients with ALK-positive NSCLC and analyzed the prognostic factors. Methods Patients with ALK-positive NSCLC who were confirmed by histopathology or cytology at the Affiliated Cancer Hospital of Nanjing Medical University between October 2018 and October 2021 were enrolled. All patients were treated with alectinib. The clinical characteristics and circulating tumor biomarkers before and after treatment were collected. Kaplan-Meier test was used to calculate the progression-free survival (PFS). Univariate and multivariate Cox regression analyses were used to explore the influencing factors on PFS. Incidence of adverse events was observed. Results Twenty patients progressed after first-line treatment (n=59) with alectinib, and 21 patients progressed following second-line treatment (n=36) with alectinib. The median PFS of first-line treatment patients was not achieved, and the median PFS of patients undergoing second-line treatment was 15.0 months [95% confidence interval (CI): 0.00-32.23]. The most common adverse reactions were liver dysfunction (37.50%), anemia (37.50%), and constipation (20.83%). The incidence of grade III and above adverse reactions was 6.25%. Univariate analysis showed that neutrophil-to-lymphocyte ratio [NLR; hazard ratio (HR) =0.424, P=0.005] carcinoembryonic antigen (CEA; HR =0.482, P=0.029), lactate dehydrogenase (LDH; HR =0.327, P<0.001), carbohydrate antigen (CA)199 (HR =0.313, P=0.002), and circulating cell free DNA (cfDNA; HR =0.229, P=0.008) concentration levels were associated with PFS, and multivariate analysis showed that NLR (HR =3.058, P=0.034) was independent prognostic factor. After three months of treatment, CEA, CA199, NLR, and LDH, could further predict the prognosis of alectinib treatment. Conclusions The efficacy and safety of alectinib as a first-line or second-line treatment for ALK-positive NSCLC in keeping with published prospective studies. CEA, CA199, NLR, and LDH within the normal range after three months of treatment were associated with good prognosis. Detection of serum tumor markers can indicate therapeutic success in patients treated with alectinib.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yue Shi
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yiling Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zihan Wang
- Clinical Medicine, Nantong University, Nantong, China
| | - Yuxin Ma
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xinhong Shi
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Lin Lu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhitong Wang
- Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hang Li
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Yushu Zhang
- Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Caolu Liu
- Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Shaorui Zhang
- Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhihao Zhong
- Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jianwei Lu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Meiqi Shi
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Domenico Galetta
- Division of Thoracic Surgery, European Institute of Oncology, IRCCS, Milan, Italy;,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro de Majadahonda, Madrid, Spain
| | - Brett G. M. Hughes
- Cancer Care Services, Royal Brisbane & Women’s Hospital and The University of Queensland, Brisbane, QLD, Australia
| | - Cheng Chen
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaohua Wang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
80
|
Li N, Xie M, Zhou Z, Sheng J, Yu X, Fan Y. Real-world treatment and prognostic factors for survival in ALK+ non-small cell lung cancer (NSCLC) patients with brain metastases in China. Thorac Cancer 2022; 14:237-245. [PMID: 36411716 PMCID: PMC9870733 DOI: 10.1111/1759-7714.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To explore the efficacy and prognostic factors of different treatment modalities on anaplastic lymphoma kinase (ALK)+ non-small cell lung cancer (NSCLC) patients with brain metastases (BMs). METHODS A total of 86 patients were enrolled into the study. They were divided into two cohorts based on their history of treatment with ALK tyrosine kinase inhibitors (ALK-TKIs) prior to the incidence of BMs. ALK-TKI-naïve patients with BMs were included in cohort 1 (n = 59); patients who developed BMs after ALK-TKIs treatment were enrolled in cohort 2 (n = 27). Prognostic factors related with overall survival (OS) when treated with ALK-TKIs were assessed in multivariable analysis. RESULTS With a median follow-up of 41.8 months, the median OS was 34.8 months. In cohort 1, the OS, intracranial progression-free survival (iPFS), and progression-free survival (PFS) were 38.7 months (95% CI: 23.3 to 54.1), 18.5 months (95% CI: 9.6 to 27.4), and 19.1 months (95% CI: 13.7 to 24.5), respectively. Significantly improved OS and iPFS were noted in those patients in which second-generation ALK-TKIs versus crizotinib were initiated (OS: not reached vs. 29.0 months, p = 0.040; iPFS: 22.8 vs. 11.9 months, p = 0.035). In cohort 2, patients who experienced BMs as a result of the treatment failure of ALK-TKIs had a median OS of 27.1 months. Considerable duration of stable disease in patients with measurable BMs was observed (iPFS: 11.5 months, 95% CI: 4.4 to 18.6; PFS: 12.2 months, 95% CI: 3.2 to 21.1). CONCLUSION Second-generation ALK-TKIs further improved the duration of intracranial response and survival in ALK+ NSCLC patients with BMs in a real-world setting. The potent intracranial efficacy of second-generation ALK-TKIs might generate the lowered urgency of local treatment.
Collapse
Affiliation(s)
- Na Li
- The First Clinical Medical College of Wenzhou Medical UniversityWenzhouChina,Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouChina
| | - Mingying Xie
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouChina,The Second Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zichao Zhou
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouChina,The Second Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Jiamin Sheng
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouChina
| | - Xiaoqing Yu
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouChina
| | - Yun Fan
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of SciencesHangzhouChina
| |
Collapse
|
81
|
Dziadziuszko R, Peters S, Ruf T, Cardona A, Guerini E, Kurtsikidze N, Smoljanovic V, Planchard D. Clinical experience and management of adverse events in patients with advanced ALK-positive non-small-cell lung cancer receiving alectinib. ESMO Open 2022; 7:100612. [PMID: 36375271 PMCID: PMC9663323 DOI: 10.1016/j.esmoop.2022.100612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alectinib is a preferred first-line therapy for patients with advanced anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer (NSCLC) in several national clinical practice guidelines. The randomized, global, phase III ALEX study has demonstrated significant improvement in progression-free survival for alectinib over crizotinib in treatment-naive ALK-positive NSCLC. It was also the first study to show clinically meaningful improvement in overall survival for a next-generation ALK tyrosine kinase inhibitor relative to crizotinib. The J-ALEX and ALESIA phase III studies confirmed the clinical benefit of alectinib relative to crizotinib in the first-line ALK-positive NSCLC treatment setting in Japanese and Asian patients, respectively. Across these pivotal phase III trials, alectinib had a manageable, well-characterized safety profile. Here, we review the safety and tolerability of long-term alectinib treatment in patients with advanced ALK-positive NSCLC and provide guidance for physicians, based on clinical experience, on the management of the most frequently reported adverse events (AEs). Most AEs associated with alectinib can be managed by dose reduction. Some alectinib-related AEs are not yet fully characterized, including myalgia and peripheral oedema and deciphering their underlying mechanism of action could enhance their management. With longer-term follow-up, the safety profile of alectinib continues to remain consistent in the ALEX study, with no new safety signals observed. Safety and tolerability data from the first-line phase III alectinib trials are also consistent with those observed in clinical trials of alectinib in later-line settings. These results add to the weight of evidence recommending alectinib as a preferred therapy for treatment-naive advanced ALK-positive NSCLC.
Collapse
Affiliation(s)
- R Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - S Peters
- Lausanne University Hospital, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - T Ruf
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - A Cardona
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - E Guerini
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | - D Planchard
- Department of Medical Oncology, Thoracic Oncology Unit, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
82
|
Solomon BJ, Bauer TM, Ignatius Ou SH, Liu G, Hayashi H, Bearz A, Penkov K, Wu YL, Arrieta O, Jassem J, Calella AM, Peltz G, Polli A, Thurm H, Mok T. Post Hoc Analysis of Lorlatinib Intracranial Efficacy and Safety in Patients With ALK-Positive Advanced Non-Small-Cell Lung Cancer From the Phase III CROWN Study. J Clin Oncol 2022; 40:3593-3602. [PMID: 35605188 PMCID: PMC9622589 DOI: 10.1200/jco.21.02278] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 07/29/2023] Open
Abstract
PURPOSE Lorlatinib significantly improved progression-free survival (PFS) versus crizotinib and showed robust intracranial activity in patients with previously untreated advanced ALK-positive non-small-cell lung cancer (NSCLC) in the phase III CROWN trial. Here, we report post hoc efficacy outcomes in patients with and without brain metastases at baseline, and present data on the incidence and management of CNS adverse events (AEs) in CROWN. METHODS Eligible patients were randomly assigned 1:1 to first-line lorlatinib (100 mg once daily) or crizotinib (250 mg twice a day); no crossover between treatment arms was permitted. Tumor assessments, including CNS magnetic resonance imaging, were performed at screening and then at 8-week intervals. Regular assessments of patient-reported outcomes were conducted. RESULTS PFS by blinded independent central review was improved with lorlatinib versus crizotinib in patients with and without brain metastases at baseline (12-month PFS rates: 78% v 22% and 78% v 45%, respectively). Lorlatinib was associated with lower 12-month cumulative incidence of CNS progression versus crizotinib in patients with (7% v 72%) and without (1% v 18%) brain metastases at baseline. In total, 35% of patients had CNS AEs with lorlatinib, most of grade 1 severity. Occurrence of CNS AEs did not result in a clinically meaningful difference in patient-reported quality of life. At analysis, 56% of CNS AEs had resolved (33% without intervention; 17% with lorlatinib dose modification), and 38% were unresolved; most required no intervention. Lorlatinib dose modification did not notably influence PFS. CONCLUSION First-line lorlatinib improved PFS outcomes and reduced CNS progression versus crizotinib in patients with advanced ALK-positive non-small-cell lung cancer with or without brain metastases at baseline. Half of all CNS AEs resolved without intervention or with lorlatinib dose modification.
Collapse
Affiliation(s)
| | - Todd M. Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN
| | | | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Canada
| | | | - Alessandra Bearz
- Centro di Riferimento Oncologico, Istituto Nazionale Tumori, IRCCS, Aviano, Italy
| | - Konstantin Penkov
- Private Medical Institution Euromedservice, St Petersburg, Russian Federation
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Oscar Arrieta
- Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | | | | | | | | | - Tony Mok
- State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
83
|
Tao J, Zheng C, Zhang C, Zhou L, Liu Z, Zhou Y, Huang X, Lin L, Zhai L. First-line treatments for patients with advanced ALK gene rearrangements in NSCLC: a systematic review and network meta-analysis. J Int Med Res 2022; 50:3000605221132703. [DOI: 10.1177/03000605221132703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To conduct a network meta-analysis of randomised controlled trials to determine the optimal clinical choice of first-line therapy for patients with ALK receptor tyrosine kinase ( ALK) gene rearrangement non-small cell lung cancer (NSCLC). Methods Clinical trials in patients with histologically confirmed ALK gene rearrangement NSCLC, that included ALK inhibitors as first-line therapy, were identified using database searches. A Bayesian network meta-analysis was conducted to calculate the efficacy and safety of the included first-line treatments. Results Nine trials with 2,407 patients were included for analyses. Lorlatinib was better than brigatinib for progression-free survival (PFS) (hazard ratio 0.79, 95% confidence interval 0.63, 0.98). In subgroup analyses, lorlatinib exhibited the highest probability of best PFS ranking in patients with or without baseline brain metastases (38% and 80%, respectively); brigatinib had the highest probability of best PFS ranking among Asian patients (47%). Alectinib offered the highest survival advantage (57% probability), while lorlatinib was likely to be the best treatment for an objective response (41% probability). Alectinib displayed the highest probability of being ranked lowest for grade ≥3 adverse events (86%). Conclusions Lorlatinib was associated with the best PFS overall, and was suitable for patients with or without brain metastases. Brigatinib was associated with the best PFS in Asian patients.
Collapse
Affiliation(s)
- Jiahao Tao
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuangjie Zheng
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cuifen Zhang
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ling Zhou
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zeyu Liu
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yanqun Zhou
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuewu Huang
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lizhu Lin
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linzhu Zhai
- Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
84
|
Ashish S, Rodriguez RR, Sethi P, Yu F, Raj M. Anaplastic Lymphoma Kinase (ALK) Mutation-Targeting Treatment With Alectinib in Lung Adenocarcinoma and Primary Cutaneous Marginal Zone B-Cell Lymphoma. Cureus 2022; 14:e29922. [PMID: 36348885 PMCID: PMC9633320 DOI: 10.7759/cureus.29922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Lung adenocarcinoma or non-small cell lung cancer (NSCLC) represents one of the most diagnosed cancers worldwide. Anaplastic lymphoma kinase (ALK) mutation, a tyrosine kinase and ALK fusion or rearrangement oncogene, has been found rarely in patients with NSCLC. Newer treatment modalities with different ALK inhibitors in targetable specific ALK mutations have recently made great strides in the management of NSCLC patients. We present a case of NSCLC harboring ALK mutation with primary cutaneous marginal zone B-cell lymphoma (PCMZL) treated with adjuvant chemotherapy with pemetrexed and cisplatin, and ALK-echinoderm microtubule-associated protein-like 4 (EML4)-targeting treatment alectinib.
Collapse
|
85
|
Aizer AA, Lamba N, Ahluwalia MS, Aldape K, Boire A, Brastianos PK, Brown PD, Camidge DR, Chiang VL, Davies MA, Hu LS, Huang RY, Kaufmann T, Kumthekar P, Lam K, Lee EQ, Lin NU, Mehta M, Parsons M, Reardon DA, Sheehan J, Soffietti R, Tawbi H, Weller M, Wen PY. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol 2022; 24:1613-1646. [PMID: 35762249 PMCID: PMC9527527 DOI: 10.1093/neuonc/noac118] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.
Collapse
Affiliation(s)
- Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | | | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla K Brastianos
- Departments of Neuro-Oncology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - D Ross Camidge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Veronica L Chiang
- Departments of Neurosurgery and Radiation Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Priya Kumthekar
- Department of Neurology at The Feinberg School of Medicine at Northwestern University and The Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Keng Lam
- Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, California, USA
| | - Eudocia Q Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Michael Parsons
- Departments of Oncology and Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
86
|
Chen P, Liu Y, Wen Y, Zhou C. Non-small cell lung cancer in China. Cancer Commun (Lond) 2022; 42:937-970. [PMID: 36075878 PMCID: PMC9558689 DOI: 10.1002/cac2.12359] [Citation(s) in RCA: 322] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 04/08/2023] Open
Abstract
In China, lung cancer is a primary cancer type with high incidence and mortality. Risk factors for lung cancer include tobacco use, family history, radiation exposure, and the presence of chronic lung diseases. Most early-stage non-small cell lung cancer (NSCLC) patients miss the optimal timing for treatment due to the lack of clinical presentations. Population-based nationwide screening programs are of significant help in increasing the early detection and survival rates of NSCLC in China. The understanding of molecular carcinogenesis and the identification of oncogenic drivers dramatically facilitate the development of targeted therapy for NSCLC, thus prolonging survival in patients with positive drivers. In the exploration of immune escape mechanisms, programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor monotherapy and PD-1/PD-L1 inhibitor plus chemotherapy have become a standard of care for advanced NSCLC in China. In the Chinese Society of Clinical Oncology's guidelines for NSCLC, maintenance immunotherapy is recommended for locally advanced NSCLC after chemoradiotherapy. Adjuvant immunotherapy and neoadjuvant chemoimmunotherapy will be approved for resectable NSCLC. In this review, we summarized recent advances in NSCLC in China in terms of epidemiology, biology, molecular pathology, pathogenesis, screening, diagnosis, targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- Peixin Chen
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yunhuan Liu
- Department of Respiratory and Critical Care MedicineHuadong HospitalFudan UniversityShanghai200040P. R. China
| | - Yaokai Wen
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Caicun Zhou
- School of MedicineTongji UniversityShanghai200092P. R. China
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
87
|
Singh K, Saxena S, Khosla AA, McDermott MW, Kotecha RR, Ahluwalia MS. Update on the Management of Brain Metastasis. Neurotherapeutics 2022; 19:1772-1781. [PMID: 36422836 PMCID: PMC9723062 DOI: 10.1007/s13311-022-01312-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Brain metastases occur in almost one-third of adult patients with solid tumor malignancies and lead to considerable patient morbidity and mortality. The rising incidence of brain metastases has been ascribed to the development of better imaging and screening techniques and the formulation of better systemic therapies. Until recently, the multimodal management of brain metastases focused primarily on the utilization of neurosurgical techniques, with varying combinations of whole-brain radiation therapy and stereotactic radio-surgical procedures. Over the past 2 decades, in particular, the increment in knowledge pertaining to molecular genetics and the pathogenesis of brain metastases has led to significant developments in targeted therapies and immunotherapies. This review article highlights the recent updates in the management of brain metastases with an emphasis on novel systemic therapies.
Collapse
Affiliation(s)
- Karanvir Singh
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Shreya Saxena
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Atulya A Khosla
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Michael W McDermott
- Division of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Rupesh R Kotecha
- Division of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Manmeet S Ahluwalia
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
88
|
Zhu Z, Ni J, Cai X, Su S, Zhuang H, Yang Z, Chen M, Ma S, Xie C, Xu Y, Li J, Ge H, Liu A, Zhao L, Rao C, Xie C, Bi N, Hui Z, Zhu G, Yuan Z, Wang J, Zhao L, Zhou W, Rim CH, Navarro-Martin A, Vanneste BGL, Ruysscher DD, Choi JI, Jassem J, Chang JY, Kepka L, Käsmann L, Milano MT, Van Houtte P, Suwinski R, Traverso A, Doi H, Suh YG, Noël G, Tomita N, Kowalchuk RO, Sio TT, Li B, Lu B, Fu X. International consensus on radiotherapy in metastatic non-small cell lung cancer. Transl Lung Cancer Res 2022; 11:1763-1795. [PMID: 36248338 PMCID: PMC9554677 DOI: 10.21037/tlcr-22-644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) accounting for most cases. While radiotherapy has historically served as a palliative modality in metastatic NSCLC, considerable advances in its technology and the continuous development of cutting-edge therapeutic agents, such as targeted therapy and immune checkpoint inhibitors (ICIs), are increasing its role in the multi-disciplinary management of the disease. METHODS International radiotherapy experts were convened to consider and reach consensuses on the clinical utilities of radiotherapy in metastatic NSCLC, with the aim to provide patient-focused, up to date, evidence-based, recommendations to assist cancer specialists in the management of patients with metastatic NSCLC worldwide. RESULTS Timely radiotherapy can offer rapid symptom alleviation and allow subsequent aggressive treatment approaches in patients with heavy tumor burden and/or oncologic emergencies. In addition, appropriate incorporation of radiotherapy as concurrent, consolidation, or salvage therapy makes it possible to achieve long-term survival, or even cure, for patients with oligo-metastatic disease. Cranial radiotherapy plays an important role in the management of brain metastasis, potentially augmenting the response and prolonging survival associated with targeted agents and ICIs. However, key questions remain, such as the appropriate choice of radiation techniques, optimal sequence of systemic therapies and radiotherapy, and optimal patient selection for such combination strategies. Although a strong rationale for combining radiotherapy and ICIs exists, its optimal parameters in this setting remain to be established. CONCLUSIONS In the modern era, radiotherapy serves not only as a palliative tool in metastatic NSCLC, but also plays active roles in patients with oligo-focal disease, CNS metastasis and receiving ICIs.
Collapse
Affiliation(s)
- Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuwei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shengfa Su
- Department of Thoracic Oncology, The Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zhenzhou Yang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ming Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shenglin Ma
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiancheng Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Congying Xie
- Department of Radiation and Medical Oncology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangying Zhu
- Department of Radiation Oncology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, The fourth hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Xi’an, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Chai Hong Rim
- Department of Radiation Oncology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Catalan Institute of Oncology, L’Hospitalet, Barcelona, Spain
| | - Ben G. L. Vanneste
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Human Structure and Repair; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J. Isabelle Choi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
- New York Proton Center, New York, USA
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Joe Y. Chang
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lucyna Kepka
- Department of Radiotherapy, Military Institute of Medicine, Warsaw, Poland
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Michael T. Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul Van Houtte
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre Bruxelles, Brussels, Belgium
| | - Rafal Suwinski
- Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Alberto Traverso
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Hiroshi Doi
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yang-Gun Suh
- Department of Radiation Oncology, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Georges Noël
- Radiotherapy Department, Strasbourg Europe Cancer Institute (ICANS), Strasbourg, France
| | - Natsuo Tomita
- Departments of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bing Lu
- Department of Thoracic Oncology, The Affiliated Hospital of Guizhou Medical University and The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
89
|
Final overall survival analysis from the phase III J-ALEX study of alectinib versus crizotinib in ALK inhibitor-naïve Japanese patients with ALK-positive non-small-cell lung cancer. ESMO Open 2022; 7:100527. [PMID: 35843080 PMCID: PMC9434408 DOI: 10.1016/j.esmoop.2022.100527] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mature progression-free survival (PFS) data from the phase III J-ALEX study showed superiority for alectinib versus crizotinib [hazard ratio (HR) 0.37, 95% confidence interval (CI) 0.26-0.52; median PFS 34.1 versus 10.2 months, respectively] in advanced ALK (anaplastic lymphoma kinase)-positive non-small-cell lung cancer (NSCLC). Overall survival (OS) data were immature (HR 0.80, 99.8799% CI 0.35-1.82) at the time of data cut-off (30 June 2018). We report final OS data after ≥5 years of follow-up. PATIENTS AND METHODS ALK inhibitor naive Japanese patients who were chemotherapy naive or had received one prior chemotherapy regimen were enrolled. Patients were randomized to receive alectinib 300 mg (n = 103) or crizotinib 250 mg (n = 104) twice daily until progressive disease, unacceptable toxicity, death, or withdrawal. The primary endpoint was independent review facility-assessed PFS, with OS (not fully powered) as a secondary endpoint. RESULTS Median duration of OS follow-up was 68.6 months with alectinib and 68.0 months with crizotinib. Treatment with alectinib did not prolong OS relative to crizotinib (HR 1.03, 95.0405% CI 0.67-1.58; P = 0.9105). Five-year OS rates were 60.9% (95% CI 51.4-70.3) with alectinib and 64.1% (95% CI 54.9-73.4) with crizotinib. In total, 91.3% (n = 95/104) of crizotinib-treated patients and 46.6% (n = 48/103) of alectinib-treated patients received at least one subsequent anticancer therapy. After study drug discontinuation, 78.8% of patients in the crizotinib arm switched to alectinib, while 10.7% of patients in the alectinib arm switched to crizotinib as a first subsequent anticancer therapy. Patients randomized to crizotinib tended to switch treatment earlier than those randomized to alectinib. CONCLUSION Final OS analysis from J-ALEX did not show superiority of alectinib to crizotinib; this result was most likely confounded by treatment crossover. Alectinib remains a standard of care for the treatment of patients with advanced ALK-positive NSCLC.
Collapse
|
90
|
Gondi V, Bauman G, Bradfield L, Burri SH, Cabrera AR, Cunningham DA, Eaton BR, Hattangadi-Gluth JA, Kim MM, Kotecha R, Kraemer L, Li J, Nagpal S, Rusthoven CG, Suh JH, Tomé WA, Wang TJC, Zimmer AS, Ziu M, Brown PD. Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline. Pract Radiat Oncol 2022; 12:265-282. [PMID: 35534352 DOI: 10.1016/j.prro.2022.02.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE This guideline provides updated evidence-based recommendations addressing recent developments in the management of patients with brain metastases, including advanced radiation therapy techniques such as stereotactic radiosurgery (SRS) and hippocampal avoidance whole brain radiation therapy and the emergence of systemic therapies with central nervous system activity. METHODS The American Society for Radiation Oncology convened a task force to address 4 key questions focused on the radiotherapeutic management of intact and resected brain metastases from nonhematologic solid tumors. The guideline is based on a systematic review provided by the Agency for Healthcare Research and Quality. Recommendations were created using a predefined consensus-building methodology and system for grading evidence quality and recommendation strength. RESULTS Strong recommendations are made for SRS for patients with limited brain metastases and Eastern Cooperative Oncology Group performance status 0 to 2. Multidisciplinary discussion with neurosurgery is conditionally recommended to consider surgical resection for all tumors causing mass effect and/or that are greater than 4 cm. For patients with symptomatic brain metastases, upfront local therapy is strongly recommended. For patients with asymptomatic brain metastases eligible for central nervous system-active systemic therapy, multidisciplinary and patient-centered decision-making to determine whether local therapy may be safely deferred is conditionally recommended. For patients with resected brain metastases, SRS is strongly recommended to improve local control. For patients with favorable prognosis and brain metastases receiving whole brain radiation therapy, hippocampal avoidance and memantine are strongly recommended. For patients with poor prognosis, early introduction of palliative care for symptom management and caregiver support are strongly recommended. CONCLUSIONS The task force has proposed recommendations to inform best clinical practices on the use of radiation therapy for brain metastases with strong emphasis on multidisciplinary care.
Collapse
Affiliation(s)
- Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine Cancer Center and Proton Center, Warrenville, Illinois.
| | - Glenn Bauman
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre & Western University, London, Ontario, Canada
| | - Lisa Bradfield
- American Society for Radiation Oncology, Arlington, Virginia
| | - Stuart H Burri
- Department of Radiation Oncology, Atrium Health, Charlotte, North Carolina
| | - Alvin R Cabrera
- Department of Radiation Oncology, Kaiser Permanente, Seattle, Washington
| | | | - Bree R Eaton
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seema Nagpal
- Division of Neuro-oncology, Department of Neurology, Stanford University, Stanford, California
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University, New York, New York
| | - Alexandra S Zimmer
- Women's Malignancies Branch, National Institutes of Health/National Cancer Institute, Bethesda, Maryland
| | - Mateo Ziu
- Department of Neurosciences, INOVA Neuroscience and INOVA Schar Cancer Institute, Falls Church, Virginia
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
91
|
Mogenet A, Barlesi F, Besse B, Michiels S, Karimi M, Tran-Dien A, Girard N, Mazieres J, Audigier-Valette C, Locatelli-Sanchez M, Kamal M, Gestraud P, Hamza A, Jacquet A, Jimenez M, Yara S, Greillier L, Bertucci F, Planchard D, Soria JC, Bieche I, Tomasini P. Molecular profiling of non-small-cell lung cancer patients with or without brain metastases included in the randomized SAFIR02-LUNG trial and association with intracranial outcome. Lung Cancer 2022; 169:31-39. [DOI: 10.1016/j.lungcan.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
92
|
Bernabé-Caro R, Garrido P, García-Campelo R, Palmero R, Artal Á, Bayona C, Rodríguez-Abreu D, López-Brea M, Paredes A, Vicente D, Sánchez Torres JM, Majem M, Diz P, Gordo R, Coca M, de Castro J. Alectinib after failure to crizotinib in patients with ALK-positive non-small cell lung cancer: results from the Spanish early access program. Oncotarget 2022; 13:812-827. [PMID: 35720977 PMCID: PMC9200434 DOI: 10.18632/oncotarget.28244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
This retrospective observational study analyzed the clinical characteristics, treatment patterns and outcomes of 120 patients with advanced ALK-positive non-small-cell lung cancer (ALK+ NSCLC) according to data collected between November 2019 and October 2020 in 38 Spanish hospitals. Patients had progressed after 1–5 prior treatment lines (which included crizotinib in any prior line) and received subsequent therapy with alectinib in a local expanded access program. Median age was 58.7 years, 50% of patients were female, 64.1% had ECOG PS of 0–1, 85% presented stage IV, 95% had adenocarcinoma histology and 20.8% had brain metastases. After a median 9.6 months of alectinib treatment, objective response rate (ORR) was 54.5%, disease control rate (DCR) was 80%, median progression-free survival (PFS) was 9.4 months and median overall survival (OS) was 24.1 months. Patients with brain metastases achieved an intracranial DCR of 71.4%. Adverse events (AEs) were reported in 35.8% of patients (14.2% of AEs were grade ≥3). Over 40% of patients received some treatment after alectinib, most frequently lorlatinib (65.2%) and brigatinib (32.6%). This study provides information on real-world treatment patterns and confirms the tolerability and prolonged PFS and OS observed with alectinib in clinical trials, in unselected pretreated patients with advanced ALK+ NSCLC.
Collapse
Affiliation(s)
- Reyes Bernabé-Caro
- Department of Medical Oncology, Hospital Virgen del Rocío, Sevilla, Spain
| | - Pilar Garrido
- Department of Medical Oncology, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Ramón Palmero
- Department of Medical Oncology, ICO Bellvitge, Hospitalet Llobregat, Barcelona, Spain
| | - Ángel Artal
- Department of Medical Oncology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Cristina Bayona
- Department of Medical Oncology, Hospital General Yague, Burgos, Spain
| | - Delvys Rodríguez-Abreu
- Department of Medical Oncology, Hospital Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marta López-Brea
- Department of Medical Oncology, Hospital Marqués de Valdecilla, Santander, Spain
| | - Alfredo Paredes
- Department of Medical Oncology, Hospital Universitario Donostia, Donostia-San Sebastián, Spain
| | - David Vicente
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pilar Diz
- Department of Medical Oncology, Complejo Asistencial Universitario de León, León, Spain
| | | | | | - Javier de Castro
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
93
|
Pérol M, Swalduz A. Lorlatinib in Frontline Therapy for ALK+ Advanced Non-Small-Cell Lung Cancer: Still a Matter of Debate? J Clin Oncol 2022; 40:3564-3568. [PMID: 35679525 DOI: 10.1200/jco.22.00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Maurice Pérol
- Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France
| | - Aurélie Swalduz
- Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France
| |
Collapse
|
94
|
Brain Metastases Management in Oncogene-Addicted Non-Small Cell Lung Cancer in the Targeted Therapies Era. Int J Mol Sci 2022; 23:ijms23126477. [PMID: 35742920 PMCID: PMC9223862 DOI: 10.3390/ijms23126477] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
The therapeutic landscape in patients with advanced non-small-cell lung cancer harboring oncogenic biomarkers has radically changed with the development of targeted therapies. Although lung cancers are known to frequently metastasize to the brain, oncogene-driven non-small-cell lung cancer patients show a higher incidence of both brain metastases at baseline and a further risk of central nervous system progression/relapse. Recently, a new generation of targeted agents, highly active in the central nervous system, has improved the control of intracranial disease. The intracranial activity of these drugs poses a crucial issue in determining the optimal management sequence in oncogene-addicted non-small-cell lung cancer patients with brain metastases, with a potential change of paradigm from primary brain irradiation to central nervous system penetrating targeted inhibitors.
Collapse
|
95
|
Reckamp KL, Lin HM, Cranmer H, Wu Y, Zhang P, Walton LJ, Kay S, Cichewicz A, Neupane B, Fahrbach K, Popat S, Camidge DR. Indirect comparisons of brigatinib and alectinib for front-line ALK-positive non-small-cell lung cancer. Future Oncol 2022; 18:2499-2510. [PMID: 35608148 DOI: 10.2217/fon-2022-0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To conduct an indirect treatment comparison (ITC) of the relative efficacy of brigatinib and alectinib for progression-free survival in people with tyrosine kinase inhibitor (TKI)-naive ALK-positive non-small-cell lung cancer (NSCLC). Methods: Final aggregate and patient-level data from the ALTA-1L trial comparing brigatinib to crizotinib and published aggregate data from ALEX (comparing alectinib to crizotinib) were contrasted using Bucher ITC and matching-adjusted indirect comparisons (MAICs). Results: No statistically significant differences were identified between brigatinib and alectinib in reducing the risk of disease progression overall and in patients with baseline central nervous system metastases. Conclusion: Brigatinib appeared similar to alectinib in reducing risk of disease progression for people with TKI-naive ALK-positive NSCLC.
Collapse
Affiliation(s)
- Karen L Reckamp
- Cedars-Sinai Medical Center, Division of Medical Oncology, Department of Medicine, Los Angeles, CA 90048, USA
| | - Huamao M Lin
- Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA 02421, USA
| | - Holly Cranmer
- Takeda Pharmaceuticals International Co. 9th Floor, One Kingdom Street Paddington London, W2 6BD, UK
| | - Yanyu Wu
- Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA 02421, USA
| | - Pingkuan Zhang
- Takeda Development Center Americas, Inc., 95 Hayden Avenue, Lexington, MA 02421, USA
| | - Laura J Walton
- Takeda Pharmaceuticals International AG. Thurgauerstrasse 130, 8152 Glattpark-Opfikon (Zurich), Switzerland
| | - Stephen Kay
- Model Outcomes Ltd. Atlantic Street Altrincham, Cheshire, WA14 5NQ, England
| | - Allie Cichewicz
- Evidence Synthesis, Modeling & Communication, Evidera, Waltham, MA, USA
| | - Binod Neupane
- Evidence Synthesis, Modeling & Communication, Evidera, Waltham, MA, USA
| | - Kyle Fahrbach
- Evidence Synthesis, Modeling & Communication, Evidera, Waltham, MA, USA
| | - Sanjay Popat
- Royal Marsden Hospital & The Institute of Cancer Research, London, UK
| | - D Ross Camidge
- University of Colorado Cancer Center, Anschutz Cancer Pavilion, 1665 North Aurora Ct, Mail Stop F-704, Room 5237, Aurora, CO 80045, USA
| |
Collapse
|
96
|
Advances in the Diagnosis and Treatment of Leptomeningeal Disease. Curr Neurol Neurosci Rep 2022; 22:413-425. [PMID: 35588045 DOI: 10.1007/s11910-022-01198-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Leptomeningeal disease (LMD) is a rare, late complication of systemic cancer and is associated with significant neurological morbidity and high mortality. Here we provide an overview of this condition, summarizing key recent research findings and clinical practice trends in its diagnosis and treatment. We also review current clinical trials for LMD. RECENT FINDINGS Improved molecular diagnostic tools are in development to enable more sensitive detection of LMD, including circulating tumor cells and circulating tumor DNA. The use of targeted and CNS-penetrant therapeutics has shown survival improvements with tyrosine kinase inhibitors, antibody-drug conjugates, and select chemotherapy. However, these studies have primarily been phase I/II and retrospective analyses. There remains a dearth of clinical trials that include LMD patients. The combination of patient-specific molecular information and novel therapeutic approaches holds significant promise for improving outcomes in patients with LMD.
Collapse
|
97
|
Cui J, Li L, Yuan S. The Value of Radiotherapy for Advanced Non-Small Cell Lung Cancer With Oncogene Driver-Mutation. Front Oncol 2022; 12:863715. [PMID: 35646640 PMCID: PMC9139486 DOI: 10.3389/fonc.2022.863715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022] Open
Abstract
Due to the widespread use of tyrosine kinase inhibitors (TKIs), which have largely supplanted cytotoxic chemotherapy as the first-line therapeutic choice for patients with advanced non-small cell lung cancer (NSCLC) who have oncogene driver mutations, advanced NSCLC patients with oncogene driver mutations had much long median survival. However, TKIs’ long-term efficacy is harmed by resistance to them. TKIs proved to have a limited potential to permeate cerebrospinal fluid (CSF) as well. Only a small percentage of plasma levels could be found in CSF at usual doses. Therefore, TKIs monotherapy may have a limited efficacy in individuals with brain metastases. Radiation has been demonstrated to reduce TKIs resistance and disrupt the blood-brain barrier (BBB). Previous trials have shown that local irradiation for bone metastases might improve symptoms, in addition, continuous administration of TKIs combined with radiotherapy was linked with beneficial progression-free survival (PFS) and overall survival (OS) for oligometastasis or bone metastasis NSCLC with oncogene driver mutations. The above implied that radiotherapy combined with targeted therapy may have a synergistic impact in patients with advanced oncogene driver-mutated NSCLC. The objective of this article is to discuss the value of radiotherapy in the treatment of those specific individuals.
Collapse
Affiliation(s)
- Jinfeng Cui
- Clinical Medical College, Shandong University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shuanghu Yuan,
| |
Collapse
|
98
|
Alvarez-Breckenridge C, Remon J, Piña Y, Nieblas-Bedolla E, Forsyth P, Hendriks L, Brastianos PK. Emerging Systemic Treatment Perspectives on Brain Metastases: Moving Toward a Better Outlook for Patients. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35522917 DOI: 10.1200/edbk_352320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diagnosis of brain metastases has historically been a dreaded, end-stage complication of systemic disease. Additionally, with the increasing effectiveness of systemic therapies that prolong life expectancy and improved imaging tools, the incidence of intracranial progression is becoming more common. Within this context, there has been increasing attention directed at understanding the molecular underpinnings of intracranial progression. Exploring the unique features of brain metastases compared with their extracranial counterparts to identify aberrant signaling pathways, which can be targeted pharmacologically, may help lead to new treatments for this patient population. Additionally, critical discoveries outside the sphere of the central nervous system are increasingly being applied to brain metastases with the emergence of immune checkpoint inhibition, becoming a prevalent treatment option for patients with brain metastases across multiple histologies. As novel treatment strategies are considered, they require thoughtful incorporation of agents that can cross the blood-brain barrier and can synergize with pre-existing agents through rational combinations. Lastly, as clinicians and scientists continue to understand key molecular features of these tumors, they will continue to influence the treatment algorithms that are developing for the management of these patients. Due to the complexity of treatment decisions for patients with brain metastases, an emerging tool is the utilization of multidisciplinary brain metastasis tumor boards to ensure optimal treatment decisions are made and that patients are provided access to applicable clinical trials. Looking to the future, the collective effort to understand the various tumor-intrinsic and tumor-extrinsic factors that promote central nervous system seeding and propagation will have the potential to change the clinical trajectory for these patients.
Collapse
Affiliation(s)
| | - Jordi Remon
- Department of Medical Oncology, HM CIOCC Barcelona (Centro Integral Oncológico Clara Campal), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | | | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | - Lizza Hendriks
- Department of Pulmonary Diseases - GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | | |
Collapse
|
99
|
Dagogo-Jack I, Oxnard GR, Evangelist M, Digumarthy SR, Lin JJ, Gainor JF, Murphy JF, Rabin MS, Heist RS, Muzikansky A, Shaw AT. Phase II Study of Lorlatinib in Patients With Anaplastic Lymphoma Kinase-Positive Lung Cancer and CNS-Specific Relapse. JCO Precis Oncol 2022; 6:e2100522. [PMID: 35584349 PMCID: PMC9848561 DOI: 10.1200/po.21.00522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The CNS is a recurrent site of progression in anaplastic lymphoma kinase (ALK)-rearranged (ALK+) lung cancer. Lorlatinib is a third-generation ALK inhibitor developed to penetrate the CNS and overcome ALK resistance mutations. We conducted a phase II study to evaluate the intracranial activity of lorlatinib in patients with CNS-only progression on second-generation ALK inhibitors. METHODS Patients with ALK+ lung cancer who had intracranial progression on ≥ 1 ALK inhibitor without measurable extracranial disease received lorlatinib 100 mg once daily. The primary end point was intracranial disease control rate at 12 weeks per modified RECIST v1.1. Secondary end points included intracranial progression-free survival, intracranial objective response rate, and safety/tolerability. RESULTS Twenty-three patients were enrolled between November 2016 and January 2019. Fifteen (65%) patients had irradiated CNS metastases, with a median of 20.2 months between radiation and lorlatinib. Control of intracranial disease was observed in 21 (95%) evaluable patients at 12 weeks. The intracranial objective response rate was 59% with six complete and seven partial responses. The median intracranial progression-free survival was 24.6 months (95% CI, 20.2 to not reached). With a median follow-up of 16.8 months, nine patients developed disease progression, including four patients with CNS progression. The most common treatment-related adverse events were hypercholesterolemia (96%), hypertriglyceridemia (87%), edema (65%), cognitive effects (52%), and mood effects (43%). Three patients discontinued treatment because of toxicity, including two patients with fatal respiratory events. CONCLUSION Lorlatinib induced durable intracranial disease control in patients with CNS-only relapse on second-generation ALK inhibitors, suggesting that tumors with CNS-limited progression on brain-penetrant ALK tyrosine kinase inhibitors remain ALK-dependent.
Collapse
Affiliation(s)
- Ibiayi Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
| | | | | | | | - Jessica J. Lin
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Justin F. Gainor
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
| | - John F. Murphy
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
- Albany Medical Center, Albany, NY
| | | | - Rebecca S. Heist
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Alona Muzikansky
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
| | - Alice T. Shaw
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
100
|
Li J, Feng Y, Tan Y, Duan Q, Zhang Q. Case Report: A Lung Adenocarcinoma With Brain Metastasis Harbored Novel MET 14 Skipping Alteration Sensitive to Savolitinib. Front Oncol 2022; 12:863560. [PMID: 35444936 PMCID: PMC9015670 DOI: 10.3389/fonc.2022.863560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
A splice-site mutation that results in a loss of transcription of exon 14 in the oncogenic driver MET occurs in 3 to 4% of patients with non-small-cell lung cancer (NSCLC). Several MET exon 14 skipping alterations have been identified, but different MET exon splice variants tend to have different clinical outcomes which deserve concern. Herein, based on NGS panel analysis, we firstly described a 61-year-old woman with lung adenocarcinoma who harbored a novel MET exon 14 skipping (c.3004_3028+3del) concurrent MET amplification (copy number: 3.91) and benefited from Savolitinib treatment. Moreover, CytoTest MET/CCP7 FISH Probe (c-MET/CCP7 Ratio:1.41 and mean gene copy number:6) and qPCR which based on ABI 7500 also were performed to confirm these two MET alterations. After 2 months of Savolitinib treatment, the clinical evaluation was a partial response (PR). In summary, our finding not only expanded the spectrum of the MET exon14 variant (METex14). Targeted NGS analysis could improve detection of MET alterations in routine practice.
Collapse
Affiliation(s)
- Jian Li
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Shanxi, China
| | - Yun Feng
- Department of Thoracic Surgery, Shanxi Provincial People's Hospital, Shanxi, China
| | - Yuan Tan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.,The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Qianqian Duan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.,The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Qin Zhang
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.,The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| |
Collapse
|