51
|
Schaeffer MJ, Callahan BL. Investigating the Association Between Verbal Forgetting and Pathological Markers of Alzheimer's and Lewy Body Diseases. J Alzheimers Dis 2019; 70:877-887. [PMID: 31282412 DOI: 10.3233/jad-180962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The percentage of verbal forgetting (VF%) measure of the Rey Auditory Verbal Learning Test (RAVLT) has been proposed to differentiate patients diagnosed clinically with Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). OBJECTIVE To determine if VF% aligns with gold-standard biomarker and autopsy evidence of AD and DLB neuropathology. METHODS Clinical, cognitive, sociodemographic, and biomarker data were collected from 315 patients with baseline cognitive impairment and 485 normal controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). AD markers included reduced cerebrospinal fluid (CSF) amyloid-β, elevated total-tau and phosphorylated-tau, hippocampal atrophy, and the presence of amyloid plaques and neurofibrillary tangles at autopsy. DLB markers included reduced CSF α-synuclein, preserved hippocampus, atrophied putamen, occipital glucose metabolism, and the presence of Lewy bodies at autopsy. Cognitively impaired participants were classified as ADVF% (n = 190) or DLBVF% (n = 125) based on their RAVLT VF% scores using a 75% cut-off (≥75% = ADVF%, <75% = DLBVF%). Postmortem data were available for 13 ADVF% participants, 13 DLBVF% patients, and six healthy controls. RESULTS ADVF% and DLBVF% participants did not differ on CSF or neuroimaging biomarkers, with the exception of total tau levels which were higher in ADVF%. In the subset of participants with autopsy data, comorbid AD and DLB pathology was most frequent in ADVF% participants, and pure DLB pathology was most frequent in DLBVF% participants, however, these differences were not statistically significant. CONCLUSION The RAVLT VF% measure does not reliably align with AD and DLB neuropathology in ADNI participants.
Collapse
Affiliation(s)
| | - Brandy L Callahan
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Mathison Centre for Mental Health Research & Education, Calgary, AB, Canada
| | | |
Collapse
|
52
|
Pillai JA, Wu G, Tousi B, Larvie M, Léger GC, Leverenz JB. Amygdala sign, a FDG-PET signature of dementia with Lewy Bodies. Parkinsonism Relat Disord 2019; 64:300-303. [PMID: 30905401 PMCID: PMC6739145 DOI: 10.1016/j.parkreldis.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Biomarkers are being used increasingly to support the diagnosis of dementia with Lewy bodies (DLB). Novel biomarkers that increase diagnostic specificity of DLB are needed. We assessed previously known FDG-PET occipital cortex hypometabolism, and cingulate island sign biomarkers of DLB against a novel amygdala signature. METHODS Retrospective analysis of 49 patients evaluated at one tertiary memory clinic. All had a FDG-PET brain scan performed as part of their diagnostic work up evaluating three common neurodegenerative etiologies: Alzheimer dementia (AD), Frontotemporal dementia (FTD) and DLB. A consensus diagnosis of dementia was made based on accepted clinical criteria for AD, FTD and DLB. FDG-PET regional metabolism was delineated by automatic segmentation as well as manual tracing of amygdala and posterior cingulate volumes of interest. Mean normalized values calculated for regional FDG-PET signatures of DLB: occipital cortex hypometabolism and preservation of posterior cingulate and amygdala metabolism relative to whole brain metabolism were evaluated. RESULTS Significant overlap between DLB and AD patients (occipital, parietal, temporal and frontal hypometabolism) and between DLB and FTD (frontal hypometabolism and the posterior cingulate sign) were identified. Right amygdala (p = 0.028) and right posterior cingulate (p = 0.035) mean normalized regional metabolism levels were preserved in DLB compared to AD. Among subjects at less advanced stages of dementia (MoCA>10), relative preservation of regional metabolism was notable across both left (p = 0.006) and right (p = 0.020) amygdala. CONCLUSION Relative preservation of amygdala metabolism could complement previously described FDG-PET findings in earlier stages of DLB.
Collapse
Affiliation(s)
- Jagan A Pillai
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, 44195, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Guiyun Wu
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Babak Tousi
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, 44195, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mykol Larvie
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | | | - James B Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, 44195, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
53
|
Kang SW, Jeon S, Yoo HS, Chung SJ, Lee PH, Sohn YH, Yun M, Evans AC, Ye BS. Effects of Lewy body disease and Alzheimer disease on brain atrophy and cognitive dysfunction. Neurology 2019; 92:e2015-e2026. [PMID: 30944239 DOI: 10.1212/wnl.0000000000007373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/07/2019] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES To investigate the independent and interaction effects of Alzheimer disease (AD) and Lewy body disease (LBD) on cognition and brain atrophy. METHODS We consecutively recruited 38 controls and 108 patients with AD-related cognitive impairment (ADCI) and/or LBD-related cognitive impairment (LBCI) from university-based dementia and movement clinics. Diagnoses of ADCI and LBCI were supported by 18F-florbetaben PET and 18F-N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane-PET, respectively. There were 38 controls, 26 patients with pure ADCI (18 mild cognitive impairment [MCI] and 8 dementia), 28 patients with pure LBCI (13 MCI and 15 dementia), and 54 patients with mixed ADCI and LBCI (17 MCI and 37 dementia). We performed group-wise comparisons for neuropsychological z scores and regional cortical thickness. We also evaluated the effects of ADCI and LBCI using general linear models. RESULTS Compared to the controls, patients in the pure ADCI group and pure LBCI group had focused cortical thinning in the bilateral entorhinal/right anterior temporal cortices and bilateral anteromedial temporal/basal frontal cortices, respectively, while the mixed disease group had additional cortical thinning in the widespread association cortices. The independent effects of ADCI and LBCI on regional cortical thinning overlapped in the widespread association cortices, especially at the bilateral temporoparietal junction and parietal cortices. ADCI and LBCI had independent detrimental effects on the copying item of the Rey-Osterrieth Complex Figure Test. CONCLUSIONS Concomitant ADCI and LBCI are associated with the accentuation of neurodegeneration to widespread association cortices, and both diseases contribute to visuospatial dysfunction.
Collapse
Affiliation(s)
- Sung Woo Kang
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Seun Jeon
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Han Soo Yoo
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Seok Jong Chung
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Phil Hyu Lee
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Young H Sohn
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Mijin Yun
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Alan C Evans
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Byoung Seok Ye
- From the Departments of Neurology (S.W.K., H.S.Y., S.J.C., P.H.L., Y.H.S., B.S.Y.) and Nuclear Medicine (M.Y.), Yonsei University College of Medicine, Seoul, Korea; and McGill Centre for Integrative Neuroscience (S.J., A.C.E.), Montreal Neurological Institute, McGill University, Quebec, Canada.
| |
Collapse
|
54
|
Striatal DAT and extrastriatal SERT binding in early-stage Parkinson's disease and dementia with Lewy bodies, compared with healthy controls: An 123I-FP-CIT SPECT study. NEUROIMAGE-CLINICAL 2019; 22:101755. [PMID: 30884365 PMCID: PMC6424141 DOI: 10.1016/j.nicl.2019.101755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/27/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are thought to be part of a spectrum: both have a clinical profile including symptoms associated with dopaminergic and serotonergic loss, yet few imaging studies have focused on serotonergic neurodegeneration in both disorders. We aimed to study degeneration of terminals with dopamine and serotonin transporter (DAT and SERT, respectively) in patients with early-stage PD and DLB relative to healthy controls, using 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT) single photon emission computed tomography (SPECT). We conducted region of interest (ROI) and voxel-based analyses on 123I-FP-CIT SPECT scans. Using the cerebellum as a reference region, we determined binding ratios (BRs) for bilateral ROIs in the DAT-rich striatum (head of the caudate nucleus and posterior putamen) and SERT-rich extrastriatal brain regions (thalamus, hypothalamus and hippocampus). We compared BRs in PD and DLB patients with BRs in healthy controls (all groups: n = 16). Both PD and DLB patients had lower striatal 123I-FP-CIT BRs than healthy controls for the bilateral caudate head (PD-left: F(1,29) = 28.778, P < .001, ω2 = 0.35; right: F(1,29) = 35.338, P < .001, ω2 = 0.42; DLB-left: F(1,29) = 28.241, P < .001, ω2 = 0.31; right: F(1,29) = 18.811, P < .001, ω2 = 0.26) and bilateral posterior putamen (PD-left: F(1,29) = 107.531, P < .001, ω2 = 0.77; right: F(1,29) = 87.525, P < .001, ω2 = 0.72; DLB-left: F(1,29) = 39.910, P < .001, ω2 = 0.48; right: F(1,29) = 26.882, P < .001, ω2 = 0.38). DLB patients had lower hypothalamic 123I-FP-CIT BRs than healthy controls (F(1,29) = 6.059, P = .020, ω2 = 0.12). In the voxel-based analysis, PD and DLB patients had significantly lower striatal binding than healthy controls. Both PD patients in the early disease stages and DLB patients have reduced availability of striatal DAT, and DLB patients lower hypothalamic SERT compared with healthy controls. These observations add to the growing body of evidence that PD and DLB are not merely dopaminergic diseases, thereby providing additional clinicopathological insights.
Collapse
|
55
|
Baschieri F, Cortelli P. Circadian rhythms of cardiovascular autonomic function: Physiology and clinical implications in neurodegenerative diseases. Auton Neurosci 2019; 217:91-101. [DOI: 10.1016/j.autneu.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
|
56
|
Matsuda H, Yokoyama K, Sato N, Ito K, Nemoto K, Oba H, Hanyu H, Kanetaka H, Mizumura S, Kitamura S, Shinotoh H, Shimada H, Suhara T, Terada H, Nakatsuka T, Kawakatsu S, Hayashi H, Asada T, Ono T, Goto T, Shigemori K. Differentiation Between Dementia With Lewy Bodies And Alzheimer's Disease Using Voxel-Based Morphometry Of Structural MRI: A Multicenter Study. Neuropsychiatr Dis Treat 2019; 15:2715-2722. [PMID: 31571887 PMCID: PMC6757232 DOI: 10.2147/ndt.s222966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The differential diagnosis of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) is particularly important because DLB patients respond better to cholinesterase inhibitors but sometimes exhibit sensitivity to neuroleptics, which may cause worsening of clinical status. Antemortem voxel-based morphometry (VBM) using structural MRI has previously revealed that patients with DLB have normal hippocampal volume, but atrophy in the dorsal mesopontine area. OBJECTIVES The aim of this multicenter study was to determine whether VBM of the brain stem in addition to that of medial temporal lobe structures improves the differential diagnosis of AD and DLB. METHODS We retrospectively chose 624 patients who were clinically diagnosed with either DLB (239 patients) or AD (385 patients) from 10 institutes using different MR scanners with different magnetic field strengths. In all cases, VBM was performed on 3D T1-weighted images. The degree of local atrophy was calculated using Z-score by comparison with a database of normal volumes of interest (VOIs) in medial temporal lobe (MTL) and the dorsal brain stem (DBS). The discrimination of DLB and AD was evaluated using Z-score values in these two VOIs. MRI data from 414 patients were used as the training data set to determine the classification criteria, with the MRI data from the remaining 210 patients used as the test data set. RESULTS The DLB and AD patients did not differ with respect to mean age or Mini-Mental State Examination scores. Z-index scores showed that there was significantly more atrophy in MTL of AD patients, compared to DLB patients and in DBS of DLB patients, compared to AD patients. The discrimination accuracies of VBM were 63.3% in the test data set and 73.4% in the training data set. CONCLUSION VBM of DBS in addition to that of MTL improves the differentiation of DLB and AD.
Collapse
Affiliation(s)
- Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kota Yokoyama
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kengo Ito
- Innovation Center for Clinical Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hiroshi Oba
- Department of Radiology, Teikyo University Hospital, Itabashi-ku, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Hidekazu Kanetaka
- Department of Geriatric Medicine, Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Sunao Mizumura
- Department of Radiology, Toho University Omori Medical Center, Oota-ku, Tokyo, Japan
| | - Shin Kitamura
- Department of Internal Medicine, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hitoshi Terada
- Department of Radiology, Toho University Sakura Medical Center, Sakura, Japan
| | - Tomoya Nakatsuka
- Department of Radiology, Toho University Sakura Medical Center, Sakura, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Hiroshi Hayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Takashi Asada
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Tetsutaro Ono
- 2nd Group, 2nd Planning Department, 1st Integrated Communication Division, Communication and Information Center, Information Innovation Operations, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Tomoaki Goto
- 2nd Group, 2nd Planning Department, 1st Integrated Communication Division, Communication and Information Center, Information Innovation Operations, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Keiko Shigemori
- 2nd Group, 2nd Planning Department, 1st Integrated Communication Division, Communication and Information Center, Information Innovation Operations, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| |
Collapse
|
57
|
Neuroimaging in dementia. Clinical–radiological correlation. RADIOLOGIA 2019. [DOI: 10.1016/j.rxeng.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
58
|
Balážová Z, Nováková M, Minsterová A, Rektorová I. Structural and Functional Magnetic Resonance Imaging of Dementia With Lewy Bodies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 144:95-141. [PMID: 30638458 DOI: 10.1016/bs.irn.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Although diagnosis may be challenging, there is increasing evidence that the use of biomarkers according to 2017 revised criteria for diagnosis and management of dementia with Lewy bodies can increase diagnostic accuracy. Apart from nuclear medicine techniques, various magnetic resonance imaging (MRI) techniques have been utilized in attempt to enhance diagnostic accuracy. This chapter reviews structural, functional and diffusion MRI studies in DLB cohorts being compared to healthy controls, AD or dementia in Parkinson's disease (PDD). We also included relatively new MRI methods that may have potential to identify early DLB subjects and aim at examining brain iron and neuromelanin.
Collapse
Affiliation(s)
- Zuzana Balážová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; Department of Radiology and Nuclear Medicine, University Hospital Brno, Faculty of Medicine, Brno, Czech Republic
| | - Marie Nováková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Alžběta Minsterová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
59
|
Oppedal K, Ferreira D, Cavallin L, Lemstra AW, Kate M, Padovani A, Rektorova I, Bonanni L, Wahlund L, Engedal K, Nobili F, Kramberger M, Taylor J, Hort J, Snædal J, Blanc F, Walker Z, Antonini A, Westman E, Aarsland D. A signature pattern of cortical atrophy in dementia with Lewy bodies: A study on 333 patients from the European DLB consortium. Alzheimers Dement 2018; 15:400-409. [DOI: 10.1016/j.jalz.2018.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/11/2018] [Accepted: 09/30/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Ketil Oppedal
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Department of RadiologyStavanger University HospitalStavangerNorway
| | - Daniel Ferreira
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Lena Cavallin
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of RadiologyKarolinska University HospitalStockholmSweden
| | - Afina W. Lemstra
- Department of Neurology and AlzheimercenterVU Universisty Medical CenterAmsterdamNetherlands
| | - Mara Kate
- Department of Neurology and AlzheimercenterVU Universisty Medical CenterAmsterdamNetherlands
| | - Alessandro Padovani
- Neurology UnitDepartment o Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Irena Rektorova
- 1st Department of NeurologyMedical FacultySt. Anne's Hospital and CEITECMasaryk UniversityBrnoCzech Republic
| | - Laura Bonanni
- Department of Neuroscience Imaging and Clinical Sciences and CESIUniversity G d'Annunzio of Chieti‐PescaraChietiItaly
| | - Lars‐Olof Wahlund
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Knut Engedal
- Norwegian Advisory Unit for Ageing and HealthVestfold Hospital Trust and Oslo University HospitalOsloNorway
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI)University of Genoa and Neurology ClinicsPolyclinic San Martino HospitalGenoaItaly
| | - Milica Kramberger
- Department of NeurologyUniversity Medical Centre LjubljanaMedical facultyUniversity of LjubljanaSlovenia
| | - John‐Paul Taylor
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jakub Hort
- Memory ClinicDepartment of NeurologyCharles University2nd Faculty of Medicine and Motol University HospitalPragueCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Jon Snædal
- Landspitali University HospitalReykjavikIceland
| | - Frederic Blanc
- Day Hospital of GeriatricsMemory Resource and Research Centre (CM2R) of StrasbourgDepartment of GeriatricsHôpitaux Universitaires de StrasbourgStrasbourgFrance
- University of Strasbourg and French National Centre for Scientific Research (CNRS)ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS)Team Imagerie Multimodale Intégrative en Santé (IMIS)/ICONEStrasbourgFrance
| | - Zuzana Walker
- University College LondonLondon & Essex Partnership University NHS Foundation TrustUnited Kingdom
| | - Angelo Antonini
- Department of NeuroscienceUniversity of PaduaPadua & Fondazione Ospedale San CamilloVeneziaVeniceItaly
| | - Eric Westman
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of NeuroimagingCentre for Neuroimaging SciencesInstitute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonUK
| | - Dag Aarsland
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
- Institute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonUK
| | | |
Collapse
|
60
|
van der Zande JJ, Steenwijk MD, ten Kate M, Wattjes MP, Scheltens P, Lemstra AW. Gray matter atrophy in dementia with Lewy bodies with and without concomitant Alzheimer's disease pathology. Neurobiol Aging 2018; 71:171-178. [DOI: 10.1016/j.neurobiolaging.2018.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/19/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022]
|
61
|
Álvarez-Linera Prado J, Jiménez-Huete A. Neuroimaging in dementia. Clinical-radiological correlation. RADIOLOGIA 2018; 61:66-81. [PMID: 30482502 DOI: 10.1016/j.rx.2018.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 07/19/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022]
Abstract
Dementia is a syndrome characterised by chronic, multi-domain, acquired cognitive impairment that causes significant functional limitations. MRI is the standard imaging study for these cases, since it enables detection of the atrophy patterns of the various neurodegenerative diseases (Alzheimer's disease, frontotemporal degeneration, Lewy body dementia), the vascular lesions associated with vascular dementia, and various potentially reversible diseases (for example, tumours, hydrocephaly) or diseases that require special management measures (for example, prion diseases). In certain cases other imaging methods can be used, such as CT, functional MRI, HMPAO SPECT or dopaminergic markers and FDG PET, amyloid markers or dopaminergic markers. The indications for these methods have not yet been clearly established, and therefore should be used in multidisciplinary dementia units.
Collapse
Affiliation(s)
| | - A Jiménez-Huete
- Departamento de Neurología, Hospital Ruber Internacional, Madrid, España
| |
Collapse
|
62
|
Ser46-Phosphorylated MARCKS Is a Marker of Neurite Degeneration at the Pre-aggregation Stage in PD/DLB Pathology. eNeuro 2018; 5:eN-NWR-0217-18. [PMID: 30225354 PMCID: PMC6140116 DOI: 10.1523/eneuro.0217-18.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023] Open
Abstract
Phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) reflects neurite degeneration at the early stage of Alzheimer’s disease (AD), before extracellular Aβ aggregates are histologically detectable. Here, we demonstrate that similar changes in MARCKS occur in Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) pathologies in both mouse models and human patients. The increase in the level of pSer46-MARCKS began before α-synuclein aggregate formation, at a time when human α-Syn-BAC-Tg/GBA-hetero-KO mice exhibited no symptoms, and was sustained during aging, consistent with the pattern in human postmortem brains. The results strongly imply a common mechanism of pre-aggregation neurite degeneration in AD and PD/DLB pathologies.
Collapse
|
63
|
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia following Alzheimer disease. It stems from the formation of Lewy bodies, which contain aggregates of the misfolded protein, α-synuclein. These deposit in areas of the nervous system and brain, leading to neuronal cell death and causing clinically apparent symptoms. Because of its clinical overlap with other forms of dementia, DLB is often underdiagnosed and misdiagnosed. There is currently no cure for DLB and treatments are aimed at ameliorating specific symptoms.
Collapse
Affiliation(s)
- Angela M Sanford
- Division of Geriatrics, Saint Louis University School of Medicine, 1402 South Grand Boulevard, M238, St Louis, MO 63104, USA.
| |
Collapse
|
64
|
Lee YG, Jeon S, Yoo HS, Chung SJ, Lee SK, Lee PH, Sohn YH, Yun M, Evans AC, Ye BS. Amyloid-β-related and unrelated cortical thinning in dementia with Lewy bodies. Neurobiol Aging 2018; 72:32-39. [PMID: 30205358 DOI: 10.1016/j.neurobiolaging.2018.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/19/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022]
Abstract
Coexisting Alzheimer's disease (AD) pathology is common in patients with dementia with Lewy bodies (DLB). To evaluate the cortical thinning in patients with DLB considering the effect of amyloid-β (Aβ), we compared the regional cortical thickness between control subjects and patients with DLB with abnormal dopamine transporter imaging. Seventeen (43.6%) of 39 patients with DLB and no control subjects had significant Aβ deposition on 18F-florbetaben positron emission tomography. Compared to control (n = 15), Aβ-negative DLB group (n = 21) had cortical thinning in the bilateral insula, entorhinal, basal frontal, and occipito-parietal cortices. Compared to Aβ-negative DLB, Aβ-positive DLB group (n = 15) had a lower cortical thickness in the AD-prone brain regions in addition to the bilateral occipital, basal frontal, and somatomotor cortices. After controlling for the amount of Aβ deposition, DLB group had cortical thinning in the same regions affected in the Aβ-negative DLB group. In summary, patients with DLB had an Aβ-independent cortical thinning, while Aβ was associated with additional cortical thinning in the AD-prone brain regions and the aggravation of DLB-specific cortical thinning.
Collapse
Affiliation(s)
- Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seun Jeon
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ho Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
65
|
Roy M, Sorokina O, McLean C, Tapia-González S, DeFelipe J, Armstrong JD, Grant SGN. Regional Diversity in the Postsynaptic Proteome of the Mouse Brain. Proteomes 2018; 6:proteomes6030031. [PMID: 30071621 PMCID: PMC6161190 DOI: 10.3390/proteomes6030031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
The proteome of the postsynaptic terminal of excitatory synapses comprises over one thousand proteins in vertebrate species and plays a central role in behavior and brain disease. The brain is organized into anatomically distinct regions and whether the synapse proteome differs across these regions is poorly understood. Postsynaptic proteomes were isolated from seven forebrain and hindbrain regions in mice and their composition determined using proteomic mass spectrometry. Seventy-four percent of proteins showed differential expression and each region displayed a unique compositional signature. These signatures correlated with the anatomical divisions of the brain and their embryological origins. Biochemical pathways controlling plasticity and disease, protein interaction networks and individual proteins involved with cognition all showed differential regional expression. Combining proteomic and connectomic data shows that interconnected regions have specific proteome signatures. Diversity in synapse proteome composition is key feature of mouse and human brain structure.
Collapse
Affiliation(s)
- Marcia Roy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Oksana Sorokina
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Colin McLean
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Silvia Tapia-González
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid and Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (UPM), 28223 Pozuelo de Alarcón, Madrid, Spain.
| | | | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
66
|
Saeed U, Mirza SS, MacIntosh BJ, Herrmann N, Keith J, Ramirez J, Nestor SM, Yu Q, Knight J, Swardfager W, Potkin SG, Rogaeva E, St George-Hyslop P, Black SE, Masellis M. APOE-ε4 associates with hippocampal volume, learning, and memory across the spectrum of Alzheimer's disease and dementia with Lewy bodies. Alzheimers Dement 2018; 14:1137-1147. [PMID: 29782824 DOI: 10.1016/j.jalz.2018.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Although the apolipoprotein E ε4-allele (APOE-ε4) is a susceptibility factor for Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), its relationship with imaging and cognitive measures across the AD/DLB spectrum remains unexplored. METHODS We studied 298 patients (AD = 250, DLB = 48; 38 autopsy-confirmed; NCT01800214) using neuropsychological testing, volumetric magnetic resonance imaging, and APOE genotyping to investigate the association of APOE-ε4 with hippocampal volume and learning/memory phenotypes, irrespective of diagnosis. RESULTS Across the AD/DLB spectrum: (1) hippocampal volumes were smaller with increasing APOE-ε4 dosage (no genotype × diagnosis interaction observed), (2) learning performance as assessed by total recall scores was associated with hippocampal volumes only among APOE-ε4 carriers, and (3) APOE-ε4 carriers performed worse on long-delay free word recall. DISCUSSION These findings provide evidence that APOE-ε4 is linked to hippocampal atrophy and learning/memory phenotypes across the AD/DLB spectrum, which could be useful as biomarkers of disease progression in therapeutic trials of mixed disease.
Collapse
Affiliation(s)
- Usman Saeed
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Saira S Mirza
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Keith
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sean M Nestor
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Qinggang Yu
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Walter Swardfager
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Cambridge Institute for Medical Research, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Sandra E Black
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
67
|
Abstract
Lewy body dementia (DLB) is a common form of cognitive impairment, accounting for 30% of dementia cases in ages over 65 years. Early diagnosis of DLB has been challenging; particularly in the context of differentiation with Parkinson’s disease dementia and other forms of dementias, such as Alzheimer’s disease and rapidly progressive dementias. Current practice involves the use of [123I]FP-CIT-SPECT, [18F]FDG PET and [123I]MIBG molecular imaging to support diagnostic procedures. Structural imaging techniques have an essential role for excluding structural causes, which could lead to a DLB-like phenotype, as well as aiding differential diagnosis through illustrating disease-specific patterns of atrophy. Novel PET molecular imaging modalities, such as amyloid and tau imaging, may provide further insights into DLB pathophysiology and may aid in early diagnosis. A multimodal approach, through combining various established techniques and possibly using novel radioligands, might further aid towards an in-depth understanding of this highly disabling disease. In this review, we will provide an overview of neuroimaging applications in patients with DLB.
Collapse
|
68
|
Erkkinen MG, Kim MO, Geschwind MD. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2018; 10:a033118. [PMID: 28716886 PMCID: PMC5880171 DOI: 10.1101/cshperspect.a033118] [Citation(s) in RCA: 632] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are a common cause of morbidity and cognitive impairment in older adults. Most clinicians who care for the elderly are not trained to diagnose these conditions, perhaps other than typical Alzheimer's disease (AD). Each of these disorders has varied epidemiology, clinical symptomatology, laboratory and neuroimaging features, neuropathology, and management. Thus, it is important that clinicians be able to differentiate and diagnose these conditions accurately. This review summarizes and highlights clinical aspects of several of the most commonly encountered neurodegenerative diseases, including AD, frontotemporal dementia (FTD) and its variants, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and Huntington's disease (HD). For each condition, we provide a brief overview of the epidemiology, defining clinical symptoms and diagnostic criteria, relevant imaging and laboratory features, genetics, pathology, treatments, and differential diagnosis.
Collapse
Affiliation(s)
- Michael G Erkkinen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California 94158
| | - Mee-Ohk Kim
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California 94158
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
69
|
Bohnen NI, Grothe MJ, Ray NJ, Müller ML, Teipel SJ. Recent advances in cholinergic imaging and cognitive decline-Revisiting the cholinergic hypothesis of dementia. CURRENT GERIATRICS REPORTS 2018; 7:1-11. [PMID: 29503795 PMCID: PMC5831510 DOI: 10.1007/s13670-018-0234-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Although the cholinergic hypothesis of dementia provided a successful paradigm for the development of new drugs for dementia, this hypothesis has waned in popularity. Cholinergic brain imaging may provide novel insights into the viability of this hypothesis. RECENT FINDINGS Cholinergic receptor and forebrain volumetric studies suggest an important role of the cholinergic system in maintaining brain network integrity that may deteriorate with cognitive decline in Alzheimer disease (AD) and Lewy body disorders (LBD). Bidirectional changes in regional receptor expression may suggest the presence of compensatory responses to neurodegenerative injury. Cholinergic system changes are more complex in LBD because of additional subcortical degenerations compared to AD. Cholinergic-dopaminergic interactions affect attentional, verbal learning and executive functions, and impairments in these two transmitter systems may jointly increase the risk of dementia in Parkinson disease. SUMMARY The cholinergic hypothesis is evolving from a primary focus on memory toward expanded cognitive functions modulated by regionally more complex and interactive brain networks. Cholinergic network adaptation may serve as a novel research target in neurodegeneration.
Collapse
Affiliation(s)
- Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
| | - Michel J. Grothe
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Nicola J. Ray
- Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Martijn L.T.M. Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, United States
| | - Stefan J. Teipel
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
70
|
Dallaire-Théroux C, Callahan BL, Potvin O, Saikali S, Duchesne S. Radiological-Pathological Correlation in Alzheimer's Disease: Systematic Review of Antemortem Magnetic Resonance Imaging Findings. J Alzheimers Dis 2018; 57:575-601. [PMID: 28282807 DOI: 10.3233/jad-161028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The standard method of ascertaining Alzheimer's disease (AD) remains postmortem assessment of amyloid plaques and neurofibrillary degeneration. Vascular pathology, Lewy bodies, TDP-43, and hippocampal sclerosis are frequent comorbidities. There is therefore a need for biomarkers that can assess these etiologies and provide a diagnosis in vivo. OBJECTIVE We conducted a systematic review of published radiological-pathological correlation studies to determine the relationship between antemortem magnetic resonance imaging (MRI) and neuropathological findings in AD. METHODS We explored PubMed in June-July 2015 using "Alzheimer's disease" and combinations of radiological and pathological terms. After exclusion following screening and full-text assessment of the 552 extracted manuscripts, three others were added from their reference list. In the end, we report results based on 27 articles. RESULTS Independently of normal age-related brain atrophy, AD pathology is associated with whole-brain and hippocampal atrophy and ventricular expansion as observed on T1-weighted images. Moreover, cerebral amyloid angiopathy and cortical microinfarcts are also related to brain volume loss in AD. Hippocampal sclerosis and TDP-43 are associated with hippocampal and medial temporal lobe atrophy, respectively. Brain volume loss correlates more strongly with tangles than with any other pathological finding. White matter hyperintensities observed on proton density, T2-weighted and FLAIR images are strongly related to vascular pathologies, but are also associated with other histological changes such as gliosis or demyelination. CONCLUSION Cerebral atrophy and white matter changes in the living brain reflect underlying neuropathology and may be detectable using antemortem MRI. In vivo MRI may therefore be an avenue for AD pathological staging.
Collapse
Affiliation(s)
- Caroline Dallaire-Théroux
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Brandy L Callahan
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Olivier Potvin
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Stéphan Saikali
- Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Pathology, Centre Hospitalier Universitaire de Quebec, Quebec, Canada
| | - Simon Duchesne
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
71
|
Kasanuki K, Ferman TJ, Murray ME, Heckman MG, Pedraza O, Hanna Al-Shaikh FS, Mishima T, Diehl NN, van Gerpen JA, Uitti RJ, Wszolek ZK, Graff-Radford NR, Dickson DW. Daytime sleepiness in dementia with Lewy bodies is associated with neuronal depletion of the nucleus basalis of Meynert. Parkinsonism Relat Disord 2018; 50:99-103. [PMID: 29429645 DOI: 10.1016/j.parkreldis.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Excessive daytime sleepiness is a commonly reported clinical feature of dementia with Lewy bodies (DLB) that can occur early in the disease. Cholinergic depletion is known to be severe in DLB, even when dementia severity is mild. The nucleus basalis of Meynert serves as a primary source of cortical acetylcholine, and has a role in facilitating cortical activation and arousal. We sought to determine whether daytime sleepiness at the initial evaluation of patients with DLB was associated with neuronal loss in the nucleus basalis of Meynert. METHODS Autopsy-confirmed patients who met clinical criteria for probable DLB at their initial evaluation and who were administered the informant-completed Epworth Sleepiness Scale were included in the study (n = 40). Each patient had a dementia at baseline (80% with mild severity) and two or more features of parkinsonism, visual hallucinations, fluctuations, or probable REM sleep behavior disorder. Quantitative digital pathology of the nucleus basalis of Meynert was performed in the DLB group and in 20 non-DLB autopsy controls. RESULTS DLB had greater neuronal depletion in the nucleus basalis of Meynert (p < 0.0001) than pathologic controls. Sleepiness was present in 58% of the DLB group and those with daytime sleepiness had significantly lower neuron counts in the nucleus basalis of Meynert than their non-sleepy counterparts (p = 0.001). Regression modeling revealed that sleepiness was a stronger predictor of neuronal loss in the nucleus basalis of Meynert than visual hallucinations, fluctuations or dementia severity (p = 0.003). CONCLUSIONS Excessive daytime sleepiness in early DLB is indicative of a more profound loss of basal forebrain cholinergic integrity.
Collapse
Affiliation(s)
- Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, United States.
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - Otto Pedraza
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Takayasu Mishima
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Nancy N Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - Jay A van Gerpen
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, United States
| | | | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
72
|
Persson K, Bohbot VD, Bogdanovic N, Selbæk G, Brækhus A, Engedal K. Finding of increased caudate nucleus in patients with Alzheimer's disease. Acta Neurol Scand 2018; 137:224-232. [PMID: 28741672 DOI: 10.1111/ane.12800] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES A recently published study using an automated MRI volumetry method (NeuroQuant®) unexpectedly demonstrated larger caudate nucleus volume in patients with Alzheimer's disease dementia (AD) compared to patients with subjective and mild cognitive impairment (SCI and MCI). The aim of this study was to explore this finding. MATERIALS & METHODS The caudate nucleus and the hippocampus volumes were measured (both expressed as ratios of intracranial volume) in a total of 257 patients with SCI and MCI according to the Winblad criteria and AD according to ICD-10 criteria. Demographic data, cognitive measures, and APOE-ɛ4 status were collected. RESULTS Compared with non-dementia patients (SCI and MCI), AD patients were older, more of them were female, and they had a larger caudate nucleus volume and smaller hippocampus volume (P<.001). In multiple linear regression analysis, age and female sex were associated with larger caudate nucleus volume, but neither diagnosis nor memory function was. Age, gender, and memory function were associated with hippocampus volume, and age and memory function were associated with caudate nucleus/hippocampus ratio. CONCLUSIONS A larger caudate nucleus volume in AD patients was partly explained by older age and being female. These results are further discussed in the context of (1) the caudate nucleus possibly serving as a mechanism for temporary compensation; (2) methodological properties of automated volumetry of this brain region; and (3) neuropathological alterations. Further studies are needed to fully understand the role of the caudate nucleus in AD.
Collapse
Affiliation(s)
- K. Persson
- Norwegian National Advisory Unit on Ageing and Health Vestfold Hospital Trust Tønsberg Norway
- Department of Geriatric Medicine The Memory Clinic Oslo University Hospital Oslo Norway
| | - V. D. Bohbot
- Douglas Institute and Department of Psychiatry McGill University Montreal QC Canada
| | - N. Bogdanovic
- Department of Geriatric Medicine The Memory Clinic Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - G. Selbæk
- Norwegian National Advisory Unit on Ageing and Health Vestfold Hospital Trust Tønsberg Norway
- Centre for Old Age Psychiatric Research Innlandet Hospital Trust Ottestad Norway
- Institute of Health and Society University of Oslo Oslo Norway
| | - A. Brækhus
- Norwegian National Advisory Unit on Ageing and Health Vestfold Hospital Trust Tønsberg Norway
- Department of Geriatric Medicine The Memory Clinic Oslo University Hospital Oslo Norway
- Department of Neurology Oslo University Hospital Ullevaal Oslo Norway
| | - K. Engedal
- Norwegian National Advisory Unit on Ageing and Health Vestfold Hospital Trust Tønsberg Norway
- Department of Geriatric Medicine The Memory Clinic Oslo University Hospital Oslo Norway
| |
Collapse
|
73
|
Insel PS, Hansson O, Mackin RS, Weiner M, Mattsson N. Amyloid pathology in the progression to mild cognitive impairment. Neurobiol Aging 2017; 64:76-84. [PMID: 29353101 DOI: 10.1016/j.neurobiolaging.2017.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 01/26/2023]
Abstract
The objective of this study was to determine the cognitive and functional decline and development of brain injury in individuals progressing from preclinical (β-amyloid positive cognitively normal) to prodromal Alzheimer's disease (AD) (β-amyloid positive mild cognitive impairment [MCI]), and compare this with individuals who progress to MCI in the absence of significant amyloid pathology. Seventy-five cognitively healthy participants who progressed to MCI were followed for 4 years on average and up to 10 years. We tested effects of β-amyloid (Aβ) on measures of cognition, functional status, depressive symptoms, and brain structure and metabolism. Preclinical AD subjects showed greater cognitive decline in multiple domains and increased cerebrospinal fluid phosphorylated tau levels at baseline while Aβ-negative progressors showed increased rates of white matter hyperintensity accumulation and had a greater frequency of depressive symptoms at baseline. Aβ status did not influence patterns of brain atrophy, but preclinical AD subjects showed greater decline of brain metabolism than Aβ-negative progressors. Several unique features separate the transition from preclinical to prodromal AD from other causes of cognitive decline. These features may facilitate early diagnosis and treatment of AD, especially in clinical trials aimed at halting the progression from preclinical to prodromal AD.
Collapse
Affiliation(s)
- Philip S Insel
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden; Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - R Scott Mackin
- Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Michael Weiner
- Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Niklas Mattsson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | | |
Collapse
|
74
|
Staffaroni AM, Elahi FM, McDermott D, Marton K, Karageorgiou E, Sacco S, Paoletti M, Caverzasi E, Hess CP, Rosen HJ, Geschwind MD. Neuroimaging in Dementia. Semin Neurol 2017; 37:510-537. [PMID: 29207412 PMCID: PMC5823524 DOI: 10.1055/s-0037-1608808] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although the diagnosis of dementia still is primarily based on clinical criteria, neuroimaging is playing an increasingly important role. This is in large part due to advances in techniques that can assist with discriminating between different syndromes. Magnetic resonance imaging remains at the core of differential diagnosis, with specific patterns of cortical and subcortical changes having diagnostic significance. Recent developments in molecular PET imaging techniques have opened the door for not only antemortem but early, even preclinical, diagnosis of underlying pathology. This is vital, as treatment trials are underway for pharmacological agents with specific molecular targets, and numerous failed trials suggest that earlier treatment is needed. This article provides an overview of classic neuroimaging findings as well as new and cutting-edge research techniques that assist with clinical diagnosis of a range of dementia syndromes, with an emphasis on studies using pathologically proven cases.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Dana McDermott
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kacey Marton
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Elissaios Karageorgiou
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Neurological Institute of Athens, Athens, Greece
| | - Simone Sacco
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Caverzasi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Christopher P. Hess
- Division of Neuroradiology, Department of Radiology, University of California, San Francisco (UCSF), California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Michael D. Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
75
|
Insular atrophy at the prodromal stage of dementia with Lewy bodies: a VBM DARTEL study. Sci Rep 2017; 7:9437. [PMID: 28842567 PMCID: PMC5573371 DOI: 10.1038/s41598-017-08667-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
Diffuse atrophy including the insula was previously demonstrated in dementia with Lewy bodies (DLB) patients but little is known about the prodromal stage of DLB (pro-DLB). In this prospective study, we used SPM8-DARTEL to measure gray matter (GM) and white matter (WM) atrophy in pro-DLB patients (n = 54), prodromal Alzheimer’s disease (pro-AD) patients (n = 16), DLB patients at the stage of dementia (mild-DLB) (n = 15), and Alzheimer’s disease patients at the stage of dementia (mild-AD) (n = 28), and compared them with healthy elderly controls (HC, n = 22). Diminished GM volumes were found in bilateral insula in pro-DLB patients, a trend to significance in right hippocampus and parahippocampal gyrus in pro-AD patients, in left insula in mild-DLB patients, and in medial temporal lobes and insula in mild-AD patients. The comparison between prodromal groups did not showed any differences. The comparison between groups with dementia revealed atrophy around the left middle temporal gyrus in mild-AD patients. Reduced WM volume was observed in mild-DLB in the pons. The insula seems to be a key region in DLB as early as the prodromal stage. MRI studies looking at perfusion, and functional and anatomical connectivity are now needed to better understand the role of this region in DLB.
Collapse
|
76
|
Callahan BL, Bierstone D, Stuss DT, Black SE. Adult ADHD: Risk Factor for Dementia or Phenotypic Mimic? Front Aging Neurosci 2017; 9:260. [PMID: 28824421 PMCID: PMC5540971 DOI: 10.3389/fnagi.2017.00260] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) has historically been considered a disorder of childhood and adolescence. However, it is now recognized that ADHD symptoms persist into adulthood in up to 60% of individuals. Some of the cognitive symptoms that characterize ADHD (inability to provide sustained attention or mental effort, difficulty organizing or multi-tasking, forgetfulness) may closely resemble symptoms of prodromal dementia, also often referred to as mild cognitive impairment (MCI), particularly in patients over age 50. In addition to the overlap in cognitive symptoms, adults with ADHD and those with MCI may also share a number of behavioral and psychiatric symptoms, including sleep disturbances, depression, and anxiety. As a result, both syndromes may be difficult to distinguish clinically in older patients, particularly those who present to memory clinics with subjective cognitive complaints and fear the onset of a neurodegenerative process: is it ADHD, MCI, or both? Currently, it is unclear whether ADHD is associated with incipient dementia or is being misdiagnosed as MCI due to symptom overlap, as there exist data supporting either possibility. Here, we aim to elucidate this issue by outlining three hypothetical ways in which ADHD and MCI might relate to each other, providing an overview of the evidence relevant to each hypothesis, and delineating areas for future research. This is a question of considerable importance, with implications for improved diagnostic specificity of early dementia, improved accuracy of disease prevalence estimates, and better identification of individuals for targeted treatment.
Collapse
Affiliation(s)
- Brandy L Callahan
- Department of Psychology, University of CalgaryCalgary, AB, Canada.,Hotchkiss Brain InstituteCalgary, AB, Canada.,Sunnybrook Health Sciences Centre, Sunnybrook Research InstituteToronto, ON, Canada
| | - Daniel Bierstone
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences CentreToronto, ON, Canada.,Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Donald T Stuss
- Faculty of Medicine, University of TorontoToronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute and University of TorontoToronto, ON, Canada
| | - Sandra E Black
- Sunnybrook Health Sciences Centre, Sunnybrook Research InstituteToronto, ON, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences CentreToronto, ON, Canada.,Faculty of Medicine, University of TorontoToronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute and University of TorontoToronto, ON, Canada.,Heart and Stroke Foundation Canadian Partnership in Stroke Recovery, Sunnybrook Health Sciences CentreToronto, ON, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre and University of TorontoToronto, ON, Canada
| |
Collapse
|
77
|
Tong T, Ledig C, Guerrero R, Schuh A, Koikkalainen J, Tolonen A, Rhodius H, Barkhof F, Tijms B, Lemstra AW, Soininen H, Remes AM, Waldemar G, Hasselbalch S, Mecocci P, Baroni M, Lötjönen J, Flier WVD, Rueckert D. Five-class differential diagnostics of neurodegenerative diseases using random undersampling boosting. Neuroimage Clin 2017; 15:613-624. [PMID: 28664032 PMCID: PMC5479966 DOI: 10.1016/j.nicl.2017.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/07/2017] [Accepted: 06/08/2017] [Indexed: 01/12/2023]
Abstract
Differentiating between different types of neurodegenerative diseases is not only crucial in clinical practice when treatment decisions have to be made, but also has a significant potential for the enrichment of clinical trials. The purpose of this study is to develop a classification framework for distinguishing the four most common neurodegenerative diseases, including Alzheimer's disease, frontotemporal lobe degeneration, Dementia with Lewy bodies and vascular dementia, as well as patients with subjective memory complaints. Different biomarkers including features from images (volume features, region-wise grading features) and non-imaging features (CSF measures) were extracted for each subject. In clinical practice, the prevalence of different dementia types is imbalanced, posing challenges for learning an effective classification model. Therefore, we propose the use of the RUSBoost algorithm in order to train classifiers and to handle the class imbalance training problem. Furthermore, a multi-class feature selection method based on sparsity is integrated into the proposed framework to improve the classification performance. It also provides a way for investigating the importance of different features and regions. Using a dataset of 500 subjects, the proposed framework achieved a high accuracy of 75.2% with a balanced accuracy of 69.3% for the five-class classification using ten-fold cross validation, which is significantly better than the results using support vector machine or random forest, demonstrating the feasibility of the proposed framework to support clinical decision making.
Collapse
Affiliation(s)
- Tong Tong
- Department of Computing, Imperial College London, London, UK; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, MGH/Harvard Medical School, Charlestown, USA.
| | - Christian Ledig
- Department of Computing, Imperial College London, London, UK
| | | | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Juha Koikkalainen
- VTT Technical Research Centre of Finland, Tampere, Finland; Combinostics Ltd., Tampere, Finland
| | - Antti Tolonen
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Hanneke Rhodius
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands; Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Betty Tijms
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Gunhild Waldemar
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steen Hasselbalch
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Marta Baroni
- Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Jyrki Lötjönen
- VTT Technical Research Centre of Finland, Tampere, Finland; Combinostics Ltd., Tampere, Finland
| | - Wiesje van der Flier
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
| |
Collapse
|
78
|
Colloby SJ, Elder GJ, Rabee R, O'Brien JT, Taylor J. Structural grey matter changes in the substantia innominata in Alzheimer's disease and dementia with Lewy bodies: a DARTEL-VBM study. Int J Geriatr Psychiatry 2017; 32:615-623. [PMID: 27197956 PMCID: PMC5434823 DOI: 10.1002/gps.4500] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/19/2016] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Several cholinergic nuclei, and in particular the nucleus basalis of Meynert, are localised to the substantia innominata in the basal forebrain. These nuclei provide major cholinergic innervation to the cerebral cortex and hippocampus, and have an essential role in cognitive function. The aim of this study was to investigate volumetric grey matter (GM) changes in the substantia innominata from structural T1 images in Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and healthy older participants using voxel-based morphometry. METHODS Participants (41 DLB, 47 AD and 39 controls) underwent 3 T T1 magnetic resonance imaging and cognitive assessments. Voxel-based morphometry analysis used SPM8 with a substantia innominata brain mask to define the subspace for voxel GM analyses. Group differences, and selected behavioural and clinical correlates, were assessed. RESULTS Compared with that in controls, bilateral GM loss in the substantia innominata was apparent in both AD and DLB. Relative to controls, significant bilateral GM loss in the substantia innominata was observed in DLB and AD. In DLB, significant associations were also observed between substantia innominata GM volume loss, and the levels of cognitive impairment and severity of cognitive fluctuations. CONCLUSIONS Relative to that controls, atrophy of the substantia innominata was apparent in DLB and AD, and is associated with specific clinical manifestations in DLB. © 2016 The Authors. International Journal of Geriatric Psychiatry Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Sean J. Colloby
- Institute of Neuroscience, Newcastle UniversityCampus for Ageing and VitalityNewcastle upon TyneUK
| | - Greg J. Elder
- Institute of Neuroscience, Newcastle UniversityCampus for Ageing and VitalityNewcastle upon TyneUK
| | - Riham Rabee
- Institute of Neuroscience, Newcastle UniversityCampus for Ageing and VitalityNewcastle upon TyneUK
| | - John T. O'Brien
- Institute of Neuroscience, Newcastle UniversityCampus for Ageing and VitalityNewcastle upon TyneUK,Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - John‐Paul Taylor
- Institute of Neuroscience, Newcastle UniversityCampus for Ageing and VitalityNewcastle upon TyneUK
| |
Collapse
|
79
|
McFarland NR, Hess CW. Recognizing Atypical Parkinsonisms: "Red Flags" and Therapeutic Approaches. Semin Neurol 2017; 37:215-227. [PMID: 28511262 DOI: 10.1055/s-0037-1602422] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The overlap of signs and symptoms between Parkinson's disease and the atypical parkinsonian syndromes, such as progressive supranuclear palsy, multiple system atrophy, corticobasal syndrome and dementia with Lewy bodies, can render clinical diagnoses challenging. The continued evolution of diagnostic criteria to reflect the increasingly recognized heterogeneous presentations of these diseases further complicates timely recognition and diagnosis. In this review, we provide a diagnostic approach to the classic atypical parkinsonian syndromes, with an emphasis on the key clinical and pathological features of each and the recognition of “red flags” in the setting of recent advances in diagnosis and treatment.
Collapse
Affiliation(s)
- Nikolaus R McFarland
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher W Hess
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
80
|
Kantarci K, Lowe VJ, Boeve BF, Senjem ML, Tosakulwong N, Lesnick TG, Spychalla AJ, Gunter JL, Fields JA, Graff‐Radford J, Ferman TJ, Jones DT, Murray ME, Knopman DS, Jack CR, Petersen RC. AV-1451 tau and β-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann Neurol 2017; 81:58-67. [PMID: 27863444 PMCID: PMC5299616 DOI: 10.1002/ana.24825] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Patients with probable dementia with Lewy bodies (DLB) often have Alzheimer's disease (AD)-related pathology. Our objective was to determine the pattern of positron emission tomography (PET) tau tracer AV-1451 uptake in patients with probable DLB, compared to AD, and its relationship to β-amyloid deposition on PET. METHODS Consecutive patients with clinically probable DLB (n = 19) from the Mayo Clinic Alzheimer's Disease Research Center underwent magnetic resonance imaging, AV-1451, and Pittsburgh compound-B (PiB) PET examinations. Age- and sex-matched groups of AD dementia (n = 19) patients and clinically normal controls (n = 95) from an epidemiological cohort served as a comparison groups. Atlas- and voxel-based analyses were performed. RESULTS The AD dementia group had significantly higher AV-1451 uptake than the probable DLB group, and medial temporal uptake completely distinguished AD dementia from probable DLB. Patients with probable DLB had greater AV-1451 uptake in the posterior temporoparietal and occipital cortex compared to clinically normal controls, and in probable DLB, the uptake in these regions correlated with global cortical PiB uptake (Spearman rho = 0.63; p = 0.006). INTERPRETATION Medial temporal lobe AV-1451 uptake distinguishes AD dementia from probable DLB, which may be useful for differential diagnosis. Elevated posterior temporoparietal and occipital AV-1451 uptake in probable DLB and its association with global cortical PiB uptake suggest an atypical pattern of tau deposition in DLB. ANN NEUROL 2017;81:58-67.
Collapse
Affiliation(s)
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMN
| | | | - Matthew L. Senjem
- Department of RadiologyMayo ClinicRochesterMN
- Department of Information TechnologyMayo ClinicRochesterMN
| | | | | | | | - Jeffrey L. Gunter
- Department of RadiologyMayo ClinicRochesterMN
- Department of Information TechnologyMayo ClinicRochesterMN
| | - Julie A. Fields
- Department of Psychiatry and PsychologyMayo ClinicRochesterMN
| | | | - Tanis J. Ferman
- Department of Psychiatry and PsychologyMayo ClinicJacksonvilleFL
| | | | - Melissa E. Murray
- Department of Laboratory Medicine and PathologyMayo ClinicJacksonvilleFL
| | | | | | - Ronald C. Petersen
- Department of NeurologyMayo ClinicRochesterMN
- Department of Health Sciences ResearchMayo ClinicRochesterMN
| |
Collapse
|
81
|
Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ, Butryn M, Valdes-Herrera JP, Galazky I, Nestor PJ. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease. Brain 2016; 140:118-131. [PMID: 27836833 DOI: 10.1093/brain/aww278] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 12/13/2022] Open
Abstract
Although iron-mediated oxidative stress has been proposed as a potential pathomechanism in Parkinson's disease, the global distribution of iron accumulation in Parkinson's disease has not yet been elucidated. This study used a new magnetic resonance imaging contrast, quantitative susceptibility mapping, and state-of-the-art methods to map for the first time the whole-brain landscape of magnetostatic alterations as a surrogate for iron level changes in n = 25 patients with idiopathic Parkinson's disease versus n = 50 matched controls. In addition to whole-brain analysis, a regional study including sub-segmentation of the substantia nigra into dorsal and ventral regions and qualitative assessment of susceptibility maps in single subjects were also performed. The most remarkable basal ganglia effect was an apparent magnetic susceptibility increase-consistent with iron deposition-in the dorsal substantia nigra, though an effect was also observed in ventral regions. Increased bulk susceptibility, additionally, was detected in rostral pontine areas and in a cortical pattern tightly concordant with known Parkinson's disease distributions of α-synuclein pathology. In contrast, the normally iron-rich cerebellar dentate nucleus returned a susceptibility reduction suggesting decreased iron content. These results are in agreement with previous post-mortem studies in which iron content was evaluated in specific regions of interest; however, extensive neocortical and cerebellar changes constitute a far more complex pattern of iron dysregulation than was anticipated. Such findings also stand in stark contrast to the lack of statistically significant group change using conventional magnetic resonance imaging methods namely voxel-based morphometry, cortical thickness analysis, subcortical volumetry and tract-based diffusion tensor analysis; confirming the potential of whole-brain quantitative susceptibility mapping as an in vivo biomarker in Parkinson's disease.
Collapse
Affiliation(s)
- Julio Acosta-Cabronero
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Arturo Cardenas-Blanco
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Matthew J Betts
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Michaela Butryn
- 2 Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jose P Valdes-Herrera
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Imke Galazky
- 2 Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Peter J Nestor
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
82
|
Usman S, Oskouian RJ, Loukas M, Tubbs RS. Clinical anatomy of the most common dementias. Clin Anat 2016; 30:53-57. [PMID: 27588364 DOI: 10.1002/ca.22784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sameera Usman
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, Seattle, Washington
| | - Rod J Oskouian
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, Seattle, Washington
| | - Marios Loukas
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, Seattle, Washington
| | - R Shane Tubbs
- Seattle Science Foundation, Seattle, Washington
- Department of Anatomical Sciences, St. George's University, Seattle, Washington
| |
Collapse
|
83
|
Sarro L, Senjem ML, Lundt ES, Przybelski SA, Lesnick TG, Graff-Radford J, Boeve BF, Lowe VJ, Ferman TJ, Knopman DS, Comi G, Filippi M, Petersen RC, Jack CR, Kantarci K. Amyloid-β deposition and regional grey matter atrophy rates in dementia with Lewy bodies. Brain 2016; 139:2740-2750. [PMID: 27452602 PMCID: PMC5035818 DOI: 10.1093/brain/aww193] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease pathology frequently coexists with Lewy body disease at autopsy in patients with probable dementia with Lewy bodies. More than half of patients with probable dementia with Lewy bodies have high amyloid-β deposition as measured with 11C-Pittsburgh compound B binding on positron emission tomography. Biomarkers of amyloid-β deposition precede neurodegeneration on magnetic resonance imaging during the progression of Alzheimer's disease, but little is known about how amyloid-β deposition relates to longitudinal progression of atrophy in patients with probable dementia with Lewy bodies. We investigated the associations between baseline 11C-Pittsburgh compound B binding on positron emission tomography and the longitudinal rates of grey matter atrophy in a cohort of clinically diagnosed patients with dementia with Lewy bodies (n = 20), who were consecutively recruited to the Mayo Clinic Alzheimer's Disease Research Centre. All patients underwent 11C-Pittsburgh compound B positron emission tomography and magnetic resonance imaging examinations at baseline. Follow-up magnetic resonance imaging was performed after a mean (standard deviation) interval of 2.5 (1.1) years. Regional grey matter loss was determined on three-dimensional T1-weighted magnetic resonance imaging with the tensor-based morphometry-symmetric normalization technique. Linear regression was performed between baseline 11C-Pittsburgh compound B standard unit value ratio and longitudinal change in regional grey matter volumes from an in-house modified atlas. We identified significant associations between greater baseline 11C-Pittsburgh compound B standard unit value ratio and greater grey matter loss over time in the posterior cingulate gyrus, lateral and medial temporal lobe, and occipital lobe as well as caudate and putamen nuclei, after adjusting for age (P < 0.05). Greater baseline 11C-Pittsburgh compound B standard unit value ratio was also associated with greater ventricular expansion rates (P < 0.01) and greater worsening over time in Clinical Dementia Rating Scale, sum of boxes (P = 0.02). In conclusion, in patients with probable dementia with Lewy bodies, higher amyloid-β deposition at baseline is predictive of faster neurodegeneration in the cortex and also in the striatum. This distribution is suggestive of possible interactions among amyloid-β, tau and α-synuclein aggregates, which needs further investigation. Furthermore, higher amyloid-β deposition at baseline predicts a faster clinical decline over time in patients with probable dementia with Lewy bodies.
Collapse
Affiliation(s)
- Lidia Sarro
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA 2 Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthew L Senjem
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA 4 Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Emily S Lundt
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Scott A Przybelski
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J Lowe
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- 7 Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Giancarlo Comi
- 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- 2 Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 3 Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Ronald C Petersen
- 5 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA 6 Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Kejal Kantarci
- 1 Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
84
|
Whitwell JL, Graff-Radford J, Singh TD, Drubach DA, Senjem ML, Spychalla AJ, Tosakulwong N, Lowe VJ, Josephs KA. 18F-FDG PET in Posterior Cortical Atrophy and Dementia with Lewy Bodies. J Nucl Med 2016; 58:632-638. [PMID: 27688479 DOI: 10.2967/jnumed.116.179903] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/08/2016] [Indexed: 11/16/2022] Open
Abstract
Posterior cortical atrophy (PCA) and dementia with Lewy bodies (DLB) have both been associated with occipital lobe hypometabolism on 18F-FDG PET, whereas relative sparing of posterior cingulate metabolism compared with precuneus/cuneus (i.e., cingulate island sign) is a feature of DLB. We aimed to determine whether patterns of hypometabolism or the cingulate island sign differed between PCA and DLB. Methods: Sixteen clinically diagnosed PCA and 13 probable DLB subjects underwent 18F-FDG PET. All PCA subjects showed β-amyloid deposition on PET scanning. Regional hypometabolism was assessed compared with a control cohort (n = 29) using voxel- and region-level analyses in statistical parametric mapping. A ratio of metabolism in the posterior cingulate to precuneus plus cuneus was calculated to assess the cingulate island sign. In addition, the 18F-FDG PET scans were visually assessed to determine whether the cingulate island sign was present in each subject. Results: PCA and DLB showed overlapping patterns of hypometabolism involving the lateral occipital lobe, lingual gyrus, cuneus, precuneus, posterior cingulate, inferior parietal lobe, supramarginal gyrus, striatum, and thalamus. However, DLB showed greater hypometabolism in the medial occipital lobe, orbitofrontal cortex, anterior temporal lobe, and caudate nucleus than PCA, and PCA showed more asymmetric patterns of hypometabolism than DLB. The cingulate island sign was present in both DLB and PCA, although it was more asymmetric in PCA. Conclusion: Regional hypometabolism overlaps to a large degree between PCA and DLB, although the degree of involvement of the frontal and anterior temporal lobes and the presence of asymmetry could be useful in differential diagnosis.
Collapse
Affiliation(s)
| | | | - Tarun D Singh
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, Minnesota.,Department of Information Technology, Mayo Clinic, Rochester, Minnesota; and
| | | | - Nirubol Tosakulwong
- Department of Health Sciences Research (Biostatistics), Mayo Clinic, Rochester, Minnesota
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
85
|
Abstract
Dementia with Lewy bodies (DLB) while common in older age can present a diagnostic challenge to clinicians and is often misdiagnosed as Alzheimer disease (AD). Imaging studies have improved our understanding of the neurobiological changes in DLB during life and how they differ from AD. This has led to significant advances in the development of new techniques, such as dopaminergic imaging, which can aid the clinical diagnosis. Other functional imaging methods also show promise in helping to assess the influence of differing pathologies in DLB, most notably, AD-related and vascular pathology during life. This article will provide an overview of the main imaging findings in DLB.
Collapse
Affiliation(s)
- Rosie Watson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Sean J Colloby
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, The United Kingdom
| |
Collapse
|
86
|
Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, Galluzzi S, Marizzoni M, Frisoni GB. Brain atrophy in Alzheimer's Disease and aging. Ageing Res Rev 2016; 30:25-48. [PMID: 26827786 DOI: 10.1016/j.arr.2016.01.002] [Citation(s) in RCA: 499] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/22/2023]
Abstract
Thanks to its safety and accessibility, magnetic resonance imaging (MRI) is extensively used in clinical routine and research field, largely contributing to our understanding of the pathophysiology of neurodegenerative disorders such as Alzheimer's disease (AD). This review aims to provide a comprehensive overview of the main findings in AD and normal aging over the past twenty years, focusing on the patterns of gray and white matter changes assessed in vivo using MRI. Major progresses in the field concern the segmentation of the hippocampus with novel manual and automatic segmentation approaches, which might soon enable to assess also hippocampal subfields. Advancements in quantification of hippocampal volumetry might pave the way to its broader use as outcome marker in AD clinical trials. Patterns of cortical atrophy have been shown to accurately track disease progression and seem promising in distinguishing among AD subtypes. Disease progression has also been associated with changes in white matter tracts. Recent studies have investigated two areas often overlooked in AD, such as the striatum and basal forebrain, reporting significant atrophy, although the impact of these changes on cognition is still unclear. Future integration of different MRI modalities may further advance the field by providing more powerful biomarkers of disease onset and progression.
Collapse
Affiliation(s)
- Lorenzo Pini
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Pievani
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Martina Bocchetta
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Daniele Altomare
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Bosco
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Enrica Cavedo
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) Hôpital de la Pitié-Salpétrière & Institut du Cerveau et de la Moelle épinière (ICM), UMR S 1127, Hôpital de la Pitié-Salpétrière Paris & CATI Multicenter Neuroimaging Platform, France
| | - Samantha Galluzzi
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Moira Marizzoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy
| | - Giovanni B Frisoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
87
|
Whole-brain patterns of (1)H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies. Transl Psychiatry 2016; 6:e877. [PMID: 27576166 PMCID: PMC5022086 DOI: 10.1038/tp.2016.140] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 02/04/2023] Open
Abstract
Magnetic resonance spectroscopy has demonstrated metabolite changes in neurodegenerative disorders such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB); however, their pattern and relationship to clinical symptoms is unclear. To determine whether the spatial patterns of brain-metabolite changes in AD and DLB are regional or diffused, and to examine whether the key metabolite levels are associated with cognitive and non-cognitive symptoms, we acquired whole-brain spatially resolved 3T magnetic resonance spectroscopic imaging (MRSI) data from subjects with AD (N=36), DLB (N=35) and similarly aged controls (N=35). Voxel-wise measurement of N-acetylaspartate to creatine (NAA/Cr), choline to Cr (Cho/Cr), myo-inositol to Cr (mI/Cr) as well as glutamate and glutamine to Cr (Glx/Cr) ratios were determined using MRSI. Compared with controls, AD and DLB groups showed a significant decrease in most brain metabolites, with NAA/Cr, Cho/Cr and mI/Cr levels being reduced in posterior cingulate, thalamus, frontotemporal areas and basal ganglia. The Glx/Cr level was more widely decreased in DLB (posterior cingulate, hippocampus, temporal regions and caudate) than in AD (only in posterior cingulate). DLB was also associated with increased levels of Cho/Cr, NAA/Cr and mI/Cr in occipital regions. Changes in metabolism in the brain were correlated with cognitive and non-cognitive symptoms in the DLB but not in the AD group. The different patterns between AD and DLB may have implications for improving diagnosis, better understanding disease-specific neurobiology and targeting therapeutics. In addition, the study raised important questions about the role of occipital neuroinflammation and glial activation as well as the glutamatergic treatment in DLB.
Collapse
|
88
|
Blanc F, Colloby SJ, Cretin B, de Sousa PL, Demuynck C, O’Brien JT, Martin-Hunyadi C, McKeith I, Philippi N, Taylor JP. Grey matter atrophy in prodromal stage of dementia with Lewy bodies and Alzheimer's disease. Alzheimers Res Ther 2016; 8:31. [PMID: 27484179 PMCID: PMC4970221 DOI: 10.1186/s13195-016-0198-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/29/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Little is known about the patterns of brain atrophy in prodromal dementia with Lewy bodies (pro-DLB). METHODS In this study, we used SPM8 with diffeomorphic anatomical registration through exponentiated lie algebra to measure grey matter (GM) volume and investigate patterns of GM atrophy in pro-DLB (n = 28) and prodromal Alzheimer's disease (pro-AD) (n = 27) and compared and contrasted them with those in elderly control subjects (n = 33) (P ≤ 0.05 corrected for family-wise error). RESULTS Patients with pro-DLB showed diminished GM volumes of bilateral insulae and right anterior cingulate cortex compared with control subjects. Comparison of GM volume between patients with pro-AD and control subjects showed a more extensive pattern, with volume reductions in temporal (hippocampi and superior and middle gyri), parietal and frontal structures in the former. Direct comparison of prodromal groups suggested that more atrophy was evident in the parietal lobes of patients with pro-AD than patients with pro-DLB. In patients with pro-DLB, we found that visual hallucinations were associated with relative atrophy of the left cuneus. CONCLUSIONS Atrophy in pro-DLB involves the insulae and anterior cingulate cortex, regions rich in von Economo neurons, which we speculate may contribute to the early clinical phenotype of pro-DLB.
Collapse
Affiliation(s)
- Frederic Blanc
- Geriatrics day hospital and neuropsychology unit. Geriatrics department and Neurology service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France
- Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Sean J. Colloby
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Benjamin Cretin
- Geriatrics day hospital and neuropsychology unit. Geriatrics department and Neurology service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France
- Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- Geriatrics day hospital and neuropsychology unit. Geriatrics department and Neurology service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France
| | - John T. O’Brien
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Catherine Martin-Hunyadi
- Geriatrics day hospital and neuropsychology unit. Geriatrics department and Neurology service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France
| | - Ian McKeith
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Nathalie Philippi
- Geriatrics day hospital and neuropsychology unit. Geriatrics department and Neurology service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France
- Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - John-Paul Taylor
- Institute of Neuroscience, Campus for Aging and Vitality, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
89
|
Multimodal EEG-MRI in the differential diagnosis of Alzheimer's disease and dementia with Lewy bodies. J Psychiatr Res 2016; 78:48-55. [PMID: 27060340 PMCID: PMC4866554 DOI: 10.1016/j.jpsychires.2016.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 11/20/2022]
Abstract
Differential diagnosis of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) remains challenging; currently the best discriminator is striatal dopaminergic imaging. However this modality fails to identify 15-20% of DLB cases and thus other biomarkers may be useful. It is recognised electroencephalography (EEG) slowing and relative medial temporal lobe preservation are supportive features of DLB, although individually they lack diagnostic accuracy. Therefore, we investigated whether combined EEG and MRI indices could assist in the differential diagnosis of AD and DLB. Seventy two participants (21 Controls, 30 AD, 21 DLB) underwent resting EEG and 3 T MR imaging. Six EEG classifiers previously generated using support vector machine algorithms were applied to the present dataset. MRI index was derived from medial temporal atrophy (MTA) ratings. Logistic regression analysis identified EEG predictors of AD and DLB. A combined EEG-MRI model was then generated to examine whether there was an improvement in classification compared to individual modalities. For EEG, two classifiers predicted AD and DLB (model: χ(2) = 22.1, df = 2, p < 0.001, Nagelkerke R(2) = 0.47, classification = 77% (AD 87%, DLB 62%)). For MRI, MTA also predicted AD and DLB (model: χ(2) = 6.5, df = 1, p = 0.01, Nagelkerke R(2) = 0.16, classification = 67% (77% AD, 52% DLB). However, a combined EEG-MRI model showed greater prediction in AD and DLB (model: χ(2) = 31.1, df = 3, p < 0.001, Nagelkerke R(2) = 0.62, classification = 90% (93% AD, 86% DLB)). While suggestive and requiring validation, diagnostic performance could be improved by combining EEG and MRI, and may represent an alternative to dopaminergic imaging.
Collapse
|
90
|
Cho KH, Cho YJ, Lee BI, Heo K. Atrophy of the pedunculopontine nucleus region in patients with sleep-predominant seizures: A voxel-based morphometry study. Epilepsia 2016; 57:e151-4. [PMID: 27287030 DOI: 10.1111/epi.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 11/28/2022]
Abstract
Non-rapid eye movement (NREM) sleep increases interictal epileptiform discharges and frequency of seizures, whereas REM sleep suppresses them. The pedunculopontine nucleus (PPN), one of the REM sleep-modulating structures, is postulated to have a potent antiepileptogenic role. We asked if patients with sleep-predominant seizures (SPS) show volume changes in the region of the PPN compared to those with seizures occurring during awake state only (nSPS). The volume of the PPN region was assessed in patients with SPS, those with nSPS, and healthy volunteers, through voxel-based morphometry and automated, nonbiased region of interest (ROI) analysis of T1 magnetic resonance (MR) images. The volume of PPN region was statistically smaller in patients with SPS (n = 33) than in those with nSPS (n = 40) and healthy controls (n = 30) after controlling for covariates. These results suggest that a structural change in the PPN may be associated with sleep-predominant timing of seizure occurrence. Our findings might help understand the intervening pathomechanism that lies between the human sleep-wake cycle and epilepsy.
Collapse
Affiliation(s)
- Kyoo Ho Cho
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yang-Je Cho
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byung In Lee
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Heo
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
91
|
Grothe MJ, Heinsen H, Amaro E, Grinberg LT, Teipel SJ. Cognitive Correlates of Basal Forebrain Atrophy and Associated Cortical Hypometabolism in Mild Cognitive Impairment. Cereb Cortex 2016; 26:2411-2426. [PMID: 25840425 PMCID: PMC4869802 DOI: 10.1093/cercor/bhv062] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Degeneration of basal forebrain (BF) cholinergic nuclei is associated with cognitive decline, and this effect is believed to be mediated by neuronal dysfunction in the denervated cortical areas. MRI-based measurements of BF atrophy are increasingly being used as in vivo surrogate markers for cholinergic degeneration, but the functional implications of reductions in BF volume are not well understood. We used high-resolution MRI, fluorodeoxyglucose-positron emission tomography (PET), and neuropsychological test data of 132 subjects with mild cognitive impairment (MCI) and 177 cognitively normal controls to determine associations between BF atrophy, cortical hypometabolism, and cognitive deficits. BF atrophy in MCI correlated with both impaired memory function and attentional control deficits, whereas hippocampus volume was more specifically associated with memory deficits. BF atrophy was also associated with widespread cortical hypometabolism, and path analytic models indicated that hypometabolism in domain-specific cortical networks mediated the association between BF volume and cognitive dysfunction. The presence of cortical amyloid pathology, as assessed using AV45-PET, did not significantly interact with the observed associations. These data underline the potential of multimodal imaging markers to study structure-function-cognition relationships in the living human brain and provide important in vivo evidence for an involvement of the human BF in cortical activity and cognitive function.
Collapse
Affiliation(s)
- Michel J. Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Helmut Heinsen
- Laboratory of Morphological Brain Research, Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | | | - Lea T. Grinberg
- Aging Brain Study Group, LIM-22, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- UCSF Memory and Aging Center, University of California – San Francisco, San Francisco, CA, USA
| | - Stefan J. Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
92
|
Subcortical volume changes in dementia with Lewy bodies and Alzheimer's disease. A comparison with healthy aging. Int Psychogeriatr 2016; 28:529-36. [PMID: 26572170 DOI: 10.1017/s1041610215001805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Differentiating Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), two of the commonest forms of dementia in older age, remains a diagnostic challenge. To assist with better understanding of the differences between the conditions during life, we assessed limbic and subcortical brain volumes in AD, DLB, and healthy older individuals using magnetic resonance imaging (MRI), with the hypothesis that when compared with controls, subcortical volumes would be reduced to a greater extent in DLB than in AD. METHODS One hundred participants (35 healthy controls, 32 AD, and 33 DLB) underwent 3 Tesla T1 weighted MR scanning. Volumes were automatically segmented for each participant using FreeSurfer, then expressed as a percentage of their total intracranial volumes. Group effects were assessed using multivariate analysis of covariance, controlling for age and gender. RESULTS Significant group effects were apparent among subcortical brain volumes (F 28,162 = 4.8, p < 0.001; Wilk's Λ = 0.30, partial η 2 = 0.45), while univariate tests showed differences in all volumetric measures (p AD, p < 0.008). CONCLUSIONS For similar levels of dementia severity, DLB appears to have greater involvement of subcortical brain atrophy than AD. Further investigation of the subcortical brain structures in DLB is warranted to fully understand their neurobiological role in this disease.
Collapse
|
93
|
Narayanan L, Murray AD. What can imaging tell us about cognitive impairment and dementia? World J Radiol 2016; 8:240-254. [PMID: 27029053 PMCID: PMC4807333 DOI: 10.4329/wjr.v8.i3.240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/28/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dementia is a contemporary global health issue with far reaching consequences, not only for affected individuals and their families, but for national and global socio-economic conditions. The hallmark feature of dementia is that of irreversible cognitive decline, usually affecting memory, and impaired activities of daily living. Advances in healthcare worldwide have facilitated longer life spans, increasing the risks of developing cognitive decline and dementia in late life. Dementia remains a clinical diagnosis. The role of structural and molecular neuroimaging in patients with dementia is primarily supportive role rather than diagnostic, American and European guidelines recommending imaging to exclude treatable causes of dementia, such as tumor, hydrocephalus or intracranial haemorrhage, but also to distinguish between different dementia subtypes, the commonest of which is Alzheimer’s disease. However, this depends on the availability of these imaging techniques at individual centres. Advanced magnetic resonance imaging (MRI) techniques, such as functional connectivity MRI, diffusion tensor imaging and magnetic resonance spectroscopy, and molecular imaging techniques, such as 18F fluoro-deoxy glucose positron emission tomography (PET), amyloid PET, tau PET, are currently within the realm of dementia research but are available for clinical use. Increasingly the research focus is on earlier identification of at risk preclinical individuals, for example due to family history. Intervention at the preclinical stages before irreversible brain damage occurs is currently the best hope of reducing the impact of dementia.
Collapse
|
94
|
Heitz C, Noblet V, Phillipps C, Cretin B, Vogt N, Philippi N, Kemp J, de Petigny X, Bilger M, Demuynck C, Martin-Hunyadi C, Armspach JP, Blanc F. Cognitive and affective theory of mind in dementia with Lewy bodies and Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2016; 8:10. [PMID: 26979460 PMCID: PMC4793654 DOI: 10.1186/s13195-016-0179-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/29/2016] [Indexed: 11/10/2022]
Abstract
Background Theory of mind (ToM) refers to the ability to attribute mental states, thoughts (cognitive component) or feelings (affective component) to others. This function has been studied in many neurodegenerative diseases; however, to our knowledge, no studies investigating ToM in dementia with Lewy bodies (DLB) have been published. The aim of our study was to assess ToM in patients with DLB and to search for neural correlates of potential deficits. Methods Thirty-three patients with DLB (DLB group) and 15 patients with Alzheimer’s disease (AD group), all in the early stage of the disease, as well as 16 healthy elderly control subjects (HC group), were included in the study. After a global cognitive assessment, we used the Faux Pas Recognition (FPR) test, the Reading the Mind in the Eyes (RME) test and Ekman’s Facial Emotion Recognition test to assess cognitive and affective components of ToM. Patients underwent cerebral 3-T magnetic resonance imaging, and atrophy of grey matter was analysed using voxel-based morphometry. We performed a one-sample t test to investigate the correlation between each ToM score and grey matter volume and a two-sample t test to compare patients with DLB impaired with those non-impaired for each test. Results The DLB group performed significantly worse than the HC group on the FPR test (P = 0.033) and the RME test (P = 0.015). There was no significant difference between the AD group and the HC group or between the DLB group and the AD group. Some brain regions were associated with ToM impairments. The prefrontal cortex, with the inferior frontal cortex and the orbitofrontal cortex, was the main region, but we also found correlations with the temporoparietal junction, the precuneus, the fusiform gyrus and the insula. Conclusions This study is the first one to show early impairments of ToM in DLB. The two cognitive and affective components both appear to be affected in this disease. Among patients with ToM difficulties, we found atrophy in brain regions classically involved in ToM, which reinforces the neuronal network of ToM. Further studies are now needed to better understand the neural basis of such impairment. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0179-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Heitz
- Neuropsychology Unit, Memory Resource and Research Centre (CMRR), Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,ICube Laboratory, IMIS Team, University of Strasbourg, CNRS, FMTS, Strasbourg, France. .,Day Hospital, Memory Resources and Research Centre (CMRR), Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France.
| | - Vincent Noblet
- ICube Laboratory, IMIS Team, University of Strasbourg, CNRS, FMTS, Strasbourg, France
| | - Clélie Phillipps
- Neuropsychology Unit, Memory Resource and Research Centre (CMRR), Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- Neuropsychology Unit, Memory Resource and Research Centre (CMRR), Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,ICube Laboratory, IMIS Team, University of Strasbourg, CNRS, FMTS, Strasbourg, France
| | - Natacha Vogt
- Neuropsychology Unit, Memory Resource and Research Centre (CMRR), Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- Neuropsychology Unit, Memory Resource and Research Centre (CMRR), Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,ICube Laboratory, IMIS Team, University of Strasbourg, CNRS, FMTS, Strasbourg, France
| | - Jennifer Kemp
- Neuropsychology Unit, Memory Resource and Research Centre (CMRR), Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Xavier de Petigny
- Day Hospital, Memory Resources and Research Centre (CMRR), Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| | - Mathias Bilger
- Neuropsychology Unit, Memory Resource and Research Centre (CMRR), Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Demuynck
- Day Hospital, Memory Resources and Research Centre (CMRR), Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Martin-Hunyadi
- Day Hospital, Memory Resources and Research Centre (CMRR), Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| | - Jean-Paul Armspach
- ICube Laboratory, IMIS Team, University of Strasbourg, CNRS, FMTS, Strasbourg, France
| | - Frédéric Blanc
- Neuropsychology Unit, Memory Resource and Research Centre (CMRR), Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,ICube Laboratory, IMIS Team, University of Strasbourg, CNRS, FMTS, Strasbourg, France.,Day Hospital, Memory Resources and Research Centre (CMRR), Department of Geriatrics, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
95
|
Koikkalainen J, Rhodius-Meester H, Tolonen A, Barkhof F, Tijms B, Lemstra AW, Tong T, Guerrero R, Schuh A, Ledig C, Rueckert D, Soininen H, Remes AM, Waldemar G, Hasselbalch S, Mecocci P, van der Flier W, Lötjönen J. Differential diagnosis of neurodegenerative diseases using structural MRI data. NEUROIMAGE-CLINICAL 2016; 11:435-449. [PMID: 27104138 PMCID: PMC4827727 DOI: 10.1016/j.nicl.2016.02.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/02/2016] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. Differential diagnostics of dementias was studied using structural MRI data. 504 patients with both T1 and FLAIR MRIs from five patient classes were evaluated. Different fully automatic quantification methods were compared and combined. Classification accuracy of 70.6% was obtained for 5-class classification problem. Combination of several quantification methods was needed for optimal accuracy.
Collapse
Affiliation(s)
- Juha Koikkalainen
- VTT Technical Research Centre of Finland, Tampere, Finland; Combinostics Ltd., Tampere, Finland.
| | - Hanneke Rhodius-Meester
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Antti Tolonen
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Betty Tijms
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Tong Tong
- Department of Computing, Imperial College London, London, UK
| | | | - Andreas Schuh
- Department of Computing, Imperial College London, London, UK
| | - Christian Ledig
- Department of Computing, Imperial College London, London, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Gunhild Waldemar
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steen Hasselbalch
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Wiesje van der Flier
- Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Jyrki Lötjönen
- VTT Technical Research Centre of Finland, Tampere, Finland; Combinostics Ltd., Tampere, Finland
| |
Collapse
|
96
|
Ciric J, Lazic K, Petrovic J, Kalauzi A, Saponjic J. Age-related disorders of sleep and motor control in the rat models of functionally distinct cholinergic neuropathology. Behav Brain Res 2016; 301:273-86. [DOI: 10.1016/j.bbr.2015.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
|
97
|
Abstract
UNLABELLED Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD.
Collapse
|
98
|
Tagawa R, Hashimoto H, Nakanishi A, Kawarada Y, Muramatsu T, Matsuda Y, Kataoka K, Shimada A, Uchida K, Yoshida A, Higashiyama S, Kawabe J, Kai T, Shiomi S, Mori H, Inoue K. The Relationship Between Medial Temporal Lobe Atrophy and Cognitive Impairment in Patients With Dementia With Lewy Bodies. J Geriatr Psychiatry Neurol 2015; 28:249-54. [PMID: 26071442 DOI: 10.1177/0891988715590210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The relationship between medial temporal lobe atrophy (MTA) and cognitive impairment in patients with dementia with Lewy bodies (DLB) remains unclear. We examined this relationship using voxel-based specific regional analysis system for Alzheimer disease (VSRAD) advance software, which allowed us to quantify the degree of MTA on images obtained from magnetic resonance imaging (MRI) scans. METHODS Thirty-seven patients diagnosed with DLB were recruited and scanned with a 1.5 Tesla MRI scanner. All MRI data were analyzed using VSRAD advance. The target volume of interest (VOI) included the entire region of the entorhinal cortex, hippocampus, and amygdala. The degree of MTA was obtained from the averaged positive z-score (Z score) on the target VOI, with higher scores indicating more severe MTA. Mini-Mental State Examination (MMSE) and the Revised Hasegawa Dementia Scale (HDS-R), which strengthened the measures of memory and language more than MMSE, were used to assess the presence of cognitive impairment. RESULTS A negative correlation was found between the Z score and MMSE total scores or the HDS-R total scores. A stepwise multiple regression analysis performed to adjust the covariate effects of sex, age, the onset age of the disease, duration of DLB, years of education, and donepezil treatment showed that the HDS-R total scores were independently associated with the Z score, whereas MMSE total scores were not. CONCLUSIONS These results suggest that MTA is related to cognitive impairment in patients with DLB, particularly the regions of orientation, immediate and delayed recall, and word fluency.
Collapse
Affiliation(s)
- Ryo Tagawa
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroshi Hashimoto
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Aki Nakanishi
- Department of Neurology and Psychiatry, Osaka City Kousaiin Hospital, Osaka, Japan
| | - Youjirou Kawarada
- Department of Neurology and Psychiatry, Osaka City Kousaiin Hospital, Osaka, Japan
| | - Tomohiro Muramatsu
- Department of Neurology and Psychiatry, Osaka City Kousaiin Hospital, Osaka, Japan
| | - Yasunori Matsuda
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kouhei Kataoka
- Department of Psychiatry, Cocoroa Hospital, Osaka, Japan
| | - Aiko Shimada
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kentaro Uchida
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsushi Yoshida
- Department of Nuclear Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shigeaki Higashiyama
- Department of Nuclear Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Joji Kawabe
- Department of Nuclear Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Toshihiro Kai
- Department of Psychiatry, Osaka City General Hospital, Osaka, Japan
| | - Susumu Shiomi
- Department of Nuclear Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroshi Mori
- Department of Neuroscience, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Koki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
99
|
Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab 2015; 22:761-76. [PMID: 26365177 PMCID: PMC4654127 DOI: 10.1016/j.cmet.2015.08.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is increasingly recognized as a complex neurodegenerative disease beginning decades prior to the cognitive decline. While cognitive deficits remain the cardinal manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in body weight and neuroendocrine functions, are also present, often preceding the cognitive decline. Furthermore, hypothalamic dysfunction can also be a driver of AD pathology. Here we offer a brief appraisal of hypothalamic dysfunction in AD and provide insight into an underappreciated dual role of the hypothalamus as both a culprit and target of AD pathology, as well as into new opportunities for therapeutic interventions and biomarker development.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
100
|
Dąbrowska M, Schinwelski M, Sitek EJ, Muraszko-Klaudel A, Brockhuis B, Jamrozik Z, Sławek J. The role of neuroimaging in the diagnosis of the atypical parkinsonian syndromes in clinical practice. Neurol Neurochir Pol 2015; 49:421-31. [PMID: 26652877 DOI: 10.1016/j.pjnns.2015.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022]
Abstract
Atypical parkinsonian disorders (APD) are a heterogenous group of neurodegenerative diseases such as: progressive supranuclear palsy (PSP), multiple system atrophy (MSA), cortico-basal degeneration (CBD) and dementia with Lewy bodies (DLB). In all of them core symptoms of parkinsonian syndrome are accompanied by many additional clinical features not typical for idiopathic Parkinson's disease (PD) like rapid progression, gaze palsy, apraxia, ataxia, early cognitive decline, dysautonomia and usually poor response to levodopa therapy. In the absence of reliably validated biomarkers the diagnosis is still challenging and mainly based on clinical criteria. However, robust data emerging from routine magnetic resonance imaging (MRI) as well as from many advanced MRI techniques such as: diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), voxel-based morphometry (VBM), susceptibility-weighted imaging (SWI) may help in differential diagnosis. The main aim of this review is to summarize briefly the most important and acknowledged radiological findings of conventional MRI due to its availability in standard clinical settings. Nevertheless, we present shortly other methods of structural (like TCS - transcranial sonography) and functional imaging (like SPECT - single photon emission computed tomography or PET - positron emission tomography) as well as some selected advanced MRI techniques and their potential future applications in supportive role in distinguishing APD.
Collapse
Affiliation(s)
- Magda Dąbrowska
- Neurology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland.
| | - Michał Schinwelski
- Neurology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland; Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | - Emilia J Sitek
- Neurology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland; Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Muraszko-Klaudel
- Radiology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland
| | - Bogna Brockhuis
- Nuclear Medicine Department, Medical University of Gdańsk, Gdańsk, Poland
| | - Zygmunt Jamrozik
- Neurology Department, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Sławek
- Neurology Department, St. Adalbert Hospital, Copernicus Podmiot Leczniczy Sp. z o.o., Gdańsk, Poland; Department of Neurological and Psychiatric Nursing, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|