51
|
Abstract
Adult cardiomyocytes are postmitotic cells that undergo very limited cell division. Thus, cardiomyocyte death as occurs during myocardial infarction has very detrimental consequences for the heart. Mitochondria have emerged as an important regulator of cardiovascular health and disease. Mitochondria are well established as bioenergetic hubs for generating ATP but have also been shown to regulate cell death pathways. Indeed many of the same signals used to regulate metabolism and ATP production, such as calcium and reactive oxygen species, are also key regulators of mitochondrial cell death pathways. It is widely hypothesized that an increase in calcium and reactive oxygen species activate a large conductance channel in the inner mitochondrial membrane known as the PTP (permeability transition pore) and that opening of this pore leads to necroptosis, a regulated form of necrotic cell death. Strategies to reduce PTP opening either by inhibition of PTP or inhibiting the rise in mitochondrial calcium or reactive oxygen species that activate PTP have been proposed. A major limitation of inhibiting the PTP is the lack of knowledge about the identity of the protein(s) that form the PTP and how they are activated by calcium and reactive oxygen species. This review will critically evaluate the candidates for the pore-forming unit of the PTP and discuss recent data suggesting that assumption that the PTP is formed by a single molecular identity may need to be reconsidered.
Collapse
Affiliation(s)
- Tyler M Bauer
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD
| |
Collapse
|
52
|
Mnatsakanyan N, Llaguno MC, Yang Y, Yan Y, Weber J, Sigworth FJ, Jonas EA. A mitochondrial megachannel resides in monomeric F 1F O ATP synthase. Nat Commun 2019; 10:5823. [PMID: 31862883 PMCID: PMC6925261 DOI: 10.1038/s41467-019-13766-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/25/2019] [Indexed: 11/08/2022] Open
Abstract
Purified mitochondrial ATP synthase has been shown to form Ca2+-activated, large conductance channel activity similar to that of mitochondrial megachannel (MMC) or mitochondrial permeability transition pore (mPTP) but the oligomeric state required for channel formation is being debated. We reconstitute purified monomeric ATP synthase from porcine heart mitochondria into small unilamellar vesicles (SUVs) with the lipid composition of mitochondrial inner membrane and analyze its oligomeric state by electron cryomicroscopy. The cryo-EM density map reveals the presence of a single ATP synthase monomer with no density seen for a second molecule tilted at an 86o angle relative to the first. We show that this preparation of SUV-reconstituted ATP synthase monomers, when fused into giant unilamellar vesicles (GUVs), forms voltage-gated and Ca2+-activated channels with the key features of mPTP. Based on our findings we conclude that the ATP synthase monomer is sufficient, and dimer formation is not required, for mPTP activity.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Marc C Llaguno
- Center for Cellular and Molecular Imaging, Yale University, New Haven, CT, USA
| | - Youshan Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yangyang Yan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Elizabeth A Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
53
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:ijms20194823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
54
|
Prokaryotic and Mitochondrial Lipids: A Survey of Evolutionary Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31502197 DOI: 10.1007/978-3-030-21162-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mitochondria and bacteria share a myriad of properties since it is believed that the powerhouses of the eukaryotic cell have evolved from a prokaryotic origin. Ribosomal RNA sequences, DNA architecture and metabolism are strikingly similar in these two entities. Proteins and nucleic acids have been a hallmark for comparison between mitochondria and prokaryotes. In this chapter, similarities (and differences) between mitochondrial and prokaryotic membranes are addressed with a focus on structure-function relationship of different lipid classes. In order to be suitable for the theme of the book, a special emphasis is reserved to the effects of bioactive sphingolipids, mainly ceramide, on mitochondrial membranes and their roles in initiating programmed cell death.
Collapse
|
55
|
Font‐Belmonte E, Ugidos IF, Santos‐Galdiano M, González‐Rodríguez P, Anuncibay‐Soto B, Pérez‐Rodríguez D, Gonzalo‐Orden JM, Fernández‐López A. Post‐ischemic salubrinal administration reduces necroptosis in a rat model of global cerebral ischemia. J Neurochem 2019; 151:777-794. [DOI: 10.1111/jnc.14789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Irene F. Ugidos
- Área de Biología Celular, Instituto de Biomedicina University of León León Spain
| | | | | | - Berta Anuncibay‐Soto
- Área de Biología Celular, Instituto de Biomedicina University of León León Spain
| | | | | | | |
Collapse
|
56
|
Hurst S, Baggett A, Csordas G, Sheu SS. SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca 2+ influx, and regulation of mitochondrial permeability transition pore opening. J Biol Chem 2019; 294:10807-10818. [PMID: 31097542 DOI: 10.1074/jbc.ra118.006443] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/20/2019] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial matrix ATPase associated with diverse cellular activities (m-AAA) protease spastic paraplegia 7 (SPG7) has been recently implicated as either a negative or positive regulatory component of the mitochondrial permeability transition pore (mPTP) by two research groups. To address this controversy, we investigated possible mechanisms that explain the discrepancies between these two studies. We found that loss of the SPG7 gene increased resistance to Ca2+-induced mPTP opening. However, this occurs independently of cyclophilin D (cyclosporine A insensitive) rather it is through decreased mitochondrial Ca2+ concentrations and subsequent adaptations mediated by impaired formation of functional mitochondrial Ca2+ uniporter complexes. We found that SPG7 directs the m-AAA complex to favor association with the mitochondrial Ca2+ uniporter (MCU) and MCU processing regulates higher order MCU-complex formation. The results suggest that SPG7 does not constitute a core component of the mPTP but can modulate mPTP through regulation of the basal mitochondrial Ca2+ concentration.
Collapse
Affiliation(s)
- Stephen Hurst
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Ariele Baggett
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Gyorgy Csordas
- Department of Pathology, Anatomy, and Cell Biology, Mitocare Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and.
| |
Collapse
|
57
|
Murphy E, Bernardi P, Cohen M, Di Lisa F, Forte M, Molkentin J, Ovize M. Fondation Leducq Transatlantic Network of Excellence Targeting Mitochondria to Treat Heart Disease. Circ Res 2019; 124:1294-1296. [PMID: 31021720 PMCID: PMC6485951 DOI: 10.1161/circresaha.119.314893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elizabeth Murphy
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive Bethesda, MD 20892, USA
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy
| | - Michael Cohen
- Dept of Physiology& Pharmacology, School of Medicine, Oregon Heath and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy
| | - Michael Forte
- Vollum Institute, L474, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Jeffery Molkentin
- Department of Pediatrics, Children’s Hospital Medical Center, 240 Albert Sabin Way; MLC7020, Cincinnati, OH 45229-3039
| | - Michel Ovize
- INSERM U060, CarMeN Laboratory, Claude Bernard Lyon1 University, F-69373 Lyon, France, and, Service d’explorations fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
58
|
Marchi S, Vitto VAM, Patergnani S, Pinton P. High mitochondrial Ca 2+ content increases cancer cell proliferation upon inhibition of mitochondrial permeability transition pore (mPTP). Cell Cycle 2019; 18:914-916. [PMID: 30909805 DOI: 10.1080/15384101.2019.1598729] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Saverio Marchi
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA) , University of Ferrara , Ferrara , Italy
| | - Veronica Angela Maria Vitto
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA) , University of Ferrara , Ferrara , Italy
| | - Simone Patergnani
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA) , University of Ferrara , Ferrara , Italy.,b Cecilia Hospital, GVM Care & Research , E.S: Health Science Foundation , Cotignola , Italy
| | - Paolo Pinton
- a Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA) , University of Ferrara , Ferrara , Italy.,b Cecilia Hospital, GVM Care & Research , E.S: Health Science Foundation , Cotignola , Italy
| |
Collapse
|
59
|
Dhingra R, Lieberman B, Kirshenbaum LA. Cyclophilin D phosphorylation is critical for mitochondrial calcium uniporter regulated permeability transition pore sensitivity. Cardiovasc Res 2019; 115:261-263. [PMID: 30380030 PMCID: PMC6341223 DOI: 10.1093/cvr/cvy270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Rimpy Dhingra
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rm. 3016, 351 Taché Avenue, Winnipeg, Manitoba, Canada
| | - Brooke Lieberman
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rm. 3016, 351 Taché Avenue, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rm. 3016, 351 Taché Avenue, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
60
|
Porter GA, Beutner G. Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function. Biomolecules 2018; 8:E176. [PMID: 30558250 PMCID: PMC6316178 DOI: 10.3390/biom8040176] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cyclophilin D (CyPD) is an important mitochondrial chaperone protein whose mechanism of action remains a mystery. It is well known for regulating mitochondrial function and coupling of the electron transport chain and ATP synthesis by controlling the mitochondrial permeability transition pore (PTP), but more recent evidence suggests that it may regulate electron transport chain activity. Given its identification as a peptidyl-prolyl, cis-trans isomerase (PPIase), CyPD, is thought to be involved in mitochondrial protein folding, but very few reports demonstrate the presence of this activity. By contrast, CyPD may also perform a scaffolding function, as it binds to a number of important proteins in the mitochondrial matrix and inner mitochondrial membrane. From a clinical perspective, inhibiting CyPD to inhibit PTP opening protects against ischemia⁻reperfusion injury, making modulation of CyPD activity a potentially important therapeutic goal, but the lack of knowledge about the mechanisms of CyPD's actions remains problematic for such therapies. Thus, the important yet enigmatic nature of CyPD somehow makes it a master regulator, yet a troublemaker, for mitochondrial function.
Collapse
Affiliation(s)
- George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Gisela Beutner
- Department of Pediatrics, Division of Cardiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| |
Collapse
|
61
|
Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets. Trends Pharmacol Sci 2018; 40:50-70. [PMID: 30527591 DOI: 10.1016/j.tips.2018.11.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Mitochondrial permeability transition, as the consequence of opening of a mitochondrial permeability transition pore (mPTP), is a cellular catastrophe. Initiating bioenergetic collapse and cell death, it has been implicated in the pathophysiology of major human diseases, including neuromuscular diseases of childhood, ischaemia-reperfusion injury, and age-related neurodegenerative disease. Opening of the mPTP represents a major therapeutic target, as it can be mitigated by a number of compounds. However, clinical studies have so far been disappointing. We therefore address the prospects and challenges faced in translating in vitro findings to clinical benefit. We review the role of mPTP opening in disease, discuss recent findings defining the putative structure of the mPTP, and explore strategies to identify novel, clinically useful mPTP inhibitors, highlighting key considerations in the drug discovery process.
Collapse
Affiliation(s)
- Thomas Briston
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield, UK.
| | - David L Selwood
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK; Department of Biomedical Sciences, University of Padua, Padua, Italy; The Francis Crick Institute, London, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| |
Collapse
|