51
|
Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, Stanley MA. The biology and life-cycle of human papillomaviruses. Vaccine 2012; 30 Suppl 5:F55-70. [PMID: 23199966 DOI: 10.1016/j.vaccine.2012.06.083] [Citation(s) in RCA: 878] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022]
Abstract
Human papillomaviruses (HPVs) comprise a diverse group, and have different epithelial tropisms and life-cycle strategies. Many HPVs are classified as low-risk, as they are only very rarely associated with neoplasia or cancer in the general population. These HPVs typically cause inapparent/inconspicuous infections, or benign papillomas, which can persist for months or years, but which are eventually resolved by the host's immune system. Low-risk HPVs are difficult to manage in immunosuppressed people and in individuals with genetic predispositions, and can give rise to papillomatosis, and in rare instances, to cancer. The high-risk HPV types are, by contrast, a cause of several important human cancers, including almost all cases of cervical cancer, a large proportion of other anogenital cancers and a growing number of head and neck tumours. The high-risk HPV types constitute a subset of the genus Alphapapillomavirus that are prevalent in the general population, and in most individuals cause only inconspicuous oral and genital lesions. Cancer progression is associated with persistent high-risk HPV infection and with deregulated viral gene expression, which leads to excessive cell proliferation, deficient DNA repair, and the accumulation of genetic damage in the infected cell. Although their life-cycle organisation is broadly similar to that of the low-risk HPV types, the two groups differ significantly in their capacity to drive cell cycle entry and cell proliferation in the basal/parabasal cell layers. This is thought to be linked, at least in part, to different abilities of the high- and low-risk E6 proteins to modulate the activity of p53 and PDZ-domain proteins, and the differential ability of the E7 proteins to target the several different members of the retinoblastoma protein family. This article forms part of a special supplement entitled "Comprehensive Control of HPV Infections and Related Diseases" Vaccine Volume 30, Supplement 5, 2012.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
52
|
Pang CL, Thierry F. Human papillomavirus proteins as prospective therapeutic targets. Microb Pathog 2012; 58:55-65. [PMID: 23164805 DOI: 10.1016/j.micpath.2012.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 01/01/2023]
Abstract
Human papillomaviruses (HPV) are the causative agents of a subset of cervical cancers that are associated with persistent viral infection. The HPV genome is an ∼8 kb circle of double-stranded DNA that encodes eight viral proteins, among which the products of the E6 and E7 open reading frames are recognized as being the primary HPV oncogenes. E6 and E7 are expressed in pre-malignant lesions as well as in cervical cancers; hence these proteins have been extensively studied as potential targets for HPV therapies and novel vaccines. Here we review the expression and functions of E6 and E7 in the viral vegetative cycle and in oncogenesis. We also explore the expression and functions of other HPV proteins, including those with oncogenic properties, and discuss the potential of these molecules as alternative therapeutic targets.
Collapse
Affiliation(s)
- Chai Ling Pang
- Singapore Immunology Network, 8A Biomedical Grove, #4-06 Immunos, A*STAR, Singapore 138648, Singapore
| | | |
Collapse
|
53
|
Screening of drugs to counteract human papillomavirus 16 E6 repression of E-cadherin expression. Invest New Drugs 2012; 30:2236-51. [PMID: 22359217 DOI: 10.1007/s10637-012-9803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/10/2012] [Indexed: 12/11/2022]
Abstract
Persistent infections with certain high-risk human papillomavirus (HPV) types such as 16 and 18 can result in the development of cervical cancer. Neither of the two prophylactic vaccines against HPV16 and 18 that are in current use have any therapeutic efficacy for prevalent HPV infections. Ablative therapy is widely used for the treatment of HPV cervical dysplasia however disease recurrence is a widely recognized problem. Thus there is a continuing need for therapeutic approaches for the treatment of HPV infections. The HPV16 E6 viral oncoprotein represses surface expression of the cellular adhesion molecule, E-cadherin. Reduced E-cadherin expression on HPV-infected keratinocytes is associated with lowered numbers of antigen-presenting Langerhans cells in the infected epidermis, potentially reducing immune surveillance for HPV. Four chemicals reported to up-regulate E-cadherin were screened for their ability to counteract E6 repression of surface E-cadherin. 5-Aza-2'-deoxycytidine (AzaDC), a DNA methyltransferase inhibitor, and Indole-3-carbinol (I3C), reported to increase E-cadherin through a p21(Waf1/Cip1)-dependent mechanism, had low cytotoxicity and increased or restored E-cadherin expression and adhesive function in HPV16 E6 expressing HCT116 cells. Doxorubicin, also known to induce p21(Waf1/Cip1), increased E-cadherin in E6 expressing cells but had some associated cytotoxicity. Tamoxifen, which can restore adhesive function of surface E-cadherin, was ineffective in counteracting E6 repression of E-cadherin. AzaDC and I3C both show potential to restore antigen-presenting cells to HPV infected skin by antagonizing E6 repression of E-cadherin, thereby counteracting an important immune evasion mechanism of HPV16 and reinstating immune function at the infected site.
Collapse
|
54
|
Leong CM, Doorbar J, Nindl I, Yoon HS, Hibma MH. Deregulation of E-cadherin by human papillomavirus is not confined to high-risk, cancer-causing types. Br J Dermatol 2011; 163:1253-63. [PMID: 20698848 DOI: 10.1111/j.1365-2133.2010.09968.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND E-cadherin is a tumour suppressor protein, which is normally expressed on keratinocytes and antigen-presenting Langerhans cells (LCs) in the epidermis. We have previously shown that E-cadherin is lost from tissues infected with the high-risk cancer-causing human papillomavirus (HPV) type 16. OBJECTIVES To test if E-cadherin dysregulation is associated with the cancer risk of the infecting HPV and to establish if it is conserved among HPVs in the α, β, γ and μ genera. METHODS Forty-seven lesions infected with low- or high-risk HPV types spanning four HPV genera were stained for E-cadherin, P-cadherin and CD1a to detect LCs. RESULTS Surface E-cadherin was reduced in tissues infected with members of the α4, α7 and α9 species and the γ and μ genera but was equivalent to normal epidermis in the β only-infected lesions tested and patchy in α10-infected tissues. There was a direct relationship between atypical E-cadherin expression and a significant reduction in LCs. Expression of P-cadherin, a protein that is increased in the E-cadherin constitutive knockout mouse, was increased in lesions with reduced E-cadherin. CONCLUSIONS These data show that E-cadherin dysregulation by HPV is widely conserved across the majority of HPV genera. E-cadherin expression was reduced or lost in epidermis irrespective of the cancer risk of the infecting HPV type or the ability of the virus to degrade retinoblastoma protein or p53. A correlation between dysregulated E-cadherin and reduced numbers of LCs supports viral regulation of surface E-cadherin contributing to viral evasion of the host immune system.
Collapse
Affiliation(s)
- C-M Leong
- Department of Microbiology and Immunology and Pathology, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
55
|
da Silva CS, Michelin MA, Etchebehere RM, Adad SJ, Murta EFC. Local lymphocytes and nitric oxide synthase in the uterine cervical stroma of patients with grade III cervical intraepithelial neoplasia. Clinics (Sao Paulo) 2010; 65:575-81. [PMID: 20613932 PMCID: PMC2898547 DOI: 10.1590/s1807-59322010000600003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/04/2010] [Accepted: 03/15/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Precancerous and cancerous cells can trigger an immune response that may limit tumor development and can be used as a prognostic marker. The aims of the present study were to quantify the presence of B and T lymphocytes, macrophages and cells expressing inducible nitric oxide synthase (iNOS) in the cervical stroma of women with grade III cervical intraepithelial neoplasia (CIN III) or in the intratumoral and peritumoral tissue of women with stage I invasive carcinoma. METHODS Cervical tissue specimens were obtained from 60 women (20 each from control tissues, CIN III and invasive carcinomas). The average ages in the control, CIN III and invasive groups were 43.9 (+/- 4.3), 35.5 (+/- 9.5), and 50 (+/- 11.2) years, respectively. The specimens were immunohistochemically labeled with antibodies to identify T lymphocytes (CD3), cytotoxic lymphocytes (CD8), B lymphocytes (CD20), macrophages (CD68) and iNOS. We evaluated the markers in the stroma above the squamocolumnar junction (control), at the intraepithelial lesion (CIN cases), and in the infiltrating tumor. Two independent observers performed the immunohistochemical analysis. RESULTS T lymphocytes, B lymphocytes, macrophages and iNOS were present more frequently (P<0.05) in the stroma of peritumoral invasive tumors compared to the controls and intratumoral invasive cancer samples. CD3+ and CD20+ lymphocytes were present more frequently in CIN III patients compared to samples from patients with intratumoral invasive cancer (P<0.05). CONCLUSION High numbers of T and B lymphocytes, macrophages and iNOS-expressing cells in the peritumoral stroma of the invasive tumors were observed. Cell migration appeared to be proportional to the progression of the lesion.
Collapse
|
56
|
Laurson J, Khan S, Chung R, Cross K, Raj K. Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein. Carcinogenesis 2010; 31:918-26. [PMID: 20123756 PMCID: PMC2864410 DOI: 10.1093/carcin/bgq027] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A common feature shared between several human cancer-associated viruses, such as Epstein-Barr virus, Hepatitis B virus and Hepatitis C virus, and Human papillomavirus (HPV) is the ability to reduce the expression of cellular E-cadherin. Since E-cadherin is used by Langerhans cells to move through the stratified epithelium, its reduction may affect the efficiency by which the immune system responds to HPV infection and the length of persistent HPV infections. We observed that the E7 protein of this virus (HPV16) is most efficient at reducing E-cadherin levels. This E7 activity is independent of retinoblastoma protein or AP-2α degradation. Instead it is associated with augmentation of cellular DNA methyltransferase I (Dnmt1) activity. Significantly, inhibition of Dnmt activity re-established E-cadherin levels of the cells, presenting the possibility that similar epigenetic intervention clinically may be a way to re-establish the influx of Langerhans cells into infected epithelium to counteract HPV persistence.
Collapse
Affiliation(s)
- Joanna Laurson
- Department of Virology, The National Institute for Medical Research, The Ridgeway Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
57
|
Boulenouar S, Weyn C, Van Noppen M, Moussa Ali M, Favre M, Delvenne PO, Bex F, Noël A, Englert Y, Fontaine V. Effects of HPV-16 E5, E6 and E7 proteins on survival, adhesion, migration and invasion of trophoblastic cells. Carcinogenesis 2009; 31:473-80. [PMID: 19917629 DOI: 10.1093/carcin/bgp281] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among high-risk human papillomaviruses (HPV), HPV-16 infection is the most prevalent causative factor for cervical cancer. Beside other mucosal targets, HPV-16 was reported to infect the placenta and to replicate in trophoblastic cells. Since these cells share invasive properties of tumoral cells, they represent an ideal model to investigate several oncogenic processes. In the present work, we analyzed the impacts of HPV-16 E5, E6 and E7 oncoproteins on the trophoblastic model. Our results showed that E5 impaired the viability of trophoblastic and cervical cell lines but E6 and E7, favoring cell growth, neutralized the E5 cytotoxic effect. In addition, E5 decreased the adhesiveness of trophoblastic cells to the tissue culture plastic and to endometrial cells similarly as described previously for E6 and E7. E5 and E6 plus E7 increased also their migration and their invasive properties. Cells expressing HPV-16 early proteins under the control of the long control region endogenous promoter displayed growth advantage and were also more motile and invasive compared with control cells. Interestingly, the E-cadherin was downregulated in trophoblastic cells expressing E5, E6 and E7. Nuclear factor-kappaB and activator protein-1 activities were also enhanced. In conclusion, HPV-16 early proteins enhanced trophoblastic growth and intensify the malignant phenotype by impairing cell adhesion leading to increased cellular motile and invasive properties. HPV-16 E5 participated, with E6 and E7, in these changes by impairing E-cadherin expression, a hallmark of malignant progression.
Collapse
Affiliation(s)
- Selma Boulenouar
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Route de Lennik 808, CP636, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ghittoni R, Accardi R, Hasan U, Gheit T, Sylla B, Tommasino M. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 2009; 40:1-13. [PMID: 19838783 DOI: 10.1007/s11262-009-0412-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/05/2009] [Indexed: 02/07/2023]
Abstract
More than 100 different human papillomavirus (HPV) types have been isolated so far, and they can be sub-grouped in cutaneous or mucosal according to their ability to infect the skin or the mucosa of the genital or upper-respiratory tracts. A sub-group of human mucosal HPVs, referred to as high-risk HPV types, is responsible for approximately 5% of all human cancers, which represents one-third of all the tumours induced by viruses. Epidemiological and biological studies have shown that HPV16 is the most oncogenic type within the high-risk group. Emerging lines of evidence suggest that, in addition to the high-risk mucosal HPV types, certain cutaneous HPVs are involved in skin cancer. HPV-associated cancers are intimately linked to HPV persistence and the accumulation of chromosomal rearrangements. The products of the early genes, E6 and E7, of the high-risk mucosal HPV types play a key role in both events. Indeed, these proteins have developed a number of strategies to evade host immuno-surveillance allowing viral persistence, and to alter cell cycle and apoptosis control, facilitating the accumulation of DNA damage/mutations. Often, the two oncoproteins target the same cellular pathways with different mechanisms, showing a strong synergism in promoting cellular transformation and neutralizing the immune response. Here, we review most of the findings on the biological properties and molecular mechanisms of the oncoproteins E6 and E7 from mucosal and cutaneous HPV types.
Collapse
Affiliation(s)
- Raffaella Ghittoni
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008 Lyon, France.
| | | | | | | | | | | |
Collapse
|
59
|
Leong CM, Doorbar J, Nindl I, Yoon HS, Hibma MH. Loss of epidermal Langerhans cells occurs in human papillomavirus alpha, gamma, and mu but not beta genus infections. J Invest Dermatol 2009; 130:472-80. [PMID: 19759549 DOI: 10.1038/jid.2009.266] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human papillomaviruses (HPVs), which are contained in the alpha, beta, gamma, mu, and nu genera, differ in their oncogenic potential and their tropism for cutaneous or mucosal epidermis. Langerhans cells (LC), the only epidermal professional antigen-presenting cells, are readily detected in normal mucosal and cutaneous epithelium. The aim of this study is to determine whether LC loss, which has been reported for HPV16, occurs in other HPV genera and establish its significance in viral pathology. We found that, as for HPV16, LCs were reduced in lesions infected with high-risk mucosal (alpha7 and alpha9 species) and low-risk cutaneous (gamma and mu) types. Lesions infected with alpha10 low-risk genital types had reduced LC but contained epidermal LC patches, coincident with dermis-localized regulatory T cells (T-regs). In contrast to other genera, LCs were common in the epidermis, and T-regs occupied the dermis of the potentially high-risk cutaneous beta-HPV type infected lesions. Therefore, LC loss in the infected lesions occurred irrespective of tropism or oncogenic potential of the HPV type. LC depletion in the HPV-infected epidermis may create an environment that is permissive for viral persistence and in HPV lesions in which LCs are found, the presence of typically immunosuppressive T-regs may compensate for their continued presence.
Collapse
Affiliation(s)
- Cheng Mee Leong
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
60
|
Hellner K, Mar J, Fang F, Quackenbush J, Münger K. HPV16 E7 oncogene expression in normal human epithelial cells causes molecular changes indicative of an epithelial to mesenchymal transition. Virology 2009; 391:57-63. [PMID: 19552933 DOI: 10.1016/j.virol.2009.05.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/01/2009] [Accepted: 05/26/2009] [Indexed: 11/25/2022]
Abstract
Cancer-associated epithelial to mesenchymal transition (EMT) is crucial for invasion and metastasis. Molecular hallmarks of EMT include down-regulation of the epithelial adhesion protein E-cadherin and de-novo expression of N-cadherin and the mesenchymal intermediate filament proteins vimentin and fibronectin. Expression of HPV16 E7 in normal human epithelial cells caused increased levels of vimentin and fibronectin, whereas the epithelial adhesion protein E-cadherin was expressed at decreased levels. Similar expression patterns of vimentin, fibronectin and E-cadherin were also detected in cells expressing HPV16 E6 and E7 or the entire HPV16 early transcriptional unit. HPV16 E6 and E7 were each able to induce N-cadherin expression. Interestingly, these changes in expression levels of EMT-associated proteins are not similarly reflected at the level of mRNA expression, suggesting that HPV16 oncoproteins also modulate EMT through non-transcriptional mechanisms. Hence, HPV16 oncoproteins may contribute to malignant progression through EMT induction.
Collapse
Affiliation(s)
- Karin Hellner
- Infectious Diseases Division, The Channing Laboratories, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
61
|
Wilting SM, Smeets SJ, Snijders PJF, van Wieringen WN, van de Wiel MA, Meijer GA, Ylstra B, Leemans CR, Meijer CJLM, Brakenhoff RH, Braakhuis BJM, Steenbergen RDM. Genomic profiling identifies common HPV-associated chromosomal alterations in squamous cell carcinomas of cervix and head and neck. BMC Med Genomics 2009; 2:32. [PMID: 19486517 PMCID: PMC2698908 DOI: 10.1186/1755-8794-2-32] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 06/01/2009] [Indexed: 12/17/2022] Open
Abstract
Background It is well known that a persistent infection with high-risk human papillomavirus (hrHPV) is causally involved in the development of squamous cell carcinomas of the uterine cervix (CxSCCs) and a subset of SCCs of the head and neck (HNSCCs). The latter differ from hrHPV-negative HNSCCs at the clinical and molecular level. Methods To determine whether hrHPV-associated SCCs arising from different organs have specific chromosomal alterations in common, we compared genome-wide chromosomal profiles of 10 CxSCCs (all hrHPV-positive) with 12 hrHPV-positive HNSCCs and 30 hrHPV-negative HNSCCs. Potential organ-specific alterations and alterations shared by SCCs in general were investigated as well. Results Unsupervised hierarchical clustering resulted in one mainly hrHPV-positive and one mainly hrHPV-negative cluster. Interestingly, loss at 13q and gain at 20q were frequent in HPV-positive carcinomas of both origins, but uncommon in hrHPV-negative HNSCCs, indicating that these alterations are associated with hrHPV-mediated carcinogenesis. Within the group of hrHPV-positive carcinomas, HNSCCs more frequently showed gains of multiple regions at 8q whereas CxSCCs more often showed loss at 17p. Finally, gains at 3q24-29 and losses at 11q22.3-25 were frequent (>50%) in all sample groups. Conclusion In this study hrHPV-specific, organ-specific, and pan-SCC chromosomal alterations were identified. The existence of hrHPV-specific alterations in SCCs of different anatomical origin, suggests that these alterations are crucial for hrHPV-mediated carcinogenesis.
Collapse
Affiliation(s)
- Saskia M Wilting
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
|