51
|
Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil 2018; 15:46. [PMID: 29866106 PMCID: PMC5987585 DOI: 10.1186/s12984-018-0383-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/07/2018] [Indexed: 11/30/2022] Open
Abstract
The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.
Collapse
Affiliation(s)
- Roger Gassert
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
| | - Volker Dietz
- Spinal Cord Injury Center, Balgrist University Hospital, 8008, Zurich, Switzerland
| |
Collapse
|
52
|
Schrafl-Altermatt M, Dietz V, Bolliger M. Effect of Locomotor Training on Exhaustion of Leg Muscle Activity in Chronic Complete Spinal Cord Injury. J Neurotrauma 2017; 34:2375-2378. [PMID: 27736315 DOI: 10.1089/neu.2016.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to evaluate the effect of a continuous locomotor training on leg muscle electromyographic (EMG) exhaustion during assisted stepping movements in a patient with motor complete spinal cord injury (SCI). EMG exhaustion and loss of potentials starts to develop in untrained patients at ∼6 months after injury. In the trained patient examined in this study, exhaustion was also observed but occurred with a delay of several months. In contrast to an untrained patient, no more EMG exhaustion was observed in the very chronic stage. At this time (12 years after injury) a basic locomotor pattern of leg muscle activity of reduced amplitude could still be elicited, but it was resistant to exhaustion and unchanged in amplitude after 12 min of assisted stepping. It is suggested that fatigue-resistant motor units prevail at this stage and can still be activated during stepping as a result of the training.
Collapse
Affiliation(s)
| | - Volker Dietz
- Spinal Injury Center, Balgrist University Hospital , Zürich, Switzerland
| | - Marc Bolliger
- Spinal Injury Center, Balgrist University Hospital , Zürich, Switzerland
| |
Collapse
|
53
|
Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat Med 2017; 23:733-741. [PMID: 28459438 PMCID: PMC5716958 DOI: 10.1038/nm.4331] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Blood vessels in the central nervous system (CNS) are controlled by neuronal activity. For example, widespread vessel constriction (vessel tone) is induced by brainstem neurons that release the monoamines serotonin and noradrenaline, and local vessel dilation is induced by glutamatergic neuron activity. Here we examined how vessel tone adapts to the loss of neuron-derived monoamines after spinal cord injury (SCI) in rats. We find that, months after the imposition of SCI, the spinal cord below the site of injury is in a chronic state of hypoxia owing to paradoxical excess activity of monoamine receptors (5-HT1) on pericytes, despite the absence of monoamines. This monoamine-receptor activity causes pericytes to locally constrict capillaries, which reduces blood flow to ischemic levels. Receptor activation in the absence of monoamines results from the production of trace amines (such as tryptamine) by pericytes that ectopically express the enzyme aromatic L-amino acid decarboxylase (AADC), which synthesizes trace amines directly from dietary amino acids (such as tryptophan). Inhibition of monoamine receptors or of AADC, or even an increase in inhaled oxygen, produces substantial relief from hypoxia and improves motoneuron and locomotor function after SCI.
Collapse
|
54
|
Dietz V, Schwab ME. From the Rodent Spinal Cord Injury Model to Human Application: Promises and Challenges. J Neurotrauma 2017; 34:1826-1830. [DOI: 10.1089/neu.2016.4513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Volker Dietz
- Spinal Cord Injury Center, University Hospital Balgrist, Zürich, Switzerland
| | | |
Collapse
|
55
|
Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice. J Neurosci 2017; 37:3568-3587. [PMID: 28264978 DOI: 10.1523/jneurosci.2841-16.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/12/2023] Open
Abstract
Impaired signaling via CX3CR1, the fractalkine receptor, promotes recovery after traumatic spinal contusion injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Here, we tested the hypothesis that CX3CR1-dependent changes in microglia and macrophage functions also will enhance neuroplasticity, at and several segments below the injury epicenter. New data show that in the presence of inflammatory stimuli, CX3CR1-deficient (CX3CR1-/-) microglia and macrophages adopt a reparative phenotype and increase expression of genes that encode neurotrophic and gliogenic proteins. At the lesion epicenter (mid-thoracic spinal cord), the microenvironment created by CX3CR1-/- microglia/macrophages enhances NG2 cell responses, axon sparing, and sprouting of serotonergic axons. In lumbar spinal cord, inflammatory signaling is reduced in CX3CR1-/- microglia. This is associated with reduced dendritic pathology and improved axonal and synaptic plasticity on ventral horn motor neurons. Together, these data indicate that CX3CR1, a microglia-specific chemokine receptor, is a novel therapeutic target for enhancing neuroplasticity and recovery after SCI. Interventions that specifically target CX3CR1 could reduce the adverse effects of inflammation and augment activity-dependent plasticity and restoration of function. Indeed, limiting CX3CR1-dependent signaling could improve rehabilitation and spinal learning.SIGNIFICANCE STATEMENT Published data show that genetic deletion of CX3CR1, a microglia-specific chemokine receptor, promotes recovery after traumatic spinal cord injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Data in the current manuscript indicate that CX3CR1 deletion changes microglia and macrophage function, creating a tissue microenvironment that enhances endogenous repair and indices of neuroplasticity, at and several segments below the injury epicenter. Interventions that specifically target CX3CR1 might be used in the future to reduce the adverse effects of intraspinal inflammation and augment activity-dependent plasticity (e.g., rehabilitation) and restoration of function.
Collapse
|
56
|
Rejc E, Angeli CA, Bryant N, Harkema SJ. Effects of Stand and Step Training with Epidural Stimulation on Motor Function for Standing in Chronic Complete Paraplegics. J Neurotrauma 2016; 34:1787-1802. [PMID: 27566051 DOI: 10.1089/neu.2016.4516] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Individuals affected by motor complete spinal cord injury are unable to stand, walk, or move their lower limbs voluntarily; this diagnosis normally implies severe limitations for functional recovery. We have recently shown that the appropriate selection of epidural stimulation parameters was critical to promoting full-body, weight-bearing standing with independent knee extension in four individuals with chronic clinically complete paralysis. In the current study, we examined the effects of stand training and subsequent step training with epidural stimulation on motor function for standing in the same four individuals. After stand training, the ability to stand improved to different extents in the four participants. Step training performed afterwards substantially impaired standing ability in three of the four individuals. Improved standing ability generally coincided with continuous electromyography (EMG) patterns with constant levels of ground reaction forces. Conversely, poorer standing ability was associated with more variable EMG patterns that alternated EMG bursts and longer periods of negligible activity in most of the muscles. Stand and step training also differentially affected the evoked potentials amplitude modulation induced by sitting-to-standing transition. Finally, stand and step training with epidural stimulation were not sufficient to improve motor function for standing without stimulation. These findings show that the spinal circuitry of motor complete paraplegics can generate motor patterns effective for standing in response to task-specific training with optimized stimulation parameters. Conversely, step training can lead to neural adaptations resulting in impaired motor function for standing.
Collapse
Affiliation(s)
- Enrico Rejc
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Claudia A Angeli
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,3 Frazier Rehab Institute , Kentucky One Health, Louisville, Kentucky
| | - Nicole Bryant
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky
| | - Susan J Harkema
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky.,3 Frazier Rehab Institute , Kentucky One Health, Louisville, Kentucky
| |
Collapse
|
57
|
Sozzi S, Nardone A, Schieppati M. Calibration of the Leg Muscle Responses Elicited by Predictable Perturbations of Stance and the Effect of Vision. Front Hum Neurosci 2016; 10:419. [PMID: 27625599 PMCID: PMC5003929 DOI: 10.3389/fnhum.2016.00419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/08/2016] [Indexed: 12/05/2022] Open
Abstract
Motor adaptation due to task practice implies a gradual shift from deliberate control of behavior to automatic processing, which is less resource- and effort-demanding. This is true both for deliberate aiming movements and for more stereotyped movements such as locomotion and equilibrium maintenance. Balance control under persisting critical conditions would require large conscious and motor effort in the absence of gradual modification of the behavior. We defined time-course of kinematic and muscle features of the process of adaptation to repeated, predictable perturbations of balance eliciting both reflex and anticipatory responses. Fifty-nine sinusoidal (10 cm, 0.6 Hz) platform displacement cycles were administered to 10 subjects eyes-closed (EC) and eyes-open (EO). Head and Center of Mass (CoM) position, ankle angle and Tibialis Anterior (TA) and Soleus (Sol) EMG were assessed. EMG bursts were classified as reflex or anticipatory based on the relationship between burst amplitude and ankle angular velocity. Muscle activity decreased over time, to a much larger extent for TA than Sol. The attenuation was larger for the reflex than the anticipatory responses. Regardless of muscle activity attenuation, latency of muscle bursts and peak-to-peak CoM displacement did not change across perturbation cycles. Vision more than doubled speed and the amount of EMG adaptation particularly for TA activity, rapidly enhanced body segment coordination, and crucially reduced head displacement. The findings give new insight on the mode of amplitude- and time-modulation of motor output during adaptation in a balancing task, advocate a protocol for assessing flexibility of balance strategies, and provide a reference for addressing balance problems in patients with movement disorders.
Collapse
Affiliation(s)
- Stefania Sozzi
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCCS) Pavia, Italy
| | - Antonio Nardone
- Posture and Movement Laboratory, Physical Medicine and Rehabilitation, Fondazione Salvatore Maugeri (IRCCS)Veruno, Italy; Department of Translational Medicine, University of Eastern PiedmontNovara, Italy
| | - Marco Schieppati
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCCS)Pavia, Italy; Department of Public Health, Experimental and Forensic Medicine, University of PaviaPavia, Italy
| |
Collapse
|
58
|
Awai L, Curt A. Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance. J Neurotrauma 2016; 33:1428-35. [DOI: 10.1089/neu.2015.4154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
59
|
Osuna-Carrasco LP, López-Ruiz JR, Mendizabal-Ruiz EG, De la Torre-Valdovinos B, Bañuelos-Pineda J, Jiménez-Estrada I, Dueñas-Jiménez SH. Quantitative analysis of hindlimbs locomotion kinematics in spinalized rats treated with Tamoxifen plus treadmill exercise. Neuroscience 2016; 333:151-61. [PMID: 27450566 DOI: 10.1016/j.neuroscience.2016.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022]
Abstract
Locomotion recovery after a spinal cord injury (SCI) includes axon regeneration, myelin preservation and increased plasticity in propriospinal and descending spinal circuitries. The combined effects of tamoxifen and exercise after a SCI were analyzed in this study to determine whether the combination of both treatments induces the best outcome in locomotion recovery. In this study, the penetrating injury was provoked by a sharp projectile that penetrates through right dorsal and ventral portions of the T13-L1 spinal segments, affecting propriospinal and descending/ascending tracts. Intraperitoneal application of Tamoxifen and a treadmill exercise protocol, as rehabilitation therapies, separately or combined, were used. To evaluate the functional recovery, angular patterns of the hip, knee and ankle joints as well as the leg pendulum-like movement (PLM) were measured during the unrestricted gait of treated and untreated (UT) animals, previously and after the traumatic injury (15 and 30days post-injury (dpi)). A pattern (curve) comparison analysis was made by using a locally designed Matlab script that determines the Frechet dissimilarity. The SCI magnitude was assessed by qualitative and quantitative histological analysis of the injury site 30days after SCI. Our results showed that all treated groups had an improvement in hindlimbs kinematics compared to the UT group, which showed a poor gait locomotion recovery throughout the rehabilitation period. The group with the combined treatment (tamoxifen+exercise (TE)) presented the best outcome. In conclusion, tamoxifen and treadmill exercise treatments are complementary therapies for the functional recovery of gait locomotion in hemi-spinalized rats.
Collapse
Affiliation(s)
- L P Osuna-Carrasco
- Department of Neuroscience, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - J R López-Ruiz
- Department of Neuroscience, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | - J Bañuelos-Pineda
- Department of Veterinary Medicine, CUCBA, Universidad de Guadalajara, Mexico
| | - I Jiménez-Estrada
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, IPN, México City, Mexico
| | - S H Dueñas-Jiménez
- Department of Neuroscience, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.
| |
Collapse
|
60
|
Abstract
In the rehabilitation of a patient suffering a spinal cord injury (SCI), the exploitation of neuroplasticity is well established. It can be facilitated through the training of functional movements with technical assistance as needed and can improve outcome after an SCI. The success of such training in individuals with incomplete SCI critically depends on the presence of physiological proprioceptive input to the spinal cord leading to meaningful muscle activations during movement performances. Some actual preclinical approaches to restore function by compensating for the loss of descending input to spinal networks following complete/incomplete SCI are critically discussed in this report. Electrical and pharmacological stimulation of spinal neural networks is still in the experimental stage, and despite promising repair studies in animal models, translations to humans up to now have not been convincing. It is possible that a combination of techniques targeting the promotion of axonal regeneration is necessary to advance the restoration of function. In the future, refinement of animal models according to clinical conditions and requirements may contribute to greater translational success.
Collapse
Affiliation(s)
- Volker Dietz
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, Zürich, CH-8008, Switzerland
| |
Collapse
|
61
|
Friedli L, Rosenzweig ES, Barraud Q, Schubert M, Dominici N, Awai L, Nielson JL, Musienko P, Nout-Lomas Y, Zhong H, Zdunowski S, Roy RR, Strand SC, van den Brand R, Havton LA, Beattie MS, Bresnahan JC, Bézard E, Bloch J, Edgerton VR, Ferguson AR, Curt A, Tuszynski MH, Courtine G. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med 2016; 7:302ra134. [PMID: 26311729 DOI: 10.1126/scitranslmed.aac5811] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species have not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than did rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys but nearly absent in rats. Our results uncover pronounced interspecies differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury reemphasizes the importance of primate models for designing clinically relevant treatments.
Collapse
Affiliation(s)
- Lucia Friedli
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Ephron S Rosenzweig
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0662, USA
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Nadia Dominici
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland. MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, 1081 BT Amsterdam, Netherlands
| | - Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Jessica L Nielson
- Department of Neurosurgery, University of California, San Francisco (UCSF), San Francisco, CA 94122, USA
| | - Pavel Musienko
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland. Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yvette Nout-Lomas
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Hui Zhong
- Department of Integrative Biology and Physiology and Brain Research Center, University of California, Los Angeles (UCLA), Los Angeles, CA 900095-7246, USA
| | - Sharon Zdunowski
- Department of Integrative Biology and Physiology and Brain Research Center, University of California, Los Angeles (UCLA), Los Angeles, CA 900095-7246, USA
| | - Roland R Roy
- Department of Integrative Biology and Physiology and Brain Research Center, University of California, Los Angeles (UCLA), Los Angeles, CA 900095-7246, USA
| | - Sarah C Strand
- California National Primate Research Center, University of California, Davis, Davis, CA 95616-8542, USA
| | - Rubia van den Brand
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1769, USA
| | | | | | - Erwan Bézard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France. CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jocelyne Bloch
- Clinical Neuroscience, University Hospital of Vaud (CHUV), 1011 Lausanne, Switzerland
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology and Brain Research Center, University of California, Los Angeles (UCLA), Los Angeles, CA 900095-7246, USA
| | - Adam R Ferguson
- Department of Neurosurgery, University of California, San Francisco (UCSF), San Francisco, CA 94122, USA
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0662, USA. Veterans Administration Medical Center, San Diego, CA 92161, USA
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland. Clinical Neuroscience, University Hospital of Vaud (CHUV), 1011 Lausanne, Switzerland.
| |
Collapse
|
62
|
Wenger N, Moraud EM, Raspopovic S, Bonizzato M, DiGiovanna J, Musienko P, Morari M, Micera S, Courtine G. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med 2016; 6:255ra133. [PMID: 25253676 DOI: 10.1126/scitranslmed.3008325] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders.
Collapse
Affiliation(s)
- Nikolaus Wenger
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Eduardo Martin Moraud
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland. Automatic Control Laboratory, Swiss Federal Institute of Technology (ETHZ), Zurich CH-8092, Switzerland
| | - Stanisa Raspopovic
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland. The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa IT-56025, Italy
| | - Marco Bonizzato
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Jack DiGiovanna
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Pavel Musienko
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland. Pavlov Institute of Physiology, St. Petersburg RU-100034, Russia
| | - Manfred Morari
- Automatic Control Laboratory, Swiss Federal Institute of Technology (ETHZ), Zurich CH-8092, Switzerland
| | - Silvestro Micera
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland. The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa IT-56025, Italy
| | - Grégoire Courtine
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
63
|
Ganzer PD, Meyers EC, Sloan AM, Maliakkal R, Ruiz A, Kilgard MP, Robert LR. Awake behaving electrophysiological correlates of forelimb hyperreflexia, weakness and disrupted muscular synchronization following cervical spinal cord injury in the rat. Behav Brain Res 2016; 307:100-11. [PMID: 27033345 DOI: 10.1016/j.bbr.2016.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 01/22/2023]
Abstract
Spinal cord injury usually occurs at the level of the cervical spine and results in profound impairment of forelimb function. In this study, we recorded awake behaving intramuscular electromyography (EMG) from the biceps and triceps muscles of the impaired forelimb during volitional and reflexive forelimb movements before and after unilateral cervical spinal cord injury (cSCI) in rats. C5/C6 hemicontusion reduced volitional forelimb strength by more than 50% despite weekly rehabilitation for one month post-injury. Triceps EMG during volitional strength assessment was reduced by more than 60% following injury, indicating reduced descending drive. Biceps EMG during reflexive withdrawal from a thermal stimulus was increased by 500% following injury, indicating flexor withdrawal hyperreflexia. The reduction in volitional forelimb strength was significantly correlated with volitional and reflexive biceps EMG activity. Our results support the hypothesis that biceps hyperreflexia and descending volitional drive both significantly contribute to forelimb strength deficits after cSCI and provide new insight into dynamic muscular dysfunction after cSCI. The use of multiple automated quantitative measures of forelimb dysfunction in the rodent cSCI model will likely aid the search for effective regenerative, pharmacological, and neuroprosthetic treatments for spinal cord injury.
Collapse
Affiliation(s)
- Patrick Daniel Ganzer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Eric Christopher Meyers
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Andrew Michael Sloan
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Reshma Maliakkal
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Andrea Ruiz
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Michael Paul Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - LeMoine Rennaker Robert
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
64
|
Zhao P, Hill M, Liu S, Chen L, Bangalore L, Waxman SG, Tan AM. Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker. J Neurophysiol 2016; 115:2893-910. [PMID: 26936986 DOI: 10.1152/jn.01057.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a significant complication following spinal cord injury (SCI) with few effective treatments. Drug development for neuropathic pain often fails because preclinical studies do not always translate well to clinical conditions. Identification of biological characteristics predictive of disease state or drug responsiveness could facilitate more effective clinical translation. Emerging evidence indicates a strong correlation between dendritic spine dysgenesis and neuropathic pain. Because dendritic spines are located on dorsal horn neurons within the spinal cord nociceptive system, dendritic spine remodeling provides a unique opportunity to understand sensory dysfunction after SCI. In this study, we provide support for the postulate that dendritic spine profiles can serve as biomarkers for neuropathic pain. We show that dendritic spine profiles after SCI change to a dysgenic state that is characteristic of neuropathic pain in a Rac1-dependent manner. Suppression of the dysgenic state through inhibition of Rac1 activity is accompanied by attenuation of neuropathic pain. Both dendritic spine dysgenesis and neuropathic pain return when inhibition of Rac1 activity is lifted. These findings suggest the utility of dendritic spines as structural biomarkers for neuropathic pain.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Myriam Hill
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Lubin Chen
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
65
|
Abnormal cutaneous flexor reflex activity during controlled isometric plantarflexion in human spinal cord injury spasticity syndrome. Spinal Cord 2016; 54:687-94. [PMID: 26902460 DOI: 10.1038/sc.2016.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/18/2015] [Accepted: 01/02/2016] [Indexed: 11/09/2022]
|
66
|
Rehabilitation-Dependent Neural Plasticity After Spinal Cord Injury. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
67
|
Lane BJ. A leech model for homeostatic plasticity and motor network recovery after loss of descending inputs. J Neurophysiol 2015; 115:1752-4. [PMID: 26424582 DOI: 10.1152/jn.00851.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 01/24/2023] Open
Abstract
Motor networks below the site of spinal cord injury (SCI) and their reconfiguration after loss of central inputs are poorly understood but remain of great interest in SCI research. Harley et al. (J Neurophysiol 113: 3610-3622, 2015) report a striking locomotor recovery paradigm in the leech Hirudo verbena with features that are functionally analogous to SCI. They propose that this well-established neurophysiological system could potentially be repurposed to provide a complementary model to investigate basic principles of homeostatic compensation relevant to SCI research.
Collapse
Affiliation(s)
- Brian J Lane
- Department of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
68
|
Awai L, Bolliger M, Ferguson AR, Courtine G, Curt A. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury. Neurorehabil Neural Repair 2015; 30:562-72. [PMID: 26428035 DOI: 10.1177/1545968315600524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Clinical trials in spinal cord injury (SCI) primarily rely on simplified outcome metrics (ie, speed, distance) to obtain a global surrogate for the complex alterations of gait control. However, these assessments lack sufficient sensitivity to identify specific patterns of underlying impairment and to target more specific treatment interventions. Objective To disentangle the differential control of gait patterns following SCI beyond measures of time and distance. Methods The gait of 22 individuals with motor-incomplete SCI and 21 healthy controls was assessed using a high-resolution 3-dimensional motion tracking system and complemented by clinical and electrophysiological evaluations applying unbiased multivariate analysis. Results Motor-incomplete SCI patients showed varying degrees of spinal cord integrity (spinal conductivity) with severe limitations in walking speed and altered gait patterns. Principal component (PC) analysis applied on all the collected data uncovered robust coherence between parameters related to walking speed, distortion of intralimb coordination, and spinal cord integrity, explaining 45% of outcome variance (PC 1). Distinct from the first PC, the modulation of gait-cycle variables (step length, gait-cycle phases, cadence; PC 2) remained normal with respect to regained walking speed, whereas hip and knee ranges of motion were distinctly altered with respect to walking speed (PC 3). Conclusions In motor-incomplete SCI, distinct clusters of discretely controlled gait parameters can be discerned that refine the evaluation of gait impairment beyond outcomes of walking speed and distance. These findings are specifically different from that in other neurological disorders (stroke, Parkinson) and are more discrete at targeting and disentangling the complex effects of interventions to improve walking outcome following motor-incomplete SCI.
Collapse
Affiliation(s)
- Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Adam R Ferguson
- Brain and Spinal Injury Center (BASIC), University of California - San Francisco (UCSF), CA, USA
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
69
|
Rejc E, Angeli C, Harkema S. Effects of Lumbosacral Spinal Cord Epidural Stimulation for Standing after Chronic Complete Paralysis in Humans. PLoS One 2015. [PMID: 26207623 PMCID: PMC4514797 DOI: 10.1371/journal.pone.0133998] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sensory and motor complete spinal cord injury (SCI) has been considered functionally complete resulting in permanent paralysis with no recovery of voluntary movement, standing or walking. Previous findings demonstrated that lumbosacral spinal cord epidural stimulation can activate the spinal neural networks in one individual with motor complete, but sensory incomplete SCI, who achieved full body weight-bearing standing with independent knee extension, minimal self-assistance for balance and minimal external assistance for facilitating hip extension. In this study, we showed that two clinically sensory and motor complete participants were able to stand over-ground bearing full body-weight without any external assistance, using their hands to assist balance. The two clinically motor complete, but sensory incomplete participants also used minimal external assistance for hip extension. Standing with the least amount of assistance was achieved with individual-specific stimulation parameters, which promoted overall continuous EMG patterns in the lower limbs’ muscles. Stimulation parameters optimized for one individual resulted in poor standing and additional need of external assistance for hip and knee extension in the other participants. During sitting, little or negligible EMG activity of lower limb muscles was induced by epidural stimulation, showing that the weight-bearing related sensory information was needed to generate sufficient EMG patterns to effectively support full weight-bearing standing. In general, electrode configurations with cathodes selected in the caudal region of the array at relatively higher frequencies (25–60 Hz) resulted in the more effective EMG patterns for standing. These results show that human spinal circuitry can generate motor patterns effective for standing in the absence of functional supraspinal connections; however the appropriate selection of stimulation parameters is critical.
Collapse
Affiliation(s)
- Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Claudia Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Frazier Rehab Institute, Kentucky One Health, Louisville, Kentucky, United States of America
| | - Susan Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Frazier Rehab Institute, Kentucky One Health, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
70
|
Filli L, Schwab ME. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regen Res 2015; 10:509-13. [PMID: 26170799 PMCID: PMC4424731 DOI: 10.4103/1673-5374.155425] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 12/22/2022] Open
Abstract
Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Linard Filli
- Laboratory for Sensorimotor Function, Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
71
|
Hamood AW, Marder E. Consequences of acute and long-term removal of neuromodulatory input on the episodic gastric rhythm of the crab Cancer borealis. J Neurophysiol 2015; 114:1677-92. [PMID: 26156388 DOI: 10.1152/jn.00536.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023] Open
Abstract
For decades, the episodic gastric rhythm of the crustacean stomatogastric nervous system (STNS) has served as an important model system for understanding the generation of rhythmic motor behaviors. Here we quantitatively describe many features of the gastric rhythm of the crab Cancer borealis under several conditions. First, we analyzed spontaneous gastric rhythms produced by freshly dissected preparations of the STNS, including the cycle frequency and phase relationships among gastric units. We find that phase is relatively conserved across frequency, similar to the pyloric rhythm. We also describe relationships between these two rhythms, including a significant gastric/pyloric frequency correlation. We then performed continuous, days-long extracellular recordings of gastric activity from preparations of the STNS in which neuromodulatory inputs to the stomatogastric ganglion were left intact and also from preparations in which these modulatory inputs were cut (decentralization). This allowed us to provide quantitative descriptions of variability and phase conservation within preparations across time. For intact preparations, gastric activity was more variable than pyloric activity but remained relatively stable across 4-6 days, and many significant correlations were found between phase and frequency within animals. Decentralized preparations displayed fewer episodes of gastric activity, with altered phase relationships, lower frequencies, and reduced coordination both among gastric units and between the gastric and pyloric rhythms. Together, these results provide insight into the role of neuromodulation in episodic pattern generation and the extent of animal-to-animal variability in features of spontaneously occurring gastric rhythms.
Collapse
Affiliation(s)
- Albert W Hamood
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
72
|
Overexpression of Sox11 promotes corticospinal tract regeneration after spinal injury while interfering with functional recovery. J Neurosci 2015; 35:3139-45. [PMID: 25698749 DOI: 10.1523/jneurosci.2832-14.2015] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Embryonic neurons, peripheral neurons, and CNS neurons in zebrafish respond to axon injury by initiating pro-regenerative transcriptional programs that enable axons to extend, locate appropriate targets, and ultimately contribute to behavioral recovery. In contrast, many long-distance projection neurons in the adult mammalian CNS, notably corticospinal tract (CST) neurons, display a much lower regenerative capacity. To promote CNS repair, a long-standing goal has been to activate pro-regenerative mechanisms that are normally missing from injured CNS neurons. Sox11 is a transcription factor whose expression is common to a many types of regenerating neurons, but it is unknown whether suboptimal Sox11 expression contributes to low regenerative capacity in the adult mammalian CNS. Here we show in adult mice that dorsal root ganglion neurons (DRGs) and CST neurons fail to upregulate Sox11 after spinal axon injury. Furthermore, forced viral expression of Sox11 reduces axonal dieback of DRG axons, and promotes CST sprouting and regenerative axon growth in both acute and chronic injury paradigms. In tests of forelimb dexterity, however, Sox11 overexpression in the cortex caused a modest but consistent behavioral impairment. These data identify Sox11 as a key transcription factor that can confer an elevated innate regenerative capacity to CNS neurons. The results also demonstrate an unexpected dissociation between axon growth and behavioral outcome, highlighting the need for additional strategies to optimize the functional output of stimulated neurons.
Collapse
|
73
|
Harley CM, Reilly MG, Stewart C, Schlegel C, Morley E, Puhl JG, Nagel C, Crisp KM, Mesce KA. Compensatory plasticity restores locomotion after chronic removal of descending projections. J Neurophysiol 2015; 113:3610-22. [PMID: 25787951 DOI: 10.1152/jn.00135.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/16/2015] [Indexed: 01/17/2023] Open
Abstract
Homeostatic plasticity is an important attribute of neurons and their networks, enabling functional recovery after perturbation. Furthermore, the directed nature of this plasticity may hold a key to the restoration of locomotion after spinal cord injury. Here we studied the recovery of crawling in the leech Hirudo verbana after descending cephalic fibers were surgically separated from crawl central pattern generators shown previously to be regulated by dopamine. We observed that immediately after nerve cord transection leeches were unable to crawl, but remarkably, after a day to weeks, animals began to show elements of crawling and intersegmental coordination. Over a similar time course, excessive swimming due to the loss of descending inhibition returned to control levels. Additionally, removal of the brain did not prevent crawl recovery, indicating that connectivity of severed descending neurons was not essential. After crawl recovery, a subset of animals received a second transection immediately below the anterior-most ganglion remaining. Similar to their initial transection, a loss of crawling with subsequent recovery was observed. These data, in recovered individuals, support the idea that compensatory plasticity directly below the site of injury is essential for the initiation and coordination of crawling. We maintain that the leech provides a valuable model to understand the neural mechanisms underlying locomotor recovery after injury because of its experimental accessibility, segmental organization, and dependence on higher-order control involved in the initiation, modulation, and coordination of locomotor behavior.
Collapse
Affiliation(s)
- Cynthia M Harley
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Melissa G Reilly
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Christopher Stewart
- Department of Biology and Neuroscience Program, Saint Olaf College, Northfield, Minnesota
| | - Chantel Schlegel
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Emma Morley
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Joshua G Puhl
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota; and
| | - Christian Nagel
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Kevin M Crisp
- Department of Biology and Neuroscience Program, Saint Olaf College, Northfield, Minnesota
| | - Karen A Mesce
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota; Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota; and
| |
Collapse
|
74
|
Stark C, Hoyer-Kuhn HK, Semler O, Hoebing L, Duran I, Cremer R, Schoenau E. Neuromuscular training based on whole body vibration in children with spina bifida: a retrospective analysis of a new physiotherapy treatment program. Childs Nerv Syst 2015; 31:301-9. [PMID: 25370032 DOI: 10.1007/s00381-014-2577-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Spina bifida is the most common congenital cause of spinal cord lesions resulting in paralysis and secondary conditions like osteoporosis due to immobilization. Physiotherapy is performed for optimizing muscle function and prevention of secondary conditions. Therefore, training of the musculoskeletal system is one of the major aims in the rehabilitation of children with spinal cord lesions. INTERVENTION AND METHODS The neuromuscular physiotherapy treatment program Auf die Beine combines 6 months of home-based whole body vibration (WBV) with interval blocks at the rehabilitation center: 13 days of intensive therapy at the beginning and 6 days after 3 months. Measurements are taken at the beginning (M0), after 6 months of training (M6), and after a 6-month follow-up period (M12). Gait parameters are assessed by ground reaction force and motor function by the Gross Motor Function Measurement (GMFM-66). Sixty children (mean age 8.71 ± 4.7 years) who participated in the program until February 2014 were retrospectively analyzed. RESULTS Walking velocity improved significantly by 0.11 m/s (p = 0.0026) and mobility (GMFM-66) by 2.54 points (p = 0.001) after the training. All changes at follow-up were not significant, but significant changes were observed after the training period. Decreased contractures were observed with increased muscle function. CONCLUSION Significant improvements in motor function were observed after the active training period of the new neuromuscular training concept. This first analysis of the new neuromuscular rehabilitation concept Auf die Beine showed encouraging results for a safe and efficient physiotherapy treatment program which increases motor function in children with spina bifida.
Collapse
Affiliation(s)
- C Stark
- Children's Hospital, University of Cologne, Cologne, Germany,
| | | | | | | | | | | | | |
Collapse
|
75
|
Becker MI, Parker D. Changes in functional properties and 5-HT modulation above and below a spinal transection in lamprey. Front Neural Circuits 2015; 8:148. [PMID: 25653594 PMCID: PMC4299445 DOI: 10.3389/fncir.2014.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022] Open
Abstract
In addition to the disruption of neural function below spinal cord injuries (SCI), there also can be changes in neuronal properties above and below the lesion site. The relevance of these changes is generally unclear, but they must be understood if we are to provide rational interventions. Pharmacological approaches to improving locomotor function have been studied extensively, but it is still unclear what constitutes an optimal approach. Here, we have used the lamprey to compare the modulatory effects of 5-HT and lesion-induced changes in cellular and synaptic properties in unlesioned and lesioned animals. While analyses typically focus on the sub-lesion spinal cord, we have also examined effects above the lesion to see if there are changes here that could potentially contribute to the functional recovery. Cellular and synaptic properties differed in unlesioned and lesioned spinal cords and above and below the lesion site. The cellular and synaptic modulatory effects of 5-HT also differed in lesioned and unlesioned animals, again in region-specific ways above and below the lesion site. A role for 5-HT in promoting recovery was suggested by the potential for improvement in locomotor activity when 5-HT was applied to poorly recovered animals, and by the consistent failure of animals to recover when they were incubated in PCPA to deplete 5-HT. However, PCPA did not affect swimming in animals that had already recovered, suggesting a difference in 5-HT effects after lesioning. These results show changes in 5-HT modulation and cellular and synaptic properties after recovery from a spinal cord transection. Importantly, effects are not confined to the sub-lesion spinal cord but also occur above the lesion site. This suggests that the changes may not simply reflect compensatory responses to the loss of descending inputs, but reflect the need for co-ordinated changes above and below the lesion site. The changes in modulatory effects should be considered in pharmacological approaches to functional recovery, as assumptions based on effects in the unlesioned spinal cord may not be justified.
Collapse
Affiliation(s)
- Matthew I Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|
76
|
Bandaru SP, Liu S, Waxman SG, Tan AM. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J Neurophysiol 2014; 113:1598-615. [PMID: 25505110 DOI: 10.1152/jn.00566.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI.
Collapse
Affiliation(s)
- Samira P Bandaru
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
77
|
Spejo AB, Oliveira ALR. Synaptic rearrangement following axonal injury: Old and new players. Neuropharmacology 2014; 96:113-23. [PMID: 25445484 DOI: 10.1016/j.neuropharm.2014.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Aline Barroso Spejo
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Alexandre L R Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
78
|
Acetylcholine, GABA and neuronal networks: a working hypothesis for compensations in the dystrophic brain. Brain Res Bull 2014; 110:1-13. [PMID: 25445612 DOI: 10.1016/j.brainresbull.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD), a genetic disease arising from a mutation in the dystrophin gene, is characterized by muscle failure and is often associated with cognitive deficits. Studies of the dystrophic brain on the murine mdx model of DMD provide evidence of morphological and functional alterations in the central nervous system (CNS) possibly compatible with the cognitive impairment seen in DMD. However, while some of the alterations reported are a direct consequence of the absence of dystrophin, others seem to be associated only indirectly. In this review we reevaluate the literature in order to formulate a possible explanation for the cognitive impairments associated with DMD. We present a working hypothesis, demonstrated as an integrated neuronal network model, according to which within the cascade of events leading to cognitive impairments there are compensatory mechanisms aimed to maintain functional stability via perpetual adjustments of excitatory and inhibitory components. Such ongoing compensatory response creates continuous perturbations that disrupt neuronal functionality in terms of network efficiency. We have theorized that in this process acetylcholine and network oscillations play a central role. A better understating of these mechanisms could provide a useful diagnostic index of the disease's progression and, perhaps, the correct counterbalance of this process might help to prevent deterioration of the CNS in DMD. Furthermore, the involvement of compensatory mechanisms in the CNS could be extended beyond DMD and possibly help to clarify other physio-pathological processes of the CNS.
Collapse
|
79
|
Chédotal A. Development and plasticity of commissural circuits: from locomotion to brain repair. Trends Neurosci 2014; 37:551-62. [DOI: 10.1016/j.tins.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
|
80
|
Chen M, Zheng B. Axon plasticity in the mammalian central nervous system after injury. Trends Neurosci 2014; 37:583-93. [PMID: 25218468 DOI: 10.1016/j.tins.2014.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
It is widely recognized that severed axons in the adult central nervous system (CNS) have limited capacity to regenerate. However, mounting evidence from studies of CNS injury response and repair is challenging the prevalent view that the adult mammalian CNS is incapable of structural reorganization to adapt to an altered environment. Animal studies demonstrate the potential to achieve significant anatomical repair and functional recovery following CNS injury by manipulating axon growth regulators alone or in combination with activity-dependent strategies. With a growing understanding of the cellular and molecular mechanisms regulating axon plasticity, and the availability of new experimental tools to map detour circuits of functional importance, directing circuit rewiring to promote functional recovery may be achieved.
Collapse
Affiliation(s)
- Meifan Chen
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093-0691, USA
| | - Binhai Zheng
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093-0691, USA.
| |
Collapse
|
81
|
Thomas AM, Seidlits SK, Goodman AG, Kukushliev TV, Hassani DM, Cummings BJ, Anderson AJ, Shea LD. Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury. Integr Biol (Camb) 2014; 6:694-705. [PMID: 24873988 DOI: 10.1039/c4ib00009a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) results in loss of sensory and motor function below the level of injury and has limited available therapies. Multiple channel bridges have been investigated as a means to create a permissive environment for regeneration, with channels supporting axonal growth through the injury. Bridges support robust axon growth and myelination. Here, we investigated the cell types that myelinate axons in the bridges and whether over-expression of trophic factors can enhance myelination. Lentivirus encoding for neurotrophin-3 (NT3), sonic hedgehog (SHH) and the combination of these factors was delivered from bridges implanted into a lateral hemisection defect at T9/T10 in mice, and the response of endogenous progenitor cells within the spinal cord was investigated. Relative to control, the localized, sustained expression of these factors significantly increased growth of regenerating axons into the bridge and enhanced axon myelination 8 weeks after injury. SHH decreased the number of Sox2(+) cells and increased the number of Olig2(+) cells, whereas NT3 alone or in combination with SHH enhanced the numbers of GFAP(+) and Olig2(+) cells relative to control. For delivery of lentivirus encoding for either factor, we identified cells at various stages of differentiation along the oligodendrocyte lineage (e.g., O4(+), GalC(+)). Expression of NT3 enhanced myelination primarily by infiltrating Schwann cells, whereas SHH over-expression substantially increased myelination by oligodendrocytes. These studies further establish biomaterial-mediated gene delivery as a promising tool to direct activation and differentiation of endogenous progenitor cells for applications in regenerative medicine.
Collapse
Affiliation(s)
- Aline M Thomas
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Stephanie K Seidlits
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.,Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
| | - Ashley G Goodman
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Todor V Kukushliev
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Donna M Hassani
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Brian J Cummings
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Center, Irvine, CA, USA.,Institute for Memory Impairments and Neurological Disorders (MIND), Irvine, CA, USA
| | - Aileen J Anderson
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Center, Irvine, CA, USA.,Institute for Memory Impairments and Neurological Disorders (MIND), Irvine, CA, USA
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.,Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA.,Center for Reproductive Science (CRS), Northwestern University, Evanston, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.,Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA
| |
Collapse
|
82
|
Dietz V. [Clinical treatment of spasticity--spastic movement disorders]. DER NERVENARZT 2013; 84:1508-1511. [PMID: 24271110 DOI: 10.1007/s00115-013-3933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Spasticity develops as a consequence of damage to the central nervous system (CNS). Clinically, spasticity is characterized by muscle hypertension and exaggerated reflexes and is associated with varying degrees of paresis. Together this results in the syndrome of spastic paresis. Patients suffer from impeded and retarded movement ability. Electrophysiological investigations of functional arm and leg movements (e.g. in walking) show a reduced activation of arm and leg muscles which can be explained by the loss of activating signals from motor brain centers and functional reflex systems. This effect predominates over the increased tendon-reflex activity. The reduced muscle activation caused by paresis is partially compensated by structural alterations of the muscle fibers (e.g. loss of sarcomeres). For this reason a functional improvement mostly cannot be achieved by antispastic medication which targets the deactivation of tendon-reflexes. However, they are useful in immobilized patients. In mobile patients functional improvement can be achieved by functional training which is accompanied by an adapted, i.e. reduced, spastic muscle tone.
Collapse
Affiliation(s)
- V Dietz
- Zentrum für Paraplegie, Universitätsklinik Balgrist, Forchstr. 340, 8008, Zürich, Schweiz,
| |
Collapse
|