51
|
Ni B, Wolfe CR, Arif S, Carugati M, Heldman MR, Messina JA, Miller RA, Saullo JL, Baker AW, Maziarz EK. Real-World Experience With Maribavir for Treatment of Cytomegalovirus Infection in High-Risk Solid Organ Transplant Recipients. Open Forum Infect Dis 2024; 11:ofae335. [PMID: 38957689 PMCID: PMC11218774 DOI: 10.1093/ofid/ofae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
We evaluated use of maribavir (MBV) for treatment of 15 episodes of refractory/resistant cytomegalovirus infection in 13 solid organ transplant recipients. Treatment failure due to treatment-emergent MBV resistance or early virological recurrence after MBV discontinuation occurred in 7 (47%) episodes. Sustained viral clearance was achieved in 6 (40%) episodes.
Collapse
Affiliation(s)
- Bin Ni
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sana Arif
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Manuela Carugati
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Madeleine R Heldman
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Julia A Messina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rachel A Miller
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer L Saullo
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Arthur W Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Eileen K Maziarz
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
52
|
Santamorena MM, Tischer-Zimmermann S, Bonifacius A, Mireisz CNM, Costa B, Khan F, Kulkarni U, Lauruschkat CD, Sampaio KL, Stripecke R, Blasczyk R, Maecker-Kolhoff B, Kraus S, Schlosser A, Cicin-Sain L, Kalinke U, Eiz-Vesper B. Engineered HCMV-infected APCs enable the identification of new immunodominant HLA-restricted epitopes of anti-HCMV T-cell immunity. HLA 2024; 103:e15541. [PMID: 38923358 DOI: 10.1111/tan.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.
Collapse
Affiliation(s)
- Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fawad Khan
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Renata Stripecke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Institute of Translational Immuno-oncology, Cologne, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
53
|
Heldman MR, Limaye AP. The devil is in the details: Nuances of pre-emptive therapy for cytomegalovirus disease prevention in high-risk seropositive donors liver transplant recipients. Transpl Infect Dis 2024; 26:e14234. [PMID: 38191775 DOI: 10.1111/tid.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Affiliation(s)
- Madeleine R Heldman
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Ajit P Limaye
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
54
|
Sun K, Ilic K, Xu P, Ye R, Wu J, Song IH. Effect of Food, Crushing of Tablets, and Antacid Coadministration on Maribavir Pharmacokinetics in Healthy Adult Participants: Results From 2 Phase 1, Open-Label, Randomized, Crossover Studies. Clin Pharmacol Drug Dev 2024; 13:644-654. [PMID: 38708555 DOI: 10.1002/cpdd.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
The effect of food composition, tablet crushing, and antacid coadministration on maribavir pharmacokinetics was assessed in 2 Phase 1 studies in healthy adults. In the first, a single maribavir 400-mg dose was administered under fasting conditions, with a low-fat/low-calorie or a high-fat/high-calorie meal. In the second, a single maribavir 100-mg dose was administered under fasting conditions, as a crushed tablet, or as a whole tablet alone or with an antacid. The 90% confidence intervals of the geometric mean ratios were within 80%-125% for area under the concentration-time curve (AUC), but not for maximum plasma concentration (Cmax) for low-fat/low-calorie and high-fat/high-calorie meals versus fasting or for whole tablet with antacid versus whole tablet alone. The 90% confidence intervals of the geometric mean ratios for AUC and Cmax were within 80%-125% for crushed versus whole tablet. Maribavir median time to Cmax value in plasma under fed conditions was delayed versus fasting conditions, but there was no statistical difference for crushed versus whole tablet or with versus without antacid. As the antiviral efficacy of maribavir is driven by AUC but not Cmax, findings suggest that maribavir can be administered with food or antacids or as a crushed tablet.
Collapse
Affiliation(s)
- Kefeng Sun
- Quantitative Clinical Pharmacology, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Katarina Ilic
- Rare Genetics and Hematology Therapeutic Area Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Peixin Xu
- Statistical and Quantitative Sciences, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Ran Ye
- Bioanalytical Sciences, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Jingyang Wu
- Statistical and Quantitative Sciences, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Ivy H Song
- Quantitative Clinical Pharmacology, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| |
Collapse
|
55
|
Song E. Case Report: Approaches for managing resistant cytomegalovirus in pediatric allogeneic hematopoietic cell transplantation recipients. Front Pediatr 2024; 12:1394006. [PMID: 38884102 PMCID: PMC11177687 DOI: 10.3389/fped.2024.1394006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 06/18/2024] Open
Abstract
The instructional case is a pediatric haploidentical TCRαβ+/CD19+ depleted allogeneic hematopoietic cell transplantation recipient who developed early onset CMV infection, which was complicated by resistant CMV (both UL97 and UL54) and successfully managed with maribavir and haploidentical CMV-specific T lymphocytes. Novel approaches to resistant CMV infection are reviewed and effective utilization of recent advances in diagnosis and management of resistant CMV in pediatric HCT are highlighted.
Collapse
Affiliation(s)
- Eunkyung Song
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Division of Infectious Diseases & Host Defense, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
56
|
Dockrell DH, Breen R, Collini P, Lipman MCI, Miller RF. British HIV Association guidelines on the management of opportunistic infection in people living with HIV: The clinical management of pulmonary opportunistic infections 2024. HIV Med 2024; 25 Suppl 2:3-37. [PMID: 38783560 DOI: 10.1111/hiv.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/25/2024]
Affiliation(s)
- D H Dockrell
- University of Edinburgh, UK
- Regional Infectious Diseases Unit, NHS Lothian Infection Service, Edinburgh, UK
| | - R Breen
- Forth Valley Royal Hospital, Larbert, Scotland, UK
| | | | - M C I Lipman
- Royal Free London NHS Foundation Trust, UK
- University College London, UK
| | - R F Miller
- Royal Free London NHS Foundation Trust, UK
- Institute for Global Health, University College London, UK
- Central and North West London NHS Foundation Trust, UK
| |
Collapse
|
57
|
Cochran WV, Dioverti MV, Langlee J, Barker LN, Shedeck A, Toman LP, Avery RK. Approaches and Challenges in the Current Management of Cytomegalovirus in Transplant Recipients: Highlighting the Role of Advanced Practice Providers (Nurse Practitioners and Physician Assistants). Ann Transplant 2024; 29:e941185. [PMID: 38650316 PMCID: PMC11055468 DOI: 10.12659/aot.941185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/22/2024] [Indexed: 04/25/2024] Open
Abstract
Cytomegalovirus (CMV) infection is associated with increased morbidity and mortality in hematopoietic cell transplant (HCT) and solid organ transplant (SOT) recipients, with traditional anti-CMV therapies limited by their associated toxicities and the development of resistance. Clinical providers are often faced with challenging and complicated CMV infections that require multiple courses of antiviral therapies. Increasingly, advanced practice providers (APPs) are playing an important role in the day-to-day management of transplant recipients with CMV infection, including resistant/refractory CMV and other complex CMV syndromes. Here, we provide an overview of current preventative and treatment strategies for CMV infection in HCT and SOT recipients, highlighting the challenging aspects of current management and the potential utility of newer antiviral agents. This article also focuses on how a multidisciplinary team, orchestrated by APPs, can improve CMV-associated patient outcomes. Protocols using antiviral agents for the prevention or treatment of CMV infections require carefully designed and meticulously implemented strategies to ensure the best clinical outcomes for patients. APPs, who have increasingly become the frontline providers of outpatient care for transplant recipients, are ideally positioned to design and carry out these protocols.
Collapse
Affiliation(s)
- Willa V. Cochran
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Julie Langlee
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Audra Shedeck
- Sidney Kimmel Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lindsey P. Toman
- Department of Pharmacy, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Robin K. Avery
- Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
58
|
Ahopelto K, Grasberger J, Ortiz F, Ekstrand A, Nordin A, Lempinen M, Helanterä I. High burden of CMV infections after simultaneous pancreas-kidney transplantation-a nationwide cohort study. FRONTIERS IN TRANSPLANTATION 2024; 3:1370945. [PMID: 38993783 PMCID: PMC11235250 DOI: 10.3389/frtra.2024.1370945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 07/13/2024]
Abstract
Cytomegalovirus (CMV) infections remain a common problem after solid-organ transplantation. We characterized the burden of CMV infections, and adverse events of CMV prophylaxis after simultaneous pancreas-kidney transplantation (SPK). We included all SPK patients (n = 236) since 2010 in our country. Immunosuppression was ATG, tacrolimus, mycophenolate, and steroids. Valganciclovir prophylaxis was given to all CMV D+/R- patients for six months, and to seropositive SPK patients for three months since February 2019. CMV DNAemia was monitored with quantitative PCR from plasma. Among D+/R- SPK recipients, post prophylaxis CMV infection was detected in 41/60 (68%) during follow-up. In seropositive SPK recipients with no prophylaxis, CMV infection was detected in 53/95 (56%), vs. 28/78 (36%) in those who received 3 months of prophylaxis (P = 0.01). CMV was symptomatic in 35 (15%) patients, of which 10 required hospitalization. Mean duration of viremia was 28 days (IQR 21-41). Leukopenia was detected in 63 (46%) of the 138 patients with valganciclovir prophylaxis. 7/122 (6%) of the CMV infections detected were defined as refractory to treatment, and three patients had confirmed ganciclovir resistance. SPK recipients experience a high burden of CMV infections despite CMV prophylaxis. Leukopenia is common during valganciclovir prophylaxis.
Collapse
Affiliation(s)
- Kaisa Ahopelto
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juulia Grasberger
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fernanda Ortiz
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Agneta Ekstrand
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arno Nordin
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marko Lempinen
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
59
|
Kleiboeker HL, Prom A, Paplaczyk K. Development of cytomegalovirus resistant to maribavir: real world, real problem? Transpl Infect Dis 2024; 26:e14259. [PMID: 38430481 DOI: 10.1111/tid.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Affiliation(s)
- Hanna L Kleiboeker
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Alyson Prom
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Krista Paplaczyk
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
60
|
Grossi PA, Peghin M. Recent advances in cytomegalovirus infection management in solid organ transplant recipients. Curr Opin Organ Transplant 2024; 29:131-137. [PMID: 38288947 PMCID: PMC10919264 DOI: 10.1097/mot.0000000000001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW Human cytomegalovirus (CMV) continues to be the most important infectious complication following solid organ transplantation (SOT). RECENT FINDINGS Universal prophylaxis and preemptive therapy are the most adopted strategies for prevention of CMV disease globally. Prophylaxis with valganciclovir is the most widely used approach to CMV prevention, however leukopenia and late onset CMV disease after discontinuation of prophylaxis requires new strategies to prevent this complication. The use of assays detecting CMV-specific T cell-mediated immunity may individualize the duration of antiviral prophylaxis after transplantation. Letermovir has been recently approved for prophylaxis in kidney transplant recipients. CMV-RNAemia used together with CMV-DNAemia in the viral surveillance of CMV infection provides accurate information on viral load kinetics, mostly in patients receiving letermovir prophylaxis/therapy. The development of refractory and resistant CMV infection remains a major challenge and a new treatment with maribavir is currently available. In the present paper we will review the most recent advances in prevention and treatment of CMV diseases in SOT recipients. SUMMARY Recent findings, summarized in the present paper, may be useful to optimize prevention and treatment of CMV infection in SOT.
Collapse
Affiliation(s)
- Paolo Antonio Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | | |
Collapse
|
61
|
Schultz BG, Kotton CN, Jutlla G, Ressa R, de Lacey T, Chowdhury E, Bo T, Fenu E, Gelone DK, Poirrier JE, Amorosi SL. Cost-effectiveness of maribavir versus conventional antiviral therapies for post-transplant refractory cytomegalovirus infection with or without genotypic resistance: A US perspective. J Med Virol 2024; 96:e29609. [PMID: 38647051 DOI: 10.1002/jmv.29609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
This study evaluated the cost-effectiveness of maribavir versus investigator-assigned therapy (IAT; valganciclovir/ganciclovir, foscarnet, or cidofovir) for post-transplant refractory cytomegalovirus (CMV) infection with or without resistance. A two-stage Markov model was designed using data from the SOLSTICE trial (NCT02931539), real-world multinational observational studies, and published literature. Stage 1 (0-78 weeks) comprised clinically significant CMV (csCMV), non-clinically significant CMV (n-csCMV), and dead states; stage 2 (78 weeks-lifetime) comprised alive and dead states. Total costs (2022 USD) and quality-adjusted life years (QALYs) were estimated for the maribavir and IAT cohorts. An incremental cost-effectiveness ratio was calculated to determine cost-effectiveness against a willingness-to-pay threshold of $100 000/QALY. Compared with IAT, maribavir had lower costs ($139 751 vs $147 949) and greater QALYs (6.04 vs 5.83), making it cost-saving and more cost-effective. Maribavir had higher acquisition costs compared with IAT ($80 531 vs $65 285), but lower costs associated with administration/monitoring ($16 493 vs $27 563), adverse events (AEs) ($11 055 vs $16 114), hospitalization ($27 157 vs $33 905), and graft loss ($4516 vs $5081), thus making treatment with maribavir cost-saving. Maribavir-treated patients spent more time without CMV compared with IAT-treated patients (0.85 years vs 0.68 years), leading to lower retreatment costs for maribavir (cost savings: -$42 970.80). Compared with IAT, maribavir was more cost-effective for transplant recipients with refractory CMV, owing to better clinical efficacy and avoidance of high costs associated with administration, monitoring, AEs, and hospitalizations. These results can inform healthcare decision-makers on the most effective use of their resources for post-transplant refractory CMV treatment.
Collapse
Affiliation(s)
- Bob G Schultz
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, Massachusetts, USA
| | - Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ginita Jutlla
- Parexel, Health Economics and Outcomes Research Modeling, London, UK
| | - Riccardo Ressa
- Parexel, Health Economics and Outcomes Research Modeling, London, UK
| | - Tam de Lacey
- Parexel, Health Economics and Outcomes Research Modeling, London, UK
| | - Emtiyaz Chowdhury
- Parexel, Health Economics and Outcomes Research Modeling, London, UK
| | - Tien Bo
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | - Daniele K Gelone
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, Massachusetts, USA
| | | | - Stacey L Amorosi
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| |
Collapse
|
62
|
Abstract
Cytomegalovirus (CMV) is one of the most common infections occurring after solid organ transplantation. This high burden of disease, which incurs sizeable morbidity, may be worsening with the proportion of high-risk D+/R- solid organ transplantation recipients increasing in some regions globally. Cohort studies continue to support either universal prophylaxis or preemptive therapy as effective prevention strategies. Letermovir prophylaxis was noninferior to valganciclovir in adult high-risk D+/R- kidney transplant recipients with fewer drug-related adverse events in a recent clinical trial and has now been approved for such use in some regions. Maribavir preemptive therapy failed to demonstrate noninferiority when compared with valganciclovir in hematopoietic stem cell transplant recipients but looked promising for safety. Donor matching could be useful in prevention CMV disease with a survival advantage demonstrated in seronegative recipients waiting up to 30 mo for a seronegative kidney. Immune-guided prophylaxis resulted in fewer CMV infection episodes in lung transplant recipients when compared with fixed-duration prophylaxis in a recent clinical trial. For treatment of refractory or resistant CMV infection, maribavir was more efficacious and better tolerated when compared with investigator-initiated therapy in its registration trial for this condition. Further research regarding best treatment and prophylaxis of resistant or refractory CMV infection is needed to reflect best clinical practice choices. Optimal use of immune globulin or CMV-specific T cells for prevention or treatment of CMV disease remains undefined. Standardized definitions for the design of CMV clinical trials have been developed. In this review, we highlight recent updates in the field from data published since 2018.
Collapse
Affiliation(s)
- Adam G Stewart
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, QLD, Australia
| | - Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
63
|
Fisher JE, Mulieri K, Finch E, Ericson JE. Use of Maribavir for Multidrug Resistant Cytomegaloviremia in a Pediatric Oncology Patient. J Pediatr Hematol Oncol 2024; 46:e244-e247. [PMID: 38447094 PMCID: PMC10956659 DOI: 10.1097/mph.0000000000002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Resistant and refractory cytomegalovirus (CMV) viremia can limit the provision of chemotherapy due to myelosuppression and end-organ dysfunction. Few therapies are available for children with clinically significant CMV viremia. We successfully used maribavir for a 4-year-old patient with lymphoma to complete his chemotherapy course. Resistance to maribavir did result after many months of therapy.
Collapse
Affiliation(s)
| | - Kevin Mulieri
- Department of Pharmacy, Penn State Milton S Hershey Medical Center
| | | | | |
Collapse
|
64
|
Jiang Z, Fan Z, Zhang T, Lin R, Xu H, Xu N, Huang F, Chi P, Ou X, Wang Z, Liu H, Zhao K, Jiang L, Yu S, Sun J, Liu Q, Xuan L. Adoptive therapy with cytomegalovirus-specific cytotoxic T lymphocytes for refractory cytomegalovirus DNAemia and disease after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2024; 204:1393-1401. [PMID: 38168845 DOI: 10.1111/bjh.19282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Cytomegalovirus (CMV) DNAemia and disease are common complications in patients undergoing allogeneic haematopoietic stem cell transplantation (allo-HSCT). Few studies have compared the efficacy and safety of the HSCT donor and third-party CMV-specific cytotoxic T lymphocytes (CMV-CTLs) in the treatment of CMV DNAemia and disease. In this study, we retrospectively compared the efficacy and safety of HSCT donor and third-party CMV-CTLs in patients with refractory CMV DNAemia or disease after allo-HSCT at our centre from January 2017 to September 2021. Fifty-three patients who received CMV-CTL therapy were enrolled, including 40 in the donor group and 13 in the third-party group, and they were adults aged 18 years or older. Within 6 weeks of treatment, 26 (65.0%) and 9 (69.2%) patients achieved complete response in the donor and third-party groups (p = 1.000). The 2-year overall survival was 59.6% (95% CI 46.1%-77.1%) and 53.8% (32.6%-89.1%) in the donor and third-party groups (p = 0.860). Four (10.0%) patients in the donor group and two (15.4%) patients in the third-party group developed acute graft-versus-host disease within 3 months after CMV-CTL infusions. In conclusion, our data suggest that donor and third-party CMV-CTLs have comparable efficacy and safety for refractory CMV DNAemia and disease.
Collapse
Affiliation(s)
- Zhonghui Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Tian Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hui Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Peiru Chi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Xueying Ou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hui Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
65
|
Monday LM, Keri V, Chandrasekar PH. Advances in pharmacotherapies for cytomegalovirus infection: what is the current state of play? Expert Opin Pharmacother 2024; 25:685-694. [PMID: 38717943 DOI: 10.1080/14656566.2024.2353627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) remains a serious opportunistic infection in hematopoietic cell transplant (HCT) and solid-organ transplant (SOT) recipients. Traditional anti-CMV drugs are limited by toxicities and the development of resistance. Letermovir and maribavir are newly approved antivirals for the prevention and treatment of CMV. AREAS COVERED Prior reviews have discussed use of letermovir for prevention of CMV after HCT and maribavir for resistant or refractory (R/R) CMV post HCT or SOT. Subsequent data have expanded their use including letermovir for primary CMV prophylaxis in high-risk renal transplant recipients and new recommendations for extending prophylaxis through day + 200 in certain HCT patients. Data on the use of maribavir for first asymptomatic CMV infection post-HCT has also been published. This review compares the pharmacology of anti-CMV agents and discusses the updated literature of these new drugs in the prevention and treatment of CMV. EXPERT OPINION Letermovir and maribavir are much needed tools that spare toxicities of ganciclovir, foscarnet, and cidofovir. High cost is a challenge preventing their integration into clinical practice in resource-limited countries. Transplant centers need to exercise restraint in overuse to avoid resistance, particularly in the setting of high viral loads.
Collapse
Affiliation(s)
- Lea M Monday
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Vishakh Keri
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
66
|
Schultz BG, Bullano M, Paratane D, Rajagopalan K. Cytomegalovirus related hospitalization costs among hematopoietic stem cell and solid organ transplant recipients treated with maribavir versus investigator-assigned therapy: A US-based study. Transpl Infect Dis 2024; 26:e14216. [PMID: 38221739 DOI: 10.1111/tid.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/19/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Cytomegalovirus (CMV) infections among hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT) recipients impose a significant health care resource utilization (HCRU)-related economic burden. Maribavir (MBV), a novel anti-viral therapy (AVT), approved by the United States Food and Drug Administration for post-transplant CMV infections refractory (with/without resistance) to conventional AVTs has demonstrated lower hospital length of stay (LOS) versus investigator-assigned therapy (IAT; valgancilovir, ganciclovir, foscarnet, or cidofovir) in a phase 3 trial (SOLSTICE). This study estimated the HCRU costs of MBV versus IAT. METHODS An economic model was developed to estimate HCRU costs for patients treated with MBV or IAT. Mean per-patient-per-year (PPPY) HCRU costs were calculated using (i) annualized mean hospital LOS in SOLSTICE, and (ii) CMV-related direct costs from published literature. Probabilistic sensitivity analysis with Monte-Carlo simulations assessed model robustness. RESULTS Of 352 randomized patients receiving MBV (n = 235) or IAT (n = 117) for 8 weeks in SOLSTICE, 40% had HSCT and 60% had SOT. Mean overall PPPY HCRU costs of overall hospital-LOS were $67,205 (95% confidence interval [CI]: $33,767, $231,275) versus $145,501 (95% CI: $62,064, $589,505) for MBV and IAT groups, respectively. Mean PPPY ICU and non-ICU stay costs were: $32,231 (95% CI: $5,248, $184,524) versus $45,307 (95% CI: $3,957, $481,740) for MBV and IAT groups, and $82,237 (95% CI: $40,397, $156,945) MBV versus $228,329 (95% CI: $94,442, $517,476) for MBV and IAT groups, respectively. MBV demonstrated cost savings in over 99.99% of simulations. CONCLUSIONS This analysis suggests that Mean PPPY HCRU costs were 29%-64% lower with MBV versus other-AVTs.
Collapse
Affiliation(s)
- Bob G Schultz
- US Medical Affairs Outcomes Research, Takeda Pharmaceuticals U.S.A., Inc., Lexington, Massachusetts, USA
| | - Michael Bullano
- US Medical Affairs Outcomes Research, Takeda Pharmaceuticals U.S.A., Inc., Lexington, Massachusetts, USA
| | - Deepika Paratane
- Health Economics and Outcomes Research, Anlitiks, Inc., Windermere, Florida, USA
| | - Krithika Rajagopalan
- Health Economics and Outcomes Research, Anlitiks, Inc., Windermere, Florida, USA
| |
Collapse
|
67
|
Papanicolaou GA, Avery RK, Cordonnier C, Duarte RF, Haider S, Maertens J, Peggs KS, Solano C, Young JAH, Fournier M, Murray RA, Wu J, Winston DJ. Treatment for First Cytomegalovirus Infection Post-Hematopoietic Cell Transplant in the AURORA Trial: A Multicenter, Double-Blind, Randomized, Phase 3 Trial Comparing Maribavir With Valganciclovir. Clin Infect Dis 2024; 78:562-572. [PMID: 38036487 PMCID: PMC10954327 DOI: 10.1093/cid/ciad709] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Neutropenia may limit the use of valganciclovir treatment for cytomegalovirus (CMV) infection following hematopoietic cell transplant (HCT). A phase 2 study indicated efficacy of maribavir with fewer treatment-limiting toxicities than valganciclovir. METHODS In this multicenter, double-blind, phase 3 study, patients with first asymptomatic CMV infection post-HCT were stratified and randomized 1:1 to maribavir 400 mg twice daily or valganciclovir (dose-adjusted for renal clearance) for 8 weeks with 12 weeks of follow-up. The primary endpoint was confirmed CMV viremia clearance at week 8 (primary hypothesis of noninferiority margin of 7.0%). The key secondary endpoint was a composite of the primary endpoint with no findings of CMV tissue-invasive disease at week 8 through week 16. Treatment-emergent adverse events (TEAEs) were assessed. RESULTS Among patients treated (273 maribavir; 274 valganciclovir), the primary endpoint of noninferiority of maribavir was not met (maribavir, 69.6%; valganciclovir, 77.4%; adjusted difference: -7.7%; 95% confidence interval [CI]: -14.98, -.36; lower limit of 95% CI of treatment difference exceeded -7.0%). At week 16, 52.7% and 48.5% of patients treated (maribavir and valganciclovir, respectively) maintained CMV viremia clearance without tissue-invasive disease (adjusted difference: 4.4%; 95% CI: -3.91, 12.76). With maribavir (vs valganciclovir), fewer patients experienced neutropenia (16.1% and 52.9%) or discontinued due to TEAEs (27.8% and 41.2%). Discontinuations were mostly due to neutropenia (maribavir, 4.0%; valganciclovir, 17.5%). CONCLUSIONS Although noninferiority of maribavir to valganciclovir for the primary endpoint was not achieved based on the prespecified noninferiority margin, maribavir demonstrated comparable CMV viremia clearance during post-treatment follow-up, with fewer discontinuations due to neutropenia. Clinical Trials Registration. NCT02927067 [AURORA].
Collapse
Affiliation(s)
| | | | - Catherine Cordonnier
- Henri Mondor Hôpital, Assistance Publique-Hopitaux de Paris, and Université Paris-Est-Créteil, Créteil, France
| | - Rafael F Duarte
- Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Shariq Haider
- Hamilton Health Sciences Corporation, Ontario, Canada
| | | | - Karl S Peggs
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Carlos Solano
- Hospital Clínico Universitario, University of Valencia, Valencia, Spain
| | | | - Martha Fournier
- Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Rose Ann Murray
- Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Jingyang Wu
- Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Drew J Winston
- Los Angeles Medical Center, University of California, Los Angeles, California, USA
| |
Collapse
|
68
|
Ahmed W, Longworth L, Oluboyede Y, Cain P, Amorosi SL, Hill S, Hirji I. A time trade-off study to determine health-state utilities of transplant recipients with refractory cytomegalovirus infection with or without resistance. Health Qual Life Outcomes 2024; 22:24. [PMID: 38448967 PMCID: PMC10919023 DOI: 10.1186/s12955-024-02239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Health-state utility values (HSUVs) for post-transplant refractory cytomegalovirus (CMV) infection (with or without resistance [R/R]) were determined using a time trade-off (TTO) survey completed by 1,020 members of the UK general public. METHODS Existing literature and qualitative interviews with clinicians experienced in treating R/R CMV were used to develop initial draft vignettes of health states. The vignettes were refined to describe three clinical states of R/R CMV: clinically significant and symptomatic (CS-symptomatic CMV); clinically significant and asymptomatic (CS-asymptomatic CMV); and non-clinically significant (non-CS CMV). Each clinical state was valued independently and combined with three events of interest: graft-versus-host disease; kidney graft loss; and lung graft loss to generate twelve vignettes. The final vignettes were evaluated by a sample of the UK general public using an online TTO survey. Exclusion criteria were applied to the final data to ensure that responses included in the analysis met pre-defined quality control criteria. RESULTS Overall, 738 participants met the inclusion criteria and were included in the analysis. The sample was representative of the UK general population in terms of age and sex. Non-CS CMV had the highest mean HSUV (95% confidence interval) (0.815 [0.791, 0.839]), followed by CS-asymptomatic CMV (0.635 [0.602, 0.669]), and CS-symptomatic CMV (0.443 [0.404, 0.482]). CS-symptomatic CMV with lung graft loss had the lowest mean HSUV (0.289), with none of the health states considered on average worse than dead. CONCLUSIONS Post transplant R/R CMV has substantial impact on the health-related quality of life of patients. The utility values obtained in this study may be used to support economic evaluations of therapies for R/R CMV infection.
Collapse
Affiliation(s)
| | | | | | | | - Stacey L Amorosi
- Takeda Development Center Americas, Inc, 300 Shire Way, Lexington, MA, 02421, USA
| | | | - Ishan Hirji
- Takeda Development Center Americas, Inc, 300 Shire Way, Lexington, MA, 02421, USA.
| |
Collapse
|
69
|
Kleiboeker H, Descourouez JL, Schulz LT, Mandelbrot DA, Odorico JS, Saddler CM, Smith JA, Jorgenson MR. Resource Use and Financial Impact of Oral Step-Down Therapy for Resistant Cytomegalovirus in Solid Organ Transplant Recipients. Transplant Proc 2024; 56:434-439. [PMID: 38355369 DOI: 10.1016/j.transproceed.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Cytomegalovirus (CMV) infections are common opportunistic infections in solid organ transplants (SOT) with increased health care resource USE and costs. Costs are further increased with ganciclovir-resistance (GR). This study aimed to evaluate the real-world impact of conversion to oral step-down therapy on duration of foscarnet and hospital length of stay (LOS) for treatment of GR-CMV infections in SOT. METHODS This study included adult recipients of kidney or lung transplants who received foscarnet for genotypically documented GR-CMV while admitted at the University of Wisconsin Hospital from October 1, 2015, to January 31, 2022. Patients in the oral step-down group were converted from standard of care (SOC; foscarnet) to maribavir or letermovir; patients in the historical control group were treated with SOC. RESULTS Twenty-six patients met the inclusion criteria: 5 in the intervention group and 21 in the SOC group. The median viral load at foscarnet initiation was 11,435 IU/mL. Patients who received oral step-down conversion had shorter mean foscarnet duration than those who received SOC (7 ± 4 vs 37 ± 25 days, P = .017). Mean hospital LOS in the oral step-down group (16 ± 3 days) was shorter than the SOC group (33 ± 21 days; P < .001). In the SOC group, 9 patients lost their graft, and 9 patients died; 2 deaths were attributed to CMV. There were 2 deaths in the oral step-down group, neither of which was attributed to CMV. CONCLUSION AND RELEVANCE In this real-world case series of patients receiving treatment for GR-CMV infection, oral step-down conversion decreased foscarnet therapy duration and hospital LOS. Future studies are needed to evaluate better the effect of oral step-down in treating GR-CMV infection on treatment duration and cost-savings.
Collapse
Affiliation(s)
- Hanna Kleiboeker
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin.
| | - Jillian L Descourouez
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Lucas T Schulz
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Didier A Mandelbrot
- Department of Medicine, Division of Nephrology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jon S Odorico
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christopher M Saddler
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jeannina A Smith
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| |
Collapse
|
70
|
Gondi KT, Kaul DR, Gregg KS, Golbus JR, Aaronson KD, Murthy VL, Konerman MC. Cytomegalovirus infection is associated with impaired myocardial flow reserve after heart transplantation. J Heart Lung Transplant 2024; 43:432-441. [PMID: 37813130 DOI: 10.1016/j.healun.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV) limits long-term survival after heart transplantation (HT). This study evaluates the relationship between clinically significant cytomegalovirus infection (CS-CMVi) and CAV using cardiac positron emission tomography (PET). METHODS We retrospectively evaluated HT patients from 2005 to 2019 who underwent cardiac PET for CAV evaluation. Multivariable linear and logistic regression models were used to evaluate the association between CS-CMVi and myocardial flow reserve (MFR). Kaplan-Meier and Cox regression analyses were used to assess the relationship between CS-CMV, MFR, and clinical outcomes. RESULTS Thirty-two (31.1%) of 103 HT patients developed CS-CMVi at a median 9 months after HT. Patients with CS-CMVi had a significantly lower MFR at year 1 and 3, driven by reduction in stress myocardial blood flow. Patients with CS-CMVi had a faster rate of decline in MFR compared to those without infection (-0.10 vs -0.06 per year, p < 0.001). CS-CMVi was an independent predictor of abnormal MFR (<2.0) (odds ratio: 3.8, 95% confidence intervals (CI): 1.4-10.7, p = 0.001) and a lower MFR (β = -0.39, 95% CI: -0.63 to -0.16, p = 0.001) at year 3. In adjusted survival analyses, both abnormal MFR (log-rank p < 0.001; hazard ratio [HR]: 5.7, 95% CI: 4.2-7.2) and CS-CMVi (log-rank p = 0.028; HR: 3.3, 95% CI: 1.8-4.8) were significant predictors of the primary outcome of all-cause mortality, retransplantation, heart failure hospitalization, and acute coronary syndrome. CONCLUSIONS CS-CMVi is an independent predictor of reduced MFR following HT. These findings suggest that CMV infection is an important risk factor in the development and progression of CAV.
Collapse
Affiliation(s)
- Keerthi T Gondi
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan.
| | - Daniel R Kaul
- Division of Infectious Diseases, Michigan Medicine, Ann Arbor, Michigan
| | - Kevin S Gregg
- Division of Infectious Diseases, Michigan Medicine, Ann Arbor, Michigan
| | - Jessica R Golbus
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Keith D Aaronson
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Matthew C Konerman
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
71
|
Tsui JC, Huang V, Kolomeyer AM, Miller CG, Mishkin A, Maguire AM. EFFICACY OF MARIBAVIR IN VALGANCICLOVIR-RESISTANT CYTOMEGALOVIRUS RETINITIS. Retin Cases Brief Rep 2024; 18:164-167. [PMID: 36730596 DOI: 10.1097/icb.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE To determine whether maribavir is effective at treating ganciclovir-resistant cytomegalovirus retinitis. METHODS Retrospective case report of a lung-transplant patient with bilateral cytomegalovirus retinitis documented with serum and aqueous humor studies and color fundus photographs. RESULTS A 72-year-old lung-transplant patient with active ganciclovir-resistant cytomegalovirus was treated with intravitreal foscarnet therapy in one eye. Retinitis developed in the contralateral eye and was managed with systemic maribavir alone. Active retinitis regressed in both the eye treated with intravitreal foscarnet and the uninjected eye. CONCLUSION This patient's results suggest that systemic maribavir is an effective treatment for treatment-resistant cytomegalovirus retinitis.
Collapse
Affiliation(s)
- Jonathan C Tsui
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
72
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
73
|
Valencia Deray KG, Danziger-Isakov LA, Downes KJ. Current and Emerging Antiviral Agents in the Prevention and Treatment of Cytomegalovirus in Pediatric Transplant Recipients. J Pediatric Infect Dis Soc 2024; 13:S14-S21. [PMID: 38417084 PMCID: PMC10901473 DOI: 10.1093/jpids/piad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/16/2023] [Indexed: 03/01/2024]
Abstract
Despite current prophylaxis regimens, cytomegalovirus (CMV) is common in hematopoietic cell transplantation (HCT) and solid organ transplantation (SOT) and remains a significant cause of morbidity and mortality. Newer antiviral medications are reshaping the landscape for prevention and treatment of CMV DNAemia, infection, and disease. Letermovir is approved for CMV prevention in adult HCT patients and is attractive due to the absence of marrow suppression seen with ganciclovir/valganciclovir. Letermovir should not be routinely used for CMV treatment due to its low threshold for resistance. Maribavir is approved for the treatment of refractory or resistant CMV disease in HCT and SOT recipients ≥12 years of age, though it has no current role in CMV prevention. More research is needed to fully elucidate the roles, efficacy, and safety of these newer agents in prevention and treatment of CMV in pediatric transplant recipients.
Collapse
Affiliation(s)
- Kristen G Valencia Deray
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Lara A Danziger-Isakov
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J Downes
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
74
|
Grgic I, Gorenec L. Human Cytomegalovirus (HCMV) Genetic Diversity, Drug Resistance Testing and Prevalence of the Resistance Mutations: A Literature Review. Trop Med Infect Dis 2024; 9:49. [PMID: 38393138 PMCID: PMC10892457 DOI: 10.3390/tropicalmed9020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a pathogen with high prevalence in the general population that is responsible for high morbidity and mortality in immunocompromised individuals and newborns, while remaining mainly asymptomatic in healthy individuals. The HCMV genome is 236,000 nucleotides long and encodes approximately 200 genes in more than 170 open reading frames, with the highest rate of genetic polymorphisms occurring in the envelope glycoproteins. HCMV infection is treated with antiviral drugs such as ganciclovir, valganciclovir, cidofovir, foscarnet, letermovir and maribavir targeting viral enzymes, DNA polymerase, kinase and the terminase complex. One of the obstacles to successful therapy is the emergence of drug resistance, which can be tested phenotypically or by genotyping using Sanger sequencing, which is a widely available but less sensitive method, or next-generation sequencing performed in samples with a lower viral load to detect minority variants, those representing approximately 1% of the population. The prevalence of drug resistance depends on the population tested, as well as the drug, and ranges from no mutations detected to up to almost 50%. A high prevalence of resistance emphasizes the importance of testing the patient whenever resistance is suspected, which requires the development of more sensitive and rapid tests while also highlighting the need for alternative therapeutic targets, strategies and the development of an effective vaccine.
Collapse
Affiliation(s)
- Ivana Grgic
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| | - Lana Gorenec
- Department of Molecular and Immunological Diagnostic, University Hospital for Infectious Diseases “Dr. Fran Mihaljevic”, 10000 Zagreb, Croatia
| |
Collapse
|
75
|
Chou S, Alain S, Cervera C, Chemaly RF, Kotton CN, Lundgren J, Papanicolaou GA, Pereira MR, Wu JJ, Murray RA, Buss NE, Fournier M. Drug Resistance Assessed in a Phase 3 Clinical Trial of Maribavir Therapy for Refractory or Resistant Cytomegalovirus Infection in Transplant Recipients. J Infect Dis 2024; 229:413-421. [PMID: 37506264 PMCID: PMC10873177 DOI: 10.1093/infdis/jiad293] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND This drug resistance analysis of a randomized trial includes 234 patients receiving maribavir and 116 receiving investigator-assigned standard therapy (IAT), where 56% and 24%, respectively, cleared cytomegalovirus DNA at week 8 (treatment responders). METHODS Baseline and posttreatment plasma samples were tested for mutations conferring drug resistance in viral genes UL97, UL54, and UL27. RESULTS At baseline, genotypic testing revealed resistance to ganciclovir, foscarnet, or cidofovir in 56% of patients receiving maribavir and 68% receiving IAT, including 9 newly phenotyped mutations. Among them, 63% (maribavir) and 21% (IAT) were treatment responders. Detected baseline maribavir resistance mutations were UL27 L193F (n = 1) and UL97 F342Y (n = 3). Posttreatment, emergent maribavir resistance mutations were detected in 60 (26%) of those randomized to maribavir, including 49 (48%) of 103 nonresponders and 25 (86%) of the 29 nonresponders where viral DNA initially cleared then rebounded while on maribavir. The most common maribavir resistance mutations were UL97 T409M (n = 34), H411Y (n = 26), and C480F (n = 21), first detected 26 to 130 (median 56) days after starting maribavir. CONCLUSIONS Baseline maribavir resistance was rare. Drug resistance to standard cytomegalovirus antivirals did not preclude treatment response to maribavir. Rebound in plasma cytomegalovirus DNA while on maribavir strongly suggests emerging drug resistance. CLINICAL TRIALS REGISTRATION NCT02931539.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, USA
- Research and Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Sophie Alain
- Department of Virology and National Reference Center for Herpesviruses, Limoges University Hospital, UMR Inserm 1092, University of Limoges, Limoges, France
| | - Carlos Cervera
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jens Lundgren
- Centre for Health and Infectious Disease Research, Department of Infectious Diseases, Rigshospitalitet, University of Copenhagen, Copenhagen, Denmark
| | - Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Marcus R Pereira
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Jingyang J Wu
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Rose Ann Murray
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Neil E Buss
- Medical Expressions, Büren, Solothurn, Switzerland
| | - Martha Fournier
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| |
Collapse
|
76
|
Trappe M, Affeldt P, Grundmann F, Kann M, Koehler FC, Müller RU, Stippel D, Kaiser R, Knops E, Heger E, Steger G, Klein F, Kurschat C, Di Cristanziano V. Five-year single-center analysis of cytomegalovirus viremia in kidney transplant recipients and possible implication for novel prophylactic therapy approaches. Transpl Infect Dis 2024; 26:e14233. [PMID: 38180168 DOI: 10.1111/tid.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Cytomegalovirus (CMV) infections are a common complication after kidney transplantation (KTx) and negatively affecting patient outcome. Valganciclovir (VGC) prophylaxis is often limited by drug-induced side effects and dose reduction due to decline in kidney function. METHOD In the present study, episodes of CMV viremia in the first year after KTx in a cohort of 316 recipients were analyzed retrospectively to identify risk factors linked to persistent infections. RESULTS In the studied cohort, 18.7% of patients showed a high-risk (HR) constellation (D+/R-) for CMV infections. CMV viremia affected 22% of our cohort, with HR patients being the most affected cohort (44.1%). Within this group, most viremic events (65.3%) occurred while patients were still on prophylactic therapy, showing significantly higher viral loads and a longer duration compared to seropositive recipients. CONCLUSION The analysis at hand revealed that detection of viremia under ongoing antiviral prophylaxis bears an increased risk for sustained viral replication and antiviral drug resistance in HR patients. We identified low estimated glomerular filtration rate (eGFR) and lower dose VGC prophylaxis post-KTx as a risk factor for breakthrough infections in HR patients in our single center cohort. These patients might benefit from a closer CMV monitoring or novel prophylactic agents as letermovir.
Collapse
Affiliation(s)
- Moritz Trappe
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Patrick Affeldt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Kann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dirk Stippel
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital Cologne, Köln, Germany
| | - Rolf Kaiser
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gertrud Steger
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christine Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
77
|
Chou S, Watanabe J. Ganciclovir and maribavir cross-resistance revisited: Relative drug susceptibilities of canonical cytomegalovirus mutants. Antiviral Res 2024; 222:105792. [PMID: 38163624 PMCID: PMC10922325 DOI: 10.1016/j.antiviral.2023.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Therapeutic use of maribavir for human cytomegalovirus infection has renewed attention to the extent of cross-resistance with ganciclovir as the existing standard therapy. Each drug selects in vivo for a characteristic set of resistance mutations in the viral UL97 kinase gene. To improve the calibration of relative susceptibilities to each drug, genetic variants at relevant UL97 codons were extensively phenotyped using the same baseline viral clone, cell culture conditions and growth readout. Ganciclovir-selected mutations at codons 460, 520, 592, 594, 595 and 603 conferred 2.8-fold (C603Y) to 12-fold (M460I) increases in ganciclovir 50% inhibitory concentrations (EC50) over wild type baseline, while conferring maribavir EC50 fold changes ranging from 0.21-fold (M460I) to 1.9-fold (A594V). Maribavir-selected mutations at codons 409, 411 and 480 conferred maribavir EC50 fold changes ranging from 17 (H411Y) to 210 (C480F), while conferring ganciclovir EC50 fold changes ranging from 0.7 (H411Y) to 2.3 (C480F). The P-loop substitution F342Y, selected by either drug, is confirmed to confer 4.7-fold and 6-fold increases in maribavir and ganciclovir EC50s respectively, and suggests this part of the ATP-binding domain of UL97 to be involved in moderate resistance to both drugs. The maribavir hypersensitivity of M460I and M460V may be advantageous.
Collapse
Affiliation(s)
- Sunwen Chou
- Department of Veterans Affairs Medical Center, Portland, OR, USA; Division of Infectious Diseases, Oregon Health and Science University, USA.
| | - Justin Watanabe
- Department of Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
78
|
Kotton CN, Torre-Cisneros J, Yakoub-Agha I. Slaying the "Troll of Transplantation"-new frontiers in cytomegalovirus management: A report from the CMV International Symposium 2023. Transpl Infect Dis 2024; 26:e14183. [PMID: 37942955 DOI: 10.1111/tid.14183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
The 2023 International CMV Symposium took place in Barcelona in May 2023. During the 2-day meeting, delegates and faculty discussed the ongoing challenge of managing the risk of cytomegalovirus infection (the Troll of Transplantation) after solid organ or hematopoietic cell transplantation. Opportunities to improve outcomes of transplant recipients by applying advances in antiviral prophylaxis or pre-emptive therapy, immunotherapy, and monitoring of cell-mediated immunity to routine clinical practice were debated and relevant educational clinical cases presented. This review summarizes the presentations, cases, and discussions from the meeting and describes how further advances are needed before the Troll of Transplantation is slain.
Collapse
Affiliation(s)
- Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian Torre-Cisneros
- Maimónides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital/University of Cordoba (UCO), Cordoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
79
|
Pearce H, Montgomery EK, Sheerin N, Ellam H. A Novel Case of CMV Resistance to Valganciclovir and Maribavir in a Renal Transplant Patient. Transpl Int 2024; 37:11985. [PMID: 38314399 PMCID: PMC10834638 DOI: 10.3389/ti.2024.11985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Affiliation(s)
- Helen Pearce
- Newcastle Hospitals Trust, Newcastle upon Tyne, United Kingdom
| | - Emma K. Montgomery
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Neil Sheerin
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Immunity and Inflammation Theme, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helena Ellam
- Department of Virology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
80
|
Piret J, Boivin G. Management of Cytomegalovirus Infections in the Era of the Novel Antiviral Players, Letermovir and Maribavir. Infect Dis Rep 2024; 16:65-82. [PMID: 38247977 PMCID: PMC10801527 DOI: 10.3390/idr16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Cytomegalovirus (CMV) infections may increase morbidity and mortality in immunocompromised patients. Until recently, standard antiviral drugs against CMV were limited to viral DNA polymerase inhibitors (val)ganciclovir, foscarnet and cidofovir with a risk for cross-resistance. These drugs may also cause serious side effects. This narrative review provides an update on new antiviral agents that were approved for the prevention and treatment of CMV infections in transplant recipients. Letermovir was approved in 2017 for CMV prophylaxis in CMV-seropositive adults who received an allogeneic hematopoietic stem cell transplant. Maribavir followed four years later, with an indication in the treatment of adult and pediatric transplant patients with refractory/resistant CMV disease. The target of letermovir is the CMV terminase complex (constituted of pUL56, pUL89 and pUL51 subunits). Letermovir prevents the cleavage of viral DNA and its packaging into capsids. Maribavir is a pUL97 kinase inhibitor, which interferes with the assembly of capsids and the egress of virions from the nucleus. Both drugs have activity against most CMV strains resistant to standard drugs and exhibit favorable safety profiles. However, high-level resistance mutations may arise more rapidly in the UL56 gene under letermovir than low-grade resistance mutations. Some mutations emerging in the UL97 gene under maribavir can be cross-resistant with ganciclovir. Thus, letermovir and maribavir now extend the drug arsenal available for the management of CMV infections and their respective niches are currently defined.
Collapse
Affiliation(s)
| | - Guy Boivin
- Centre de Recherche en Infectiologie, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
81
|
Tsai H, Bartash R, Burack D, Swaminathan N, So M. Bring it on again: antimicrobial stewardship in transplant infectious diseases: updates and new challenges. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e3. [PMID: 38234416 PMCID: PMC10789986 DOI: 10.1017/ash.2023.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024]
Abstract
Advancement in solid organ transplantation and hematopoietic stem cell transplant continues to improve the health outcomes of patients and widens the number of eligible patients who can benefit from the medical progress. Preserving the effectiveness of antimicrobials remains crucial, as otherwise transplant surgeries would be unsafe due to surgical site infections, and the risk of sepsis with neutropenia would preclude stem cell transplant. In this review, we provide updates on three previously discussed stewardship challenges: febrile neutropenia, Clostridioides difficile infection, and asymptomatic bacteriuria. We also offer insight into four new stewardship challenges: the applicability of the "shorter is better" paradigm shift to antimicrobial duration; antibiotic allergy delabeling and desensitization; colonization with multidrug-resistant gram-negative organisms; and management of cytomegalovirus infections. Specifically, data are accumulating for "shorter is better" and antibiotic allergy delabeling in transplant patients, following successes in the general population. Unique to transplant patients are the impact of multidrug-resistant organism colonization on clinical decision-making of antibiotic prophylaxis in transplant procedure and the need for antiviral stewardship in cytomegalovirus. We highlighted the expansion of antimicrobial stewardship interventions as potential solutions for these challenges, as well as gaps in knowledge and opportunities for further research.
Collapse
Affiliation(s)
- Helen Tsai
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rachel Bartash
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Burack
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Neeraja Swaminathan
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Miranda So
- Sinai Health-University Health Network Antimicrobial Stewardship Program, University Health Network, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Division of Infectious Diseases, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
82
|
Sun K, Fournier M, Sundberg AK, Song IH. Maribavir: Mechanism of action, clinical, and translational science. Clin Transl Sci 2024; 17:e13696. [PMID: 38071422 PMCID: PMC10801391 DOI: 10.1111/cts.13696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/20/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
Maribavir is an oral benzimidazole riboside for treatment of post-transplant cytomegalovirus (CMV) infection/disease that is refractory to prior antiviral treatment (with or without resistance). Through competitive inhibition of adenosine triphosphate, maribavir prevents the phosphorylation actions of UL97 to inhibit CMV DNA replication, encapsidation, and nuclear egress. Maribavir is active against CMV strains with viral DNA polymerase mutations that confer resistance to other CMV antivirals. After oral administration, maribavir is rapidly and highly absorbed (fraction absorbed >90%). The approved dose of 400 mg twice daily (b.i.d.) achieves a steady-state area under the curve per dosing interval of 128 h*μg/mL and trough concentration of 4.90 μg/mL (13.0 μM). Maribavir is highly bound to human plasma proteins (98%) with a small apparent volume of distribution of 27.3 L. Maribavir is primarily cleared by hepatic CYP3A4 metabolism; its major metabolite, VP44669 (pharmacologically inactive), is excreted in the urine and feces. There is no clinically relevant impact on maribavir pharmacokinetics by age, sex, race/ethnicity, body weight, transplant type, or hepatic/renal impairment status. In phase II dose-ranging studies, maribavir showed similar rates of CMV viral clearance across 400, 800, or 1200 mg b.i.d. groups, ranging from 62.5-70% in study 202 (NCT01611974) and 74-83% in study 203 (EudraCT 2010-024247-32). In the phase III SOLSTICE trial (NCT02931539), maribavir 400 mg b.i.d. demonstrated superior CMV viremia clearance at week 8 versus investigator-assigned treatments, with lower treatment discontinuation rates. Dysgeusia, nausea, vomiting, and diarrhea were commonly experienced adverse events among patients treated with maribavir in clinical trials.
Collapse
Affiliation(s)
- Kefeng Sun
- Quantitative Clinical PharmacologyTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Martha Fournier
- Clinical Sciences, Rare Genetics & Hematology Therapeutic Area UnitTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Aimee K. Sundberg
- Clinical Sciences, Rare Genetics & Hematology Therapeutic Area UnitTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Ivy H. Song
- Quantitative Clinical PharmacologyTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| |
Collapse
|
83
|
Klejmont LM, Mo X, Milner J, Harrison L, Morris E, van de Ven C, Cairo MS. Risk Factors Associated with Survival Following Ganciclovir Prophylaxis through Day +100 in Cytomegalovirus At-Risk Pediatric Allogeneic Stem Cell Transplantation Recipients: Development of Cytomegalovirus Viremia Associated with Significantly Decreased 1-Year Survival. Transplant Cell Ther 2024; 30:103.e1-103.e8. [PMID: 37806447 DOI: 10.1016/j.jtct.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Cytomegalovirus (CMV) reactivation is a major cause of morbidity and nonrelapse mortality (NRM) in pediatric allogeneic stem cell transplantation (alloSCT) recipients. Approximately 80% of CMV seropositive alloHCT recipients will experience CMV reactivation without prophylaxis. The impacts of ganciclovir prophylaxis and subsequent CMV viremia on 1-year survival and 1-year NRM are unknown. The primary objective of this study was to determine the effect of CMV viremia on the probability of 1-year survival and 1-year NRM in pediatric alloSCT recipients receiving 100 days of ganciclovir prophylaxis. The secondary objective was to determine the effect of other risk factors on 1-year survival and 1-year NRM. All patients age 0 to 26 years who underwent alloSCT between June 2011 and May 2020 and received ganciclovir prophylaxis for 100 days at Westchester Medical Center, an academic medical center, were analyzed. Ganciclovir was administered to at-risk alloSCT recipients (donor and or recipient CMV+ serostatus) as 5 mg/kg every 12 hours from the first day of conditioning through day -1 (recipient CMV+ only) followed by 6 mg/kg every 24 hours on Monday through Friday beginning on the day of an absolute neutrophil count >750/mm3 and continuing through day +100. National Cancer Institute Common Terminology Criteria for Adverse Events 5.0 criteria were used to grade toxicity. NRM was analyzed using competing survival analysis with relapse death as a competing event. The log-rank and Gray tests were performed to compare the 1-year survival probabilities and NRM cumulative incidence between patients who experienced CMV viremia post-alloSCT and those who did not. Univariate Cox regression analysis was performed for the following risk factors: CMV viremia, donor source, sex, malignant disease, disease risk index, conditioning intensity, receipt of rabbit antithymocyte globulin (rATG)/alemtuzumab, graft-versus-host disease (GVHD) prophylaxis, CMV donor/recipient serostatus, grade II-IV acute GVHD, and grade 3/4 neutropenia necessitating discontinuation of ganciclovir, treating the last 3 factors as time-dependent covariates. Those with P values < .2 were included in the multivariate Cox regression analysis. Eighty-four alloSCT recipients (41 males, 43 females; median age, 10.8 years [range, .4 to 24.4 years]) were analyzed. Multivariate analysis showed significantly lower 1-year survival and significantly higher 1-year NRM in patients who developed CMV viremia compared to those who did not (P = .0036). No other risk factors were significantly associated with 1-year survival or 1-year NRM. One-year survival was significantly decreased and 1-year NRM was significantly increased in pediatric alloSCT recipients who developed CMV viremia following ganciclovir prophylaxis. No other risk factors were found to be associated with 1-year survival or 1-year NRM. Alternative CMV prophylaxis regimens that reduce CMV viremia should be investigated in pediatric alloSCT recipients at risk for CMV infection.
Collapse
Affiliation(s)
- Liana M Klejmont
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jordan Milner
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Lauren Harrison
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | | | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York; Department of Medicine, New York Medical College, Valhalla, New York; Department of Pathology, New York Medical College, Valhalla, New York; Department of Microbiology & Immunology, New York Medical College, Valhalla, New York; Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York.
| |
Collapse
|
84
|
von Hoerschelmann E, Münch J, Gao L, Lücht C, Naik MG, Schmidt D, Pitzinger P, Michel D, Avaniadi P, Schrezenmeier E, Choi M, Halleck F, Budde K. Letermovir Rescue Therapy in Kidney Transplant Recipients with Refractory/Resistant CMV Disease. J Clin Med 2023; 13:100. [PMID: 38202107 PMCID: PMC10780128 DOI: 10.3390/jcm13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: CMV infections remain a problem after kidney transplantation, particularly if patients are refractory or resistant (r/r) to treatment with valganciclovir (VGCV) or ganciclovir (GCV). (2) Methods: In a single-center retrospective study, kidney transplant recipients (KTR) receiving letermovir (LTV) as rescue therapy for VGCV-/GCV-r/r CMV disease were analyzed regarding CMV history, immunosuppression, and outcomes. (3) Results: Of 201 KTR treated for CMV between 2017 and 2022, 8 patients received LTV following treatment failure with VGCV/GCV. All patients received CMV prophylaxis with VGCV according to the center's protocol, and 7/8 patients had a high-risk (D+/R-) CMV constellation. In seven of eight cases, rising CMV levels occurred during prophylaxis. In seven of eight patients, a mutation in UL97 associated with a decreased response to VGCV/GCV was detected. In four of eight patients, LTV resulted in CMV clearance after 24 ± 10 weeks (16-39 weeks), two of eight patients stabilized at viral loads <2000 cop/mL (6-20 weeks), and two of eight patients developed LTV resistance (range 8-10 weeks). (4) Conclusion: LTV, which is currently evaluated for CMV prophylaxis in kidney transplantation, also shows promising results for the treatment of patients with VGCV/GCV resistance despite the risk of developing LTV resistance. Additional studies are needed to further define its role in the treatment of patients with CMV resistance.
Collapse
Affiliation(s)
- Ellen von Hoerschelmann
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Johannes Münch
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Linde Gao
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Lücht
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marcel G. Naik
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Danilo Schmidt
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Paul Pitzinger
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, 10117 Berlin, Germany
| | - Detlef Michel
- Institute of Virology, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - Parthenopi Avaniadi
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
85
|
Yang D, Yao Y, Sun Y, Jiang E. Refractory cytomegalovirus infections in Chinese patients receiving allogeneic hematopoietic cell transplantation: a review of the literature. Front Immunol 2023; 14:1287456. [PMID: 38187387 PMCID: PMC10770847 DOI: 10.3389/fimmu.2023.1287456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
In the absence of prophylactic therapy, cytomegalovirus (CMV) viremia is a common complication following allogeneic hematopoietic cell transplantation (allo-HCT) and represents a significant cause of morbidity and mortality. Approximately 25% of allo-HCT happen in China, where the development and refinement of the 'Beijing protocol' has enabled frequent and increasing use of haploidentical donors. However, refractory CMV infection (an increase by >1 log10 in blood or serum CMV DNA levels after at least 2 weeks of an appropriately dosed anti-CMV medication) is more common among patients with haploidentical donors than with other donor types and has no established standard of care. Here, we review the literature regarding refractory CMV infection following allo-HCT in China.
Collapse
Affiliation(s)
- Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | | | - Yi Sun
- MRL Global Medical Affairs, Shanghai, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
86
|
Yong MK. CMV antiviral stewardship in transplantation - the next frontier. Curr Opin Infect Dis 2023; 36:495-496. [PMID: 37930068 DOI: 10.1097/qco.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Affiliation(s)
- Michelle K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne Victoria 3050, Australia
| |
Collapse
|
87
|
Gourin C, Alain S, Hantz S. Anti-CMV therapy, what next? A systematic review. Front Microbiol 2023; 14:1321116. [PMID: 38053548 PMCID: PMC10694278 DOI: 10.3389/fmicb.2023.1321116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causes of serious complications in immunocompromised patients and after congenital infection. There are currently drugs available to treat HCMV infection, targeting viral polymerase, whose use is complicated by toxicity and the emergence of resistance. Maribavir and letermovir are the latest antivirals to have been developed with other targets. The approval of letermovir represents an important innovation for CMV prevention in hematopoietic stem cell transplant recipients, whereas maribavir allowed improving the management of refractory or resistant infections in transplant recipients. However, in case of multidrug resistance or for the prevention and treatment of congenital CMV infection, finding new antivirals or molecules able to inhibit CMV replication with the lowest toxicity remains a critical need. This review presents a range of molecules known to be effective against HCMV. Molecules with a direct action against HCMV include brincidofovir, cyclopropavir and anti-terminase benzimidazole analogs. Artemisinin derivatives, quercetin and baicalein, and anti-cyclooxygenase-2 are derived from natural molecules and are generally used for different indications. Although they have demonstrated indirect anti-CMV activity, few clinical studies were performed with these compounds. Immunomodulating molecules such as leflunomide and everolimus have also demonstrated indirect antiviral activity against HCMV and could be an interesting complement to antiviral therapy. The efficacy of anti-CMV immunoglobulins are discussed in CMV congenital infection and in association with direct antiviral therapy in heart transplanted patients. All molecules are described, with their mode of action against HCMV, preclinical tests, clinical studies and possible resistance. All these molecules have shown anti-HCMV potential as monotherapy or in combination with others. These new approaches could be interesting to validate in clinical trials.
Collapse
Affiliation(s)
- Claire Gourin
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, Limoges, France
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses, Limoges, France
| |
Collapse
|
88
|
Doss KM, Heldman MR, Limaye AP. Updates in Cytomegalovirus Prevention and Treatment in Solid Organ Transplantation. Infect Dis Clin North Am 2023:S0891-5520(23)00083-1. [PMID: 37989636 PMCID: PMC11102935 DOI: 10.1016/j.idc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The authors summarize recent updates in the prevention and management of cytomegalovirus (CMV) in solid organ transplant (SOT) recipients with a focus on CMV seronegative recipients of organs from seropositive donors (CMV D+/R-) who are at highest risk of CMV infection and disease. They discuss advantages of preemptive therapy for CMV disease prevention in CMV D+/R- liver transplant recipients, letermovir for CMV prophylaxis, and updates in the development of monoclonal antibodies and vaccines as immune-based preventative strategies. They review the roles of maribavir and virus-specific T cells for management of resistant or refractory CMV infection in SOT recipients.
Collapse
Affiliation(s)
- Kathleen M Doss
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Madeleine R Heldman
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Ajit P Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
89
|
Windpessl M, Kostopoulou M, Conway R, Berke I, Bruchfeld A, Soler MJ, Sester M, Kronbichler A. Preventing infections in immunocompromised patients with kidney diseases: vaccines and antimicrobial prophylaxis. Nephrol Dial Transplant 2023; 38:ii40-ii49. [PMID: 37218705 DOI: 10.1093/ndt/gfad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 05/24/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic revealed that our understanding of infectious complications and strategies to mitigate severe infections in patients with glomerular diseases is limited. Beyond COVID-19, there are several infections that specifically impact care of patients receiving immunosuppressive measures. This review will provide an overview of six different infectious complications frequently encountered in patients with glomerular diseases, and will focus on recent achievements in terms of vaccine developments and understanding of the use of specific antimicrobial prophylaxis. These include influenza virus, Streptococcus pneumoniae, reactivation of a chronic or past infection with hepatitis B virus in cases receiving B-cell depletion, reactivation of cytomegalovirus, and cases of Pneumocystis jirovecii pneumonia in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Varicella zoster virus infections are particularly frequent in patients with systemic lupus erythematosus and an inactivated vaccine is available to use as an alternative to the attenuated vaccine in patients receiving immunosuppressants. As with COVID-19 vaccines, vaccine responses are generally impaired in older patients, and after recent administration of B-cell depleting agents, and high doses of mycophenolate mofetil and other immunosuppressants. Strategies to curb infectious complications are manifold and will be outlined in this review.
Collapse
Affiliation(s)
- Martin Windpessl
- Department of Internal Medicine IV, Nephrology, Klinikum Wels-Grieskirchen, Wels, Austria
| | | | - Richard Conway
- St James's Hospital, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
| | - Ilay Berke
- Department of Nephrology, Marmara University School of Medicine, Istanbul, Turkey
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Maria Jose Soler
- Nephrology and Kidney Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Nephrology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Martina Sester
- Department of Transplant and Infection Immunology, Institute of Infection Medicine, Saarland University, Homburg, Germany
| | - Andreas Kronbichler
- Department of Medicine, University of Cambridge, Cambridge, UK
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
90
|
Weerdenburg H, Lindsay J. Expanding the scope of the infectious diseases pharmacist in HCT: Beyond antimicrobial stewardship. Transpl Infect Dis 2023; 25 Suppl 1:e14094. [PMID: 37418600 DOI: 10.1111/tid.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Infectious disease (ID) pharmacists and antimicrobial stewardship (AMS) programs are integral to the infection management of hematopoietic cell transplant (HCT) recipients demonstrating effective implementation of clinical pathways, de-escalation of empirical antibiotics for febrile neutropenia (FN), allergy assessments, and use of rapid diagnostic testing. The HCT procedure is complex, dynamic, and a high risk for infectious complications. Therefore, there is an important role for an ID and AMS pharmacist to collaborate with the primary treating team, with ongoing care, involving the optimal individual patient prophylactic, pre-emptive and treatment management of infections in this high-risk population. CONCLUSION This review highlights key factors for consideration of ID/AMS Pharmacists in relation to HCT, including important aspects in the evaluation of infection risk prior to transplant, risk from donor sources, length of, and changes in immunosuppression, and potential drug-drug interactions from other essential supportive care therapies.
Collapse
Affiliation(s)
- Heather Weerdenburg
- Children's Cancer Centre, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Julian Lindsay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- National Centre for Infections in Cancer and Transplantation (NCICT), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
91
|
Walti CS, Khanna N, Avery RK, Helanterä I. New Treatment Options for Refractory/Resistant CMV Infection. Transpl Int 2023; 36:11785. [PMID: 37901297 PMCID: PMC10600348 DOI: 10.3389/ti.2023.11785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Despite advances in monitoring and treatment, cytomegalovirus (CMV) infections remain one of the most common complications after solid organ transplantation (SOT). CMV infection may fail to respond to standard first- and second-line antiviral therapies with or without the presence of antiviral resistance to these therapies. This failure to respond after 14 days of appropriate treatment is referred to as "resistant/refractory CMV." Limited data on refractory CMV without antiviral resistance are available. Reported rates of resistant CMV are up to 18% in SOT recipients treated for CMV. Therapeutic options for treating these infections are limited due to the toxicity of the agent used or transplant-related complications. This is often the challenge with conventional agents such as ganciclovir, foscarnet and cidofovir. Recent introduction of new CMV agents including maribavir and letermovir as well as the use of adoptive T cell therapy may improve the outcome of these difficult-to-treat infections in SOT recipients. In this expert review, we focus on new treatment options for resistant/refractory CMV infection and disease in SOT recipients, with an emphasis on maribavir, letermovir, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Carla Simone Walti
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
92
|
Gatti M, Rinaldi M, Potena L, Salvaterra E, Morelli MC, Giannella M, Viale P, Pea F. Does therapeutic drug monitoring (TDM) of trough concentrations suffice for optimizing preemptive therapy with ganciclovir of cytomegalovirus infections in non-renal solid organ transplant recipients? Transpl Infect Dis 2023; 25:e14107. [PMID: 37515787 DOI: 10.1111/tid.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVES The aim of this study is to explore the relationship between ganciclovir exposure and clinical efficacy and/or safety in non-renal solid organ transplant (SOT) recipients receiving preemptive therapy with ganciclovir/valganciclovir and undergoing therapeutic drug monitoring (TDM)-guided dosing optimization. METHODS Non-renal SOT recipients admitted to IRCCS Azienda Ospedaliero-Universitaria of Bologna receiving preemptive therapy with ganciclovir or valganciclovir for active cytomegalovirus (CMV) infection and who underwent at least one TDM were included. Desired ganciclovir Cmin range was set at 1-3 mg/L, and average ganciclovir trough concentrations (Cmin ) were calculated for each patient. Reduced CMV viral load below the lower limit of quantification (LLQ) at 30 days and occurrence of myelotoxicity were selected as the primary outcome. Univariate analysis was performed by comparing patients with average Cmin below or above 1 or 3 mg/L. Receiver operating characteristic (ROC) curve analysis was performed to identify the average ganciclovir Cmin cut-off predictive for clinical efficacy or toxicity. RESULTS Twenty-nine out of 89 retrieved patients met the inclusion criteria, with a median (interquartile [IQR]) baseline CMV viral load of 27,163 copies/mL (IQR 13 159.75-151 340.25 copies/mL). Reduced CMV viral load below the LLQ at 30 days was found in 17 patients (58.6%). No difference was found in the primary outcome between patients showing average Cmin below or above 1 mg/L (100.0% vs. 53.8%; p = .25) and/or 3 mg/L (65.2% vs. 33.3%; p = .20). ROC analysis did not allow to identify an average Cmin cut-off predictive of clinical efficacy or toxicity. CONCLUSIONS No clear relationship between ganciclovir Cmin and neither CMV eradication nor safety issues was identified.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Rinaldi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luciano Potena
- Unit of Heart Failure and Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elena Salvaterra
- Division of Interventional Pulmonology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
93
|
Bassel M, Romanus D, Bo T, Sundberg AK, Okala S, Hirji I. Retrospective chart review of transplant recipients with cytomegalovirus infection who received maribavir in the Phase 3 SOLSTICE trial: Data at 52 weeks post-maribavir treatment initiation. Antivir Ther 2023; 28:13596535231195431. [PMID: 37657421 DOI: 10.1177/13596535231195431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a frequent complication in haematopoietic cell/solid organ transplant (HCT/SOT) recipients. Previous studies report all-cause mortality rates of 31% and 50% in HCT/SOT recipients post-treatment initiation with conventional anti-CMV therapies for refractory or resistant CMV. METHODS This was a multi-country, retrospective medical chart review study of HCT/SOT recipients with refractory CMV infection with or without resistance (R/R) who were randomized to the maribavir arm in the open-label Phase 3 SOLSTICE trial. Patients came from 21 SOLSTICE sites across 6 countries; each site randomized ≥3 patients to the maribavir arm. Patients were followed for 52 weeks (SOLSTICE trial period: 20 weeks; follow-up chart review period: 32 weeks). The primary outcomes were mortality and graft status. RESULTS Of 234 patients who were randomized and received maribavir in SOLSTICE, chart abstraction was completed for all 109 patients enrolled across 21 trial sites (SOT, 68/142; HCT, 41/92). At 52 weeks, overall mortality was 15.6% (17/109) and survival probability was 0.84. Among SOT recipients, survival probability was 0.96, and 3 (4.4%) deaths occurred during the chart review period. For the HCT recipients, survival probability was 0.65 with 14 (34.1%) deaths; 8 occurred during SOLSTICE and 6 during the chart review period. No new graft loss or re-transplantation occurred during the chart review period. CONCLUSIONS Overall mortality at 52 weeks post-maribavir treatment initiation in this sub-cohort of patients from the SOLSTICE trial was lower than that previously reported for similar populations treated with conventional therapies for R/R cytomegalovirus infection.
Collapse
Affiliation(s)
| | - Dorothy Romanus
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | - Tien Bo
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | | | | | - Ishan Hirji
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| |
Collapse
|
94
|
Miller W, January S, Klaus J, Neuner E, Pande A, Krekel T. Safety and efficacy of weight-based ganciclovir dosing strategies in overweight/obese patients. Transpl Infect Dis 2023; 25:e14134. [PMID: 37615196 DOI: 10.1111/tid.14134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The management of cytomegalovirus (CMV) is particularly challenging as both CMV and its usual first-line treatment, ganciclovir, are associated with neutropenia. Ganciclovir dosing is weight-based, most commonly utilizing total body weight (TBW). The subsequent high doses of ganciclovir in overweight/obese patients may increase the risk of toxicity. Utilizing adjusted body weight (AdjBW) dosing may help mitigate this risk. Therefore, the objective of this study was to evaluate the difference in toxicity and efficacy between TBW and AdjBW ganciclovir dosing strategies in overweight/obese patients. METHODS This retrospective study conducted safety and efficacy analyses of ganciclovir courses (≥72 h) used as CMV treatment. The primary safety outcome was the incidence of neutropenia (absolute neutrophil count <1000 cells/μL), and the primary efficacy outcome was a 2-log decrease in CMV polymerase chain reaction within 4 weeks following ganciclovir initiation. In both analyses, courses were excluded in which ganciclovir was dosed outside of specified renal dosing parameters for >20% of the course. RESULTS Among the 253 courses in the safety cohort, there was no difference in the incidence of neutropenia (17.4% vs. 13.5%, p = .50) in AdjBW compared to TBW dosing. In the 62 courses evaluating efficacy, there was no statistical difference between AdjBW and TBW dosing (60.0% vs. 45.2%, p = .28). No subgroups were identified in which AdjBW dosing was advantageous. CONCLUSION Utilization of AdjBW ganciclovir dosing did not result in decreased neutropenia or treatment efficacy as compared to TBW dosing. Further studies with larger patient populations would be beneficial to confirm these findings.
Collapse
Affiliation(s)
- William Miller
- Department of Pharmacy, Deaconess Hospital, Evansville, Indiana, USA
| | - Spenser January
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri, USA
| | - Jeff Klaus
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri, USA
| | - Elizabeth Neuner
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri, USA
| | - Anupam Pande
- Division of Infectious Disease, Washington University in St Louis School of Medicine, Saint Louis, Missouri, USA
| | - Tamara Krekel
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, Missouri, USA
| |
Collapse
|
95
|
Bottino P, Pastrone L, Curtoni A, Bondi A, Sidoti F, Zanotto E, Cavallo R, Solidoro P, Costa C. Antiviral Approach to Cytomegalovirus Infection: An Overview of Conventional and Novel Strategies. Microorganisms 2023; 11:2372. [PMID: 37894030 PMCID: PMC10608897 DOI: 10.3390/microorganisms11102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus capable of establishing a lifelong persistence in the host through a chronic state of infection and remains an essential global concern due to its distinct life cycle, mutations, and latency. It represents a life-threatening pathogen for immunocompromised patients, such as solid organ transplanted patients, HIV-positive individuals, and hematopoietic stem cell recipients. Multiple antiviral approaches are currently available and administered in order to prevent or manage viral infections in the early stages. However, limitations due to side effects and the onset of antidrug resistance are a hurdle to their efficacy, especially for long-term therapies. Novel antiviral molecules, together with innovative approaches (e.g., genetic editing and RNA interference) are currently in study, with promising results performed in vitro and in vivo. Since HCMV is a virus able to establish latent infection, with a consequential risk of reactivation, infection management could benefit from preventive treatment for critical patients, such as immunocompromised individuals and seronegative pregnant women. This review will provide an overview of conventional antiviral clinical approaches and their mechanisms of action. Additionally, an overview of proposed and developing new molecules is provided, including nucleic-acid-based therapies and immune-mediated approaches.
Collapse
Affiliation(s)
- Paolo Bottino
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Lisa Pastrone
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Antonio Curtoni
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Alessandro Bondi
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Francesca Sidoti
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Elisa Zanotto
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Rossana Cavallo
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Paolo Solidoro
- Pneumology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy;
| | - Cristina Costa
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| |
Collapse
|
96
|
Dulek DE. Update on Epidemiology and Outcomes of Infection in Pediatric Organ Transplant Recipients. Infect Dis Clin North Am 2023; 37:561-575. [PMID: 37532391 DOI: 10.1016/j.idc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Pediatric solid organ transplant (SOT) recipients are at risk for infection following transplantation. Data from adult SOT recipients are often used to guide prevention and treatment of infections associated with organ transplantation in children. This article highlights key recent pediatric SOT-specific publications for an array of infectious complications of organ transplantation. Attention is given to areas of need for future study.
Collapse
Affiliation(s)
- Daniel E Dulek
- Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
| |
Collapse
|
97
|
Razonable RR. Oral antiviral drugs for treatment of cytomegalovirus in transplant recipients. Clin Microbiol Infect 2023; 29:1144-1149. [PMID: 36963566 DOI: 10.1016/j.cmi.2023.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is an opportunistic pathogen responsible for substantial morbidity after solid organ transplantation and haematopoietic stem cell transplantation. Treatment of CMV disease involves a two-pronged approach with antiviral drug treatment coupled with strategies to minimize the intensity of immune suppression. OBJECTIVES This narrative review examines the evidence for the current treatment of CMV disease in transplant recipients, including the use of oral antiviral drugs. SOURCES Literature search was performed on PubMed with keywords cytomegalovirus, transplantation, ganciclovir, valganciclovir, maribavir, letermovir, cidofovir, and foscarnet. CONTENT Intravenous and oral valganciclovir are the standard first-line treatment of cytomegalovirus disease after transplantation. Oral maribavir has demonstrated superior efficacy and safety over CMV DNA polymerase inhibitors for the treatment of refractory or resistant CMV infection. Transplant patients with severe and life-threatening CMV disease, those with very high viral load, and patients with impaired gastrointestinal absorption should still be treated initially with intravenous antiviral drugs, including ganciclovir and foscarnet. Criteria for the safe transition from intravenous therapies to oral antiviral drugs include achieving clinical improvement and satisfactory decline in viral load. Recurrence of CMV viremia and disease is common, particularly among transplant patients who are lymphopenic and have impaired CMV-specific immunity. IMPLICATIONS Oral antiviral drugs for the treatment of CMV infection and disease in transplant recipients have improved the CMV landscape, because they reduce the cost and mitigate the inconvenience and risks related to prolonged hospitalization and the need for long-term intravascular access. However, their antiviral efficacy should be complemented by an intentional strategy of reducing the degree of immune suppression to allow for immunologic recovery that ensures durable control of CMV infection.
Collapse
|
98
|
Bharati J, Anandh U, Kotton CN, Mueller T, Shingada AK, Ramachandran R. Diagnosis, Prevention, and Treatment of Infections in Kidney Transplantation. Semin Nephrol 2023; 43:151486. [PMID: 38378396 DOI: 10.1016/j.semnephrol.2023.151486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Kidney transplant often is complicated by infections in the recipient from therapy-related and patient-related risk factors. Infections in kidney transplant recipients are associated with increased morbidity, mortality, and allograft dysfunction. There is a predictable timeline after kidney transplant regarding the types of pathogens causing infections, reflecting the net state of immunosuppression. In the early post-transplant period, bacterial infections comprise two thirds of all infections, followed by viral and fungal infections. Infections occurring early after kidney transplantation are generally the result of postoperative complications. In most cases, opportunistic infections occur within 6 months after kidney transplantation. They may be caused by a new infection, a donor-derived infection, or reactivation of a latent infection. Community-acquired pneumonia, upper respiratory tract infections, urinary tract infections, and gastrointestinal infections are the most common infections in the late period after transplantation when the net immunosuppression is minimal. It is crucial to seek information on the time after transplant, reflecting the net state of immunosuppression, previous history of exposure/infections, geography, and seasonal outbreaks. It is imperative that we develop regionally specific guidelines on screening, prevention, and management of infections after kidney transplantation.
Collapse
Affiliation(s)
- Joyita Bharati
- Section of Nephrology, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA.
| | - Urmila Anandh
- Department of Nephrology, Amrita Hospitals, Faridabad, Delhi National Capital Region, India
| | - Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Thomas Mueller
- Renal Transplant Program, University Hospital of Zurich, Zurich, Switzerland
| | | | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
99
|
McInturff EL, France SP, Leverett CA, Flick AC, Lindsey EA, Berritt S, Carney DW, DeForest JC, Ding HX, Fink SJ, Gibson TS, Gray K, Hubbell AK, Johnson AM, Liu Y, Mahapatra S, McAlpine IJ, Watson RB, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2021. J Med Chem 2023; 66:10150-10201. [PMID: 37528515 DOI: 10.1021/acs.jmedchem.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.
Collapse
Affiliation(s)
- Emma L McInturff
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Scott P France
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Carolyn A Leverett
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Simon Berritt
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co. Ltd., Beijing, 100085, China
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Kaitlyn Gray
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M Johnson
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yiyang Liu
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Subham Mahapatra
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Indrawan J McAlpine
- Genesis Therapeutics, 11568 Sorrento Valley Road, Suite 8, San Diego, California 92121, United States
| | - Rebecca B Watson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Christopher J O'Donnell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
100
|
Bini Viotti J, Dammann F, Jimenez Jimenez AM, Anderson AD, Morris MI, Camargo JF, Raja M. Emergence of maribavir resistance after CMV treatment in hematopoietic stem cell transplant recipient. Ann Hematol 2023; 102:2283-2284. [PMID: 37183208 DOI: 10.1007/s00277-023-05265-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Julia Bini Viotti
- Jackson Health System, Miami Transplant Institute, Miami, FL, USA
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fabian Dammann
- Jackson Health System, Miami Transplant Institute, Miami, FL, USA
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonio Martin Jimenez Jimenez
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony D Anderson
- Department of Pharmacy Services, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michele I Morris
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose F Camargo
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mohammed Raja
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|