51
|
Complete Genome Sequence of Burkholderia cenocepacia Phage Paku. Microbiol Resour Announc 2022; 11:e0122021. [PMID: 35343779 PMCID: PMC9022590 DOI: 10.1128/mra.01220-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Burkholderia cenocepacia is able to cause infections in cystic fibrosis patients. B. cenocepacia phage Paku has a 42,727-bp genome sharing a phiKMV-like genome arrangement. T7-like tail components were identified in parallel with a tyrosine integrase, suggesting that Paku might exhibit a temperate lifestyle, an atypical feature for an Autographiviridae phage.
Collapse
|
52
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Sonora. Microbiol Resour Announc 2022; 11:e0016722. [PMID: 35319245 PMCID: PMC9022593 DOI: 10.1128/mra.00167-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage Sonora is a siphophage that was isolated against the opportunistic human pathogen Stenotrophomonas maltophilia. The genome of phage Sonora is 63,825 bp long and is not related to that of any phage at the nucleotide level. Sonora shares 46 of 97 total proteins with the Bordetella phages CN2, MW2, and FP1.
Collapse
|
53
|
Complete Genome Sequence of Stenotrophomonas maltophilia Podophage Piffle. Microbiol Resour Announc 2022; 11:e0015922. [PMID: 35319268 PMCID: PMC9022547 DOI: 10.1128/mra.00159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging multidrug-resistant opportunistic human pathogen causing various nosocomial infections. Here, we characterize the genome of S. maltophilia podophage Piffle. Its 76,332-bp genome is most closely related to the N4-like S. maltophilia podophage Pokken, with over 86% genome-wide nucleotide identity and 84 shared proteins.
Collapse
|
54
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Silvanus. Microbiol Resour Announc 2022; 11:e0121021. [PMID: 35225669 PMCID: PMC8928760 DOI: 10.1128/mra.01210-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic Gram-negative bacterium capable of causing respiratory infections. S. maltophilia siphophage Silvanus was isolated, and its 45,678-bp genome is not closely related to known phages based on whole-genome comparative genomics analysis. It is predicted to use cos-type packaging due to the similarity of its large terminase subunit to that of phage HK97.
Collapse
|
55
|
Complete Genome Sequence of Stenotrophomonas maltophilia Myophage Marzo. Microbiol Resour Announc 2022; 11:e0120221. [PMID: 35225674 PMCID: PMC8928761 DOI: 10.1128/mra.01202-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic bacterium that is increasingly being associated with infections. Here, we report the complete genome of the S. maltophilia myophage Marzo, with a 159,384-bp genome encoding 268 proteins, 23 tRNAs, and 1 transfer-messenger RNA. Marzo is closely related to S. maltophilia phages IME-SM1 and Mendera.
Collapse
|
56
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Suso. Microbiol Resour Announc 2022; 11:e0011722. [PMID: 35285692 PMCID: PMC9022531 DOI: 10.1128/mra.00117-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage Suso is a temperate siphophage of Stenotrophomonas maltophilia with a 44,659-bp genome. This phage is closely related to Stenotrophomonas phage SM171, sharing 92% overall nucleotide identity as determined by BLASTn, and it shares 14 similar proteins (BLASTp, E value < 0.001) with some Pseudomonas phages from the genus Beetrevirus.
Collapse
|
57
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen demonstrating increasing drug resistance. Here, the genome of the T7-like S. maltophilia podophage Ptah is described. Its 42,593-bp genome is closely related to previously reported T7-like S. maltophilia podophages, including phage Ponderosa.
Collapse
|
58
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Suzuki. Microbiol Resour Announc 2022; 11:e0013622. [PMID: 35258338 PMCID: PMC9022582 DOI: 10.1128/mra.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia
is a Gram-negative bacterium known to cause respiratory tract infections and other diseases in humans. Here, we describe the isolation and genome annotation of
S. maltophilia
siphophage Suzuki. Its 56,042-bp genome has 83 predicted protein-coding genes and demonstrates similarity with
Xylella
phages Sano and Salvo.
Collapse
|
59
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Summit. Microbiol Resour Announc 2022; 11:e0008922. [PMID: 35254110 PMCID: PMC9022506 DOI: 10.1128/mra.00089-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen exhibiting resistance to multiple antimicrobials. This study reports the complete genome of an S. maltophilia siphophage, Summit. Its genome of 95,728 bp has 148 protein-coding genes and 5 tRNAs, including 1 predicted suppressor tRNA. Possible target genes for the suppressor tRNA are not identified.
Collapse
|
60
|
Ma R, Shao S, Wei S, Ye J, Yang Y, Jiao N, Zhang R. A Novel Phage Infecting the Marine Photoheterotrophic Bacterium Citromicrobium bathyomarinum. Viruses 2022; 14:v14030512. [PMID: 35336919 PMCID: PMC8953757 DOI: 10.3390/v14030512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
This study isolated and characterized a new phage infecting the marine photoheterotrophic bacterium Citromicrobium bathyomarinum, which fills the gap in research on phages targeting this ecologically important species. The phage vB_CbaS-RXM (RXM) has a dsDNA genome with a length of 104,206 bp and G+C content of 61.64%. The taxonomic analysis found a close evolutionary relationship between RXM, Erythrobacter phage vB_EliS-L02, and Sphingobium phage Lacusarx, and we propose that RXM represents a new species of the Lacusarxvirus genus. A one-step growth curve revealed a burst size of 75 plaque-forming units (PFUs) per cell in a 3-hour infection cycle. The lysis profile of RXM showed an intraspecific lethal rate of 26.3% against 38 citromicrobial strains. RXM contains 15 auxiliary metabolic genes (AMGs) related to diverse cellular processes, such as putative metabolic innovation and hijacking of host nucleotide metabolism to enhance its biosynthetic capacity. An in-depth analysis showed that phage functional genes strongly rely on the host for translation, while the translation of unique phage genes with less host dependency may be complemented by phage tRNA. Overall, our study investigated the infection kinetics, genetic traits, taxonomy, and predicted roles of AMGs and tRNA genes of this new phage, which contributes to a better understanding of phage diversity and phage–bacterium interactions.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
| | - Shuai Shao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (S.S.); (J.Y.)
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
| | - Junlei Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (S.S.); (J.Y.)
| | - Yahui Yang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence:
| |
Collapse
|
61
|
McKay LJ, Nigro OD, Dlakić M, Luttrell KM, Rusch DB, Fields MW, Inskeep WP. Sulfur cycling and host-virus interactions in Aquificales-dominated biofilms from Yellowstone's hottest ecosystems. THE ISME JOURNAL 2022; 16:842-855. [PMID: 34650231 PMCID: PMC8857204 DOI: 10.1038/s41396-021-01132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
Modern linkages among magmatic, geochemical, and geobiological processes provide clues about the importance of thermophiles in the origin of biogeochemical cycles. The aim of this study was to identify the primary chemoautotrophs and host-virus interactions involved in microbial colonization and biogeochemical cycling at sublacustrine, vapor-dominated vents that represent the hottest measured ecosystems in Yellowstone National Park (~140 °C). Filamentous microbial communities exposed to extreme thermal and geochemical gradients were sampled using a remotely operated vehicle and subjected to random metagenome sequencing and microscopic analyses. Sulfurihydrogenibium (phylum Aquificae) was the predominant lineage (up to 84% relative abundance) detected at vents that discharged high levels of dissolved H2, H2S, and CO2. Metabolic analyses indicated carbon fixation by Sulfurihydrogenibium spp. was powered by the oxidation of reduced sulfur and H2, which provides organic carbon for heterotrophic community members. Highly variable Sulfurihydrogenibium genomes suggested the importance of intra-population diversity under extreme environmental and viral pressures. Numerous lytic viruses (primarily unclassified taxa) were associated with diverse archaea and bacteria in the vent community. Five circular dsDNA uncultivated virus genomes (UViGs) of ~40 kbp length were linked to the Sulfurihydrogenibium metagenome-assembled genome (MAG) by CRISPR spacer matches. Four UViGs contained consistent genome architecture and formed a monophyletic cluster with the recently proposed Pyrovirus genus within the Caudovirales. Sulfurihydrogenibium spp. also contained CRISPR arrays linked to plasmid DNA with genes for a novel type IV filament system and a highly expressed β-barrel porin. A diverse suite of transcribed secretion systems was consistent with direct microscopic analyses, which revealed an extensive extracellular matrix likely critical to community structure and function. We hypothesize these attributes are fundamental to the establishment and survival of microbial communities in highly turbulent, extreme-gradient environments.
Collapse
Affiliation(s)
- Luke J. McKay
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Olivia D. Nigro
- grid.256872.c0000 0000 8741 0387Department of Natural Science, Hawaii Pacific University, Honolulu, HI 96813 USA
| | - Mensur Dlakić
- grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - Karen M. Luttrell
- grid.64337.350000 0001 0662 7451Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Douglas B. Rusch
- grid.411377.70000 0001 0790 959XCenter for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405 USA
| | - Matthew W. Fields
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717 USA
| | - William P. Inskeep
- grid.41891.350000 0001 2156 6108Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
62
|
Abstract
We report a complete genome sequence of a novel bacterial isolate, strain TBR-22, belonging to the class Vicinamibacteria of the phylum Acidobacteria, which was isolated from duckweed fronds. The genome expands our knowledge of the lifestyle of this abundant but rarely characterized phylum.
Collapse
|
63
|
Assembly and Annotation of Escherichia coli Bacteriophage U115. Microbiol Resour Announc 2022; 11:e0094921. [PMID: 35175109 PMCID: PMC8852279 DOI: 10.1128/mra.00949-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the annotated genome sequence of
Escherichia coli
bacteriophage U115, a T4-like bacteriophage. Phage U115 has a genome length of 166,986 bp and has 286 predicted genes.
Collapse
|
64
|
Complete Genome Sequence of a Jumbo Bacteriophage, Escherichia Phage vB_EcoM_EC001. Microbiol Resour Announc 2022; 11:e0001722. [PMID: 35112904 PMCID: PMC8812316 DOI: 10.1128/mra.00017-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the genome sequence of a jumbo Escherichia phage vB_EcoM_EC001, a myovirus isolated from primary sludge using enterohemorrhagic Escherichia coli O157:H7. The genome is 240,200 bp long and has 270 predicted coding sequences, including a tryptophanyl tRNA gene. It belongs to genus Seoulvirus.
Collapse
|
65
|
Kim H, Kim M, Kim S, Lee YM, Shin SC. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118634. [PMID: 34875269 DOI: 10.1016/j.envpol.2021.118634] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenome-assembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
Collapse
Affiliation(s)
- Heesoo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| |
Collapse
|
66
|
Abstract
Here, we report a draft genome sequence of a bacterial strain, F-183, isolated from a duckweed frond. Strain F-183 belongs to the family Bryobacteraceae of the phylum Acidobacteria, and its genomic information would contribute to understanding the ecophysiology of this abundant but rarely characterized phylum.
Collapse
|
67
|
Watanabe M, Kojima H, Okano K, Fukui M. Mariniplasma anaerobium gen. nov., sp. nov., a novel anaerobic marine mollicute, and proposal of three novel genera to reclassify members of Acholeplasma clusters II-IV. Int J Syst Evol Microbiol 2021; 71. [PMID: 34874244 DOI: 10.1099/ijsem.0.005138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strictly anaerobic chemoorganotrophic bacterium, designated Mahy22T, was isolated from sulfidic bottom water of a shallow brackish meromictic lake in Japan. Cells of the strain were Gram-stain-negative, non-motile and coccoid in shape with diameters of about 600-800 nm. The temperature range for growth was 15-37 °C, with optimum growth at 30-32 °C. The pH range for growth was pH 6.2-8.9, with optimum growth at pH 7.2-7.4. The strain grew with NaCl concentrations of 5% or below (optimum, 2-3%). Growth of the strain was enhanced by the addition of thiosulfate. The major cellular fatty acids were C16:0 and anteiso-C15:0. Respiratory quinones were not detected. The complete genome sequence of strain Mahy22T possessed a 1 885 846 bp circular chromosome and a 12 782 bp circular genetic element. The G+C content of the genome sequence was 30.1 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the family Acholeplasmataceae, class Mollicutes. The closest relative of strain Mahy22T with a validly published name was Acholeplasma palmae J233T with a 16S rRNA gene sequence similarity of 90.5%. Based on the results of polyphasic analysis, the name Mariniplasma anaerobium gen. nov., sp. nov. is proposed to accommodate strain Mahy22T, along with reclassification of some Acholeplasma species into Alteracholeplasma gen. nov., Haploplasma gen. nov. and Paracholeplasma gen. nov.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan.,Department of Biological Environment, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Kunihiro Okano
- Department of Biological Environment, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
68
|
Dimonaco NJ, Aubrey W, Kenobi K, Clare A, Creevey CJ. No one tool to rule them all: prokaryotic gene prediction tool annotations are highly dependent on the organism of study. Bioinformatics 2021; 38:1198-1207. [PMID: 34875010 PMCID: PMC8825762 DOI: 10.1093/bioinformatics/btab827] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 01/06/2023] Open
Abstract
MOTIVATION The biases in CoDing Sequence (CDS) prediction tools, which have been based on historic genomic annotations from model organisms, impact our understanding of novel genomes and metagenomes. This hinders the discovery of new genomic information as it results in predictions being biased towards existing knowledge. To date, users have lacked a systematic and replicable approach to identify the strengths and weaknesses of any CDS prediction tool and allow them to choose the right tool for their analysis. RESULTS We present an evaluation framework (ORForise) based on a comprehensive set of 12 primary and 60 secondary metrics that facilitate the assessment of the performance of CDS prediction tools. This makes it possible to identify which performs better for specific use-cases. We use this to assess 15 ab initio- and model-based tools representing those most widely used (historically and currently) to generate the knowledge in genomic databases. We find that the performance of any tool is dependent on the genome being analysed, and no individual tool ranked as the most accurate across all genomes or metrics analysed. Even the top-ranked tools produced conflicting gene collections, which could not be resolved by aggregation. The ORForise evaluation framework provides users with a replicable, data-led approach to make informed tool choices for novel genome annotations and for refining historical annotations. AVAILABILITY AND IMPLEMENTATION Code and datasets for reproduction and customisation are available at https://github.com/NickJD/ORForise. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nicholas J Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3PD, UK,To whom correspondence should be addressed.
| | - Wayne Aubrey
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK
| | - Kim Kenobi
- Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ, UK
| | - Amanda Clare
- Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK
| | | |
Collapse
|
69
|
Complete Genome Sequence of the Virulent Klebsiella pneumoniae Phage Geezett Infecting Multidrug-Resistant Clinical Strains. Microbiol Resour Announc 2021; 10:e0068521. [PMID: 34854706 PMCID: PMC8638582 DOI: 10.1128/mra.00685-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geezett was isolated from hospital sewage in Hangzhou, China, and exhibits lytic activity against clinical isolates of the nosocomial pathogen Klebsiella pneumoniae. The bacteriophage is a myovirus and has a double-stranded DNA (dsDNA) genome 50,707 bp long, containing 79 open reading frames (ORFs).
Collapse
|
70
|
Complete Genome Sequences of Bacteriophages Kaya, Guyu, Kopi, and TehO, Which Target Clinical Strains of Pseudomonas aeruginosa. Microbiol Resour Announc 2021; 10:e0104321. [PMID: 34854702 PMCID: PMC8638596 DOI: 10.1128/mra.01043-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a major public health concern, as drug-resistant strains increase mortality in hospital-acquired infections. We report the isolation and complete genome sequences of four lytic bacteriophages that target clinical multidrug-resistant P. aeruginosa strains.
Collapse
|
71
|
Shen A, Millard A. Phage Genome Annotation: Where to Begin and End. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:183-193. [PMID: 36159890 PMCID: PMC9041514 DOI: 10.1089/phage.2021.0015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the renewed interest in phage research, coupled with the rising accessibility to affordable sequencing, ever increasing numbers of phage genomes are being sequenced. Therefore, there is an increased need to assemble and annotate phage genomes. There is a plethora of tools and platforms that allow phage genomes to be assembled and annotated. The choice of tools can often be bewildering for those new to phage genome assembly. Here we provide an overview of the assembly and annotation process from obtaining raw reads to genome submission, with worked examples, providing those new to genome assembly and annotation with a guided pathway to genome submission. We focus on the use of open access tools that can be incorporated into workflows to allow easy repetition of steps, highlighting multiple tools that can be used and common pitfalls that may occur.
Collapse
Affiliation(s)
- Anastasiya Shen
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| |
Collapse
|
72
|
Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, Zhang L. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput Struct Biotechnol J 2021; 19:6301-6314. [PMID: 34900140 PMCID: PMC8640167 DOI: 10.1016/j.csbj.2021.11.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Metagenomic sequencing provides a culture-independent avenue to investigate the complex microbial communities by constructing metagenome-assembled genomes (MAGs). A MAG represents a microbial genome by a group of sequences from genome assembly with similar characteristics. It enables us to identify novel species and understand their potential functions in a dynamic ecosystem. Many computational tools have been developed to construct and annotate MAGs from metagenomic sequencing, however, there is a prominent gap to comprehensively introduce their background and practical performance. In this paper, we have thoroughly investigated the computational tools designed for both upstream and downstream analyses, including metagenome assembly, metagenome binning, gene prediction, functional annotation, taxonomic classification, and profiling. We have categorized the commonly used tools into unique groups based on their functional background and introduced the underlying core algorithms and associated information to demonstrate a comparative outlook. Furthermore, we have emphasized the computational requisition and offered guidance to the users to select the most efficient tools. Finally, we have indicated current limitations, potential solutions, and future perspectives for further improving the tools of MAG construction and annotation. We believe that our work provides a consolidated resource for the current stage of MAG studies and shed light on the future development of more effective MAG analysis tools on metagenomic sequencing.
Collapse
Key Words
- CNN, convolutional neural network
- DBG, De Bruijn graph
- GTDB, Genome Taxonomy Database
- Gene functional annotation
- Gene prediction
- Genome assembly
- HMM, Hidden Markov Model
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LCA, lowest common ancestor
- LPA, label propagation algorithm
- MAGs, metagenome-assembled genomes
- Metagenome binning
- Metagenome-assembled genomes
- Metagenomic sequencing
- Microbial abundance profiling
- OLC, overlap-layout consensus
- ONT, Oxford Nanopore Technologies
- ORFs, open reading frames
- PacBio, Pacific Biosciences
- QC, quality control
- SLR, synthetic long reads
- TNFs, tetranucleotide frequencies
- Taxonomic classification
Collapse
Affiliation(s)
- Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Debajyoti Chowdhury
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhenmiao Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - William K. Cheung
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Aiping Lu
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhaoxiang Bian
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
| |
Collapse
|
73
|
Blaise D, Velmourougane K, Santosh S, Manikandan A. Intercrop mulch affects soil biology and microbial diversity in rainfed transgenic Bt cotton hybrids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148787. [PMID: 34323770 DOI: 10.1016/j.scitotenv.2021.148787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Growing live mulch between the wide-row spaced transgenic Bt cotton hybrids is a low-cost option to control weeds compared to the use of plastic mulch. However, nothing is known about their effects on soil biology. Therefore, soil samples were collected from a long-term field study (2014-15 to 2018-19) to investigate the soil biological activities as well as the microbial diversity (soil metagenomic analysis). In general, mulching enhanced soil biological activity and influenced the microbial diversity in Bt-cotton. Mulch of sunnhemp (Crotalaria juncea L.), desmodium (Desmodium triflorum L.), sorghum (Sorghum bicolor L.) and plastic sheet recorded significantly higher soil biological activities such as, basal respiration, microbial biomass carbon, and soil enzymes than the other mulch treatments. Aromatic crops (bitter cumin (Centratherum anthelminticum (L.) Kuntze), carom (Trachyspermum ammi (L.) Sprague ex Turrill), coriander (Coriandrum sativum L.), fennel (Foeniculum vulgare Mill.), and fenugreek (Trigonella foenum-graecum L.) had a significant adverse effect on soil biological activity compared to the farmers' practice (no mulch or intercrop). The rarefaction curves as a measure of alpha diversity indicated higher species richness in plastic and newspaper sheet mulch treatments compared to the intercrop mulch. The soil metagenome data indicated Proteobacteria (28%-36%), Actinobacteria (10%-35%), and Acidobacteria (10%-26%) were highly abundant phyla in the mulch treatments. The phyla, Chloroflexi (4%-5%), Gemmatimonadetes (2%-6%), Planctomycetes (2%-4%), and Bacteroidetes (2%-3%) were recorded at lower frequencies in all mulch treatments. The sunnhemp and newspaper mulch treatments recorded low frequency (0.06%-0.07%) of the fungal phyla, Ascomycota. Compared to the bare soil, mulching positively improves soil biological activity. Furthermore, our study identifies some crops that could be grown as an intercrop with a viewpoint to improve soil biology and provide an alternative to the expensive plastic mulch.
Collapse
Affiliation(s)
- Desouza Blaise
- Division of Crop Production, ICAR-Central Institute for Cotton Research, Nagpur 440010, Maharashtra, India
| | - Kulandaivelu Velmourougane
- Division of Crop Production, ICAR-Central Institute for Cotton Research, Nagpur 440010, Maharashtra, India.
| | - Savitha Santosh
- Division of Crop Production, ICAR-Central Institute for Cotton Research, Nagpur 440010, Maharashtra, India
| | - Angamuthu Manikandan
- Division of Crop Production, ICAR-Central Institute for Cotton Research, Nagpur 440010, Maharashtra, India
| |
Collapse
|
74
|
Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685. [PMID: 34739369 PMCID: PMC8743544 DOI: 10.1099/mgen.0.000685] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Command-line annotation software tools have continuously gained popularity compared to centralized online services due to the worldwide increase of sequenced bacterial genomes. However, results of existing command-line software pipelines heavily depend on taxon-specific databases or sufficiently well annotated reference genomes. Here, we introduce Bakta, a new command-line software tool for the robust, taxon-independent, thorough and, nonetheless, fast annotation of bacterial genomes. Bakta conducts a comprehensive annotation workflow including the detection of small proteins taking into account replicon metadata. The annotation of coding sequences is accelerated via an alignment-free sequence identification approach that in addition facilitates the precise assignment of public database cross-references. Annotation results are exported in GFF3 and International Nucleotide Sequence Database Collaboration (INSDC)-compliant flat files, as well as comprehensive JSON files, facilitating automated downstream analysis. We compared Bakta to other rapid contemporary command-line annotation software tools in both targeted and taxonomically broad benchmarks including isolates and metagenomic-assembled genomes. We demonstrated that Bakta outperforms other tools in terms of functional annotations, the assignment of functional categories and database cross-references, whilst providing comparable wall-clock runtimes. Bakta is implemented in Python 3 and runs on MacOS and Linux systems. It is freely available under a GPLv3 license at https://github.com/oschwengers/bakta. An accompanying web version is available at https://bakta.computational.bio.
Collapse
Affiliation(s)
- Oliver Schwengers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Marius Alfred Dieckmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Sebastian Beyvers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
75
|
Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. THE ISME JOURNAL 2021; 15:3129-3147. [PMID: 33972727 PMCID: PMC8528832 DOI: 10.1038/s41396-021-00989-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The marine picoeukaryote Bathycoccus prasinos has been considered a cosmopolitan alga, although recent studies indicate two ecotypes exist, Clade BI (B. prasinos) and Clade BII. Viruses that infect Bathycoccus Clade BI are known (BpVs), but not that infect BII. We isolated three dsDNA prasinoviruses from the Sargasso Sea against Clade BII isolate RCC716. The BII-Vs do not infect BI, and two (BII-V2 and BII-V3) have larger genomes (~210 kb) than BI-Viruses and BII-V1. BII-Vs share ~90% of their proteins, and between 65% to 83% of their proteins with sequenced BpVs. Phylogenomic reconstructions and PolB analyses establish close-relatedness of BII-V2 and BII-V3, yet BII-V2 has 10-fold higher infectivity and induces greater mortality on host isolate RCC716. BII-V1 is more distant, has a shorter latent period, and infects both available BII isolates, RCC716 and RCC715, while BII-V2 and BII-V3 do not exhibit productive infection of the latter in our experiments. Global metagenome analyses show Clade BI and BII algal relative abundances correlate positively with their respective viruses. The distributions delineate BI/BpVs as occupying lower temperature mesotrophic and coastal systems, whereas BII/BII-Vs occupy warmer temperature, higher salinity ecosystems. Accordingly, with molecular diagnostic support, we name Clade BII Bathycoccus calidus sp. nov. and propose that molecular diversity within this new species likely connects to the differentiated host-virus dynamics observed in our time course experiments. Overall, the tightly linked biogeography of Bathycoccus host and virus clades observed herein supports species-level host specificity, with strain-level variations in infection parameters.
Collapse
|
76
|
Nitrospina-like Bacteria Are Dominant Potential Mercury Methylators in Both the Oyashio and Kuroshio Regions of the Western North Pacific. Microbiol Spectr 2021; 9:e0083321. [PMID: 34494859 PMCID: PMC8557936 DOI: 10.1128/spectrum.00833-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly neurotoxic methylmercury (MeHg) accumulates in marine organisms, thereby negatively affecting human and environmental health. Recent studies have revealed that oceanic prokaryotes harboring the hgcAB gene pair are involved in Hg methylation. Presently, little is known about the distribution and phylogeny of these genes in distinct oceanic regions of the western North Pacific. In this study, we used metagenomics to survey the distribution of hgcAB genes in the seawater columns of the subarctic Oyashio region and the subtropical Kuroshio region. The hgcAB genes were detected in the MeHg-rich offshore mesopelagic layers of both the Oyashio region, which is a highly productive area in the western North Pacific, and the Kuroshio region, which has low productivity. Comparative analysis revealed that hgcAB genes belonging to the Nitrospina-like lineage were dominant in the MeHg-rich mesopelagic layers of both regions. These results indicate that Nitrospina-like bacteria are the dominant Hg methylators in the mesopelagic layers throughout the western North Pacific. IMPORTANCE MeHg is highly neurotoxic and accumulates in marine organisms. Thus, understanding MeHg production in seawater is critical for environmental and human health. Recent studies have shown that microorganisms harboring mercury-methylating genes (hgcA and hgcB) are involved in MeHg production in several marine environments. Knowing the distribution and phylogeny of hgcAB genes in seawater columns can facilitate assessment of microbial MeHg production in the ocean. We report that hgcAB genes affiliated with the microaerophilic Nitrospina lineage were detected in the MeHg-rich mesopelagic layers of two hydrologically distinct oceanic regions of the western North Pacific. This finding facilitates understanding of the microbial Hg methylation and accumulation in seawater columns of the western North Pacific.
Collapse
|
77
|
Complete Genome Sequence of the Lytic Bacteriophage Phab24, Which Infects Clinical Strains of the Nosocomial Pathogen Acinetobacter baumannii. Microbiol Resour Announc 2021; 10:e0066921. [PMID: 34617780 PMCID: PMC8496359 DOI: 10.1128/mra.00669-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phab24 was isolated from river water in Zhejiang Province, China, and exhibits lytic activity against clinical isolates of the nosocomial pathogen Acinetobacter baumannii (X. Wang, B. Loh, Y. Yu, X. Hua, et al., bioRxiv 2021.07.23.453473, 2021, https://doi.org/10.1101/2021.07.23.453473). The bacteriophage belongs to the Myoviridae family and has a double-stranded DNA (dsDNA) genome sequence that is 93,604 bp long, containing 172 open reading frames (ORFs).
Collapse
|
78
|
Assembly and Annotation of the Complete Genome Sequence of T4-Like Bacteriophage 132. Microbiol Resour Announc 2021; 10:e0064921. [PMID: 34591682 PMCID: PMC8483715 DOI: 10.1128/mra.00649-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the complete sequence of bacteriophage 132, a T4-like Escherichia coli phage. Phage 132 has a genome of 166,922-bp length, with 286 predicted genes.
Collapse
|
79
|
Perspective on the clone library method for infectious diseases. Respir Investig 2021; 59:741-747. [PMID: 34400128 DOI: 10.1016/j.resinv.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/27/2023]
Abstract
Recently, culture-independent molecular methods, such as DNA sequencing techniques targeting the 16S-ribosomal RNA (rRNA) gene and/or other housekeeping genes with Sanger method-based technologies, next generation sequencing (NGS), and metagenomic analysis, have been developed for detecting microorganisms in the human body; these can provide information on microbiomes of samples from individuals with or without infectious diseases. Determining the bacterial species is crucial in identifying causative bacteria of upper and lower respiratory tract infections, especially for Streptococcus species, but NGS analysis is often not precise enough to identify bacteria at the species level. This review briefly introduces previous observations of the microbiome of samples from various respiratory and other infections assessed using the clone library method with Sanger sequencing of the 16S-rRNA gene. On analysis of 16S-rRNA gene-sequence data of bronchoalveolar lavage fluid obtained from pneumonia lesions in patients with bacterial pneumonia and lung abscess, anaerobes are often detected in non-elderly patients with pneumonia, and the detection rate of Staphylococcus aureus in patients with hospital-acquired pneumonia is lower than that previously reported. Analysis of pleural effusion samples from patients with pleurisy indicated a more important role of anaerobes than previous believed. The other topics reviewed include microbiomes of nontuberculous mycobacteriosis and lower respiratory tract infections in children with permanent tracheostomy due to neuromuscular disorders, in nasal discharge, in bacterial vaginosis, in the intracystic fluid of postoperative maxillary cyst, and in bacterial conjunctivitis; urine microbiota in urethritis; fecal microbiota; and newly detected infectious organisms in the human respiratory tract.
Collapse
|
80
|
Comparative Genomics of Three Novel Jumbo Bacteriophages Infecting Staphylococcus aureus. J Virol 2021; 95:e0239120. [PMID: 34287047 DOI: 10.1128/jvi.02391-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups: P68-like podophages, Twort-like or K-like myophages, and a more diverse group of temperate siphophages. Here we present three novel S. aureus "jumbo" phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus myophage. The average genome size for these phages is ∼269 kb with each genome encoding ∼263 predicted protein-coding genes. Phage genome organization and content is similar to known jumbo phages of Bacillus, including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete virion and non-virion RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates. Importance of work: This study describes the comparative genomics of three novel S. aureus jumbo phages: MarsHill, Madawaska, and Machias. These three S. aureus myophages represent an emerging class of S. aureus phage. These genomes contain abundant introns which show a pattern consistent with repeated acquisition rather than vertical inheritance, suggesting intron acquisition and loss is an active process in the evolution of these phages. These phages have presumably hypermodified DNA which inhibits sequencing by several different common platforms. Therefore, these phages also represent potential genomic diversity that has been missed due to the limitations of standard sequencing techniques. In particular, such hypermodified genomes may be missed by metagenomic studies due to their resistance to standard sequencing techniques. Phage MarsHill was found to be able to transduce host DNA at levels comparable to that found for other transducing S. aureus phages, making them a potential vector for horizontal gene transfer in the environment.
Collapse
|
81
|
Okubo T, Toyoda A, Fukuhara K, Uchiyama I, Harigaya Y, Kuroiwa M, Suzuki T, Murakami Y, Suwa Y, Takami H. The physiological potential of anammox bacteria as revealed by their core genome structure. DNA Res 2021; 28:6046978. [PMID: 33367889 PMCID: PMC7814187 DOI: 10.1093/dnares/dsaa028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023] Open
Abstract
We present here the second complete genome of anaerobic ammonium oxidation (anammox) bacterium, Candidatus (Ca.) Brocadia pituitae, along with those of a nitrite oxidizer and two incomplete denitrifiers from the anammox bacterial community (ABC) metagenome. Although NO2− reduction to NO is considered to be the first step in anammox, Ca. B. pituitae lacks nitrite reductase genes (nirK and nirS) responsible for this reaction. Comparative genomics of Ca. B. pituitae with Ca. Kuenenia stuttgartiensis and six other anammox bacteria with nearly complete genomes revealed that their core genome structure contains 1,152 syntenic orthologues. But nitrite reductase genes were absent from the core, whereas two other Brocadia species possess nirK and these genes were horizontally acquired from multiple lineages. In contrast, at least five paralogous hydroxylamine oxidoreductase genes containing candidate ones (hao2 and hao3) encoding another nitrite reductase were observed in the core. Indeed, these two genes were also significantly expressed in Ca. B. pituitae as in other anammox bacteria. Because many nirS and nirK genes have been detected in the ABC metagenome, Ca. B. pituitae presumably utilises not only NO supplied by the ABC members but also NO and/or NH2OH by self-production for anammox metabolism.
Collapse
Affiliation(s)
- Takashi Okubo
- Marine Microbiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Kohei Fukuhara
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Yuhki Harigaya
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Megumi Kuroiwa
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Takuma Suzuki
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Yuka Murakami
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Yuichi Suwa
- Department of Biological Sciences, Chuo University, Bunkyo, Tokyo 112-8851, Japan
| | - Hideto Takami
- Marine Microbiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Japan
| |
Collapse
|
82
|
Ma R, Lai J, Chen X, Wang L, Yang Y, Wei S, Jiao N, Zhang R. A Novel Phage Infecting Alteromonas Represents a Distinct Group of Siphophages Infecting Diverse Aquatic Copiotrophs. mSphere 2021; 6:e0045421. [PMID: 34106770 PMCID: PMC8265664 DOI: 10.1128/msphere.00454-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Bacteriophages play critical roles in impacting microbial community succession both ecologically and evolutionarily. Although the majority of phage genetic diversity has been increasingly unveiled, phages infecting members of the ecologically important genus Alteromonas remain poorly understood. Here, we present a comprehensive analysis of a newly isolated alterophage, vB_AcoS-R7M (R7M), to characterize its life cycle traits, genomic features, and putative evolutionary origin. R7M harbors abundant genes identified as host-like auxiliary metabolic genes facilitating viral propagation. Genomic analysis suggested that R7M is distinct from currently known alterophages. Interestingly, R7M was found to share a set of similar characteristics with a number of siphophages infecting diverse aquatic opportunistic copiotrophs. We therefore proposed the creation of one new subfamily (Queuovirinae) to group with these evolutionarily related phages. Notably, tail genes were less likely to be shared among them, and baseplate-related genes varied the most. In-depth analyses indicated that R7M has replaced its distal tail with a Rhodobacter capsulatus gene transfer agent (RcGTA)-like baseplate and further acquired a putative receptor interaction site targeting Alteromonas. These findings suggest that horizontal exchanges of viral tail adsorption apparatuses are widespread and vital for phages to hunt new hosts and to adapt to new niches. IMPORTANCE The evolution and ecology of phages infecting members of Alteromonas, a marine opportunistic genus that is widely distributed and of great ecological significance, remain poorly understood. The present study integrates physiological and genomic evidence to characterize the properties and putative phage-host interactions of a newly isolated Alteromonas phage, vB_AcoS-R7M (R7M). A taxonomic study reveals close evolutionary relationships among R7M and a number of siphophages infecting various aquatic copiotrophs. Their similar head morphology and overall genetic framework suggest their putative common ancestry and the grouping of a new viral subfamily. However, their major difference lies in the viral tail adsorption apparatuses and the horizontal exchanges of which possibly account for variations in host specificity. These findings outline an evolutionary scenario for the emergence of diverse viral lineages of a shared genetic pool and give insights into the genetics and ecology of viral host jumps.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Jiayong Lai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yahui Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
83
|
Huang D, Yu P, Ye M, Schwarz C, Jiang X, Alvarez PJJ. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress. MICROBIOME 2021; 9:150. [PMID: 34183048 PMCID: PMC8240259 DOI: 10.1186/s40168-021-01074-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Microbe-virus interactions have broad implications on the composition, function, and evolution of microbiomes. Elucidating the effects of environmental stresses on these interactions is critical to identify the ecological function of viral communities and understand microbiome environmental adaptation. Heavy metal-contaminated soils represent a relevant ecosystem to study the interplay between microbes, viruses, and environmental stressors. RESULTS Metagenomic analysis revealed that Cr pollution adversely altered the abundance, diversity, and composition of viral and bacterial communities. Host-phage linkage based on CRISPR indicated that, in soils with high Cr contamination, the abundance of phages associated with heavy metal-tolerant hosts increased, as did the relative abundance of phages with broad host ranges (identified as host-phage linkages across genera), which would facilitate transfection and broader distribution of heavy metal resistance genes in the bacterial community. Examining variations along the pollutant gradient, enhanced mutualistic phage-bacterium interactions were observed in the face of greater environmental stresses. Specifically, the fractions of lysogens in bacterial communities (identified by integrase genes within bacterial genomes and prophage induction assay by mitomycin-C) were positively correlated with Cr contamination levels. Furthermore, viral genomic analysis demonstrated that lysogenic phages under higher Cr-induced stresses carried more auxiliary metabolic genes regulating microbial heavy metal detoxification. CONCLUSION With the intensification of Cr-induced environmental stresses, the composition, replication strategy, and ecological function of the phage community all evolve alongside the bacterial community to adapt to extreme habitats. These result in a transformation of the phage-bacterium interaction from parasitism to mutualism in extreme environments and underscore the influential role of phages in bacterial adaptation to pollution-related stress and in related biogeochemical processes. Video Abstract.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, 77005, USA
| |
Collapse
|
84
|
Xie Y, Thompson T, O'Leary C, Crosby S, Nguyen QX, Liu M, Gill JJ. Differential Bacteriophage Efficacy in Controlling Salmonella in Cattle Hide and Soil Models. Front Microbiol 2021; 12:657524. [PMID: 34262535 PMCID: PMC8273493 DOI: 10.3389/fmicb.2021.657524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Asymptomatic Salmonella carriage in beef cattle is a food safety concern and the beef feedlot environment and cattle hides are reservoirs of this pathogen. Bacteriophages present an attractive non-antibiotic strategy for control of Salmonella in beef. In this study, four diverse and genetically unrelated Salmonella phages, Sergei, Season12, Sw2, and Munch, were characterized and tested alone and in combination for their ability to control Salmonella in cattle hide and soil systems, which are relevant models for Salmonella control in beef production. Phage Sergei is a member of the genus Sashavirus, phage Season12 was identified as a member of the Chivirus genus, Sw2 was identified as a member of the T5-like Epseptimavirus genus, and Munch was found to be a novel “jumbo” myovirus. Observed pathogen reductions in the model systems ranged from 0.50 to 1.75 log10 CFU/cm2 in hides and from 0.53 to 1.38 log10 CFU/g in soil, with phages Sergei and Sw2 producing greater reductions (∼1 log10 CFU/cm2 or CFU/g) than Season12 and Munch. These findings are in accordance with previous observations of phage virulence, suggesting the simple ability of a phage to form plaques on a bacterial strain is not a strong indicator of antimicrobial activity, but performance in liquid culture assays provides a better predictor. The antimicrobial efficacies of phage treatments were found to be phage-specific across model systems, implying that a phage capable of achieving bacterial reduction in one model is more likely to perform well in another. Phage combinations did not produce significantly greater efficacy than single phages even after 24 h in the soil model, and phage-insensitive colonies were not isolated from treated samples, suggesting that the emergence of phage resistance was not a major factor limiting efficacy in this system.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Animal Science, Texas A&M University, College Station, TX, United States.,Center for Phage Technology, Texas A&M University, College Station, TX, United States
| | - Tyler Thompson
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Chandler O'Leary
- Center for Phage Technology, Texas A&M University, College Station, TX, United States.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Stephen Crosby
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Quang X Nguyen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, TX, United States
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX, United States.,Center for Phage Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
85
|
Lomsadze A, Bonny C, Strozzi F, Borodovsky M. GeneMark-HM: improving gene prediction in DNA sequences of human microbiome. NAR Genom Bioinform 2021; 3:lqab047. [PMID: 34056597 PMCID: PMC8153819 DOI: 10.1093/nargab/lqab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 11/14/2022] Open
Abstract
Computational reconstruction of nearly complete genomes from metagenomic reads may identify thousands of new uncultured candidate bacterial species. We have shown that reconstructed prokaryotic genomes along with genomes of sequenced microbial isolates can be used to support more accurate gene prediction in novel metagenomic sequences. We have proposed an approach that used three types of gene prediction algorithms and found for all contigs in a metagenome nearly optimal models of protein-coding regions either in libraries of pre-computed models or constructed de novo. The model selection process and gene annotation were done by the new GeneMark-HM pipeline. We have created a database of the species level pan-genomes for the human microbiome. To create a library of models representing each pan-genome we used a self-training algorithm GeneMarkS-2. Genes initially predicted in each contig served as queries for a fast similarity search through the pan-genome database. The best matches led to selection of the model for gene prediction. Contigs not assigned to pan-genomes were analyzed by crude, but still accurate models designed for sequences with particular GC compositions. Tests of GeneMark-HM on simulated metagenomes demonstrated improvement in gene annotation of human metagenomic sequences in comparison with the current state-of-the-art gene prediction tools.
Collapse
Affiliation(s)
| | | | | | - Mark Borodovsky
- Gene Probe, Inc., 1106 Wrights Mill Ct, Atlanta, GA 30324, USA
| |
Collapse
|
86
|
Complete Genome Sequence of Klebsiella pneumoniae Podophage Pone. Microbiol Resour Announc 2021; 10:e0140520. [PMID: 34042488 PMCID: PMC8201637 DOI: 10.1128/mra.01405-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen that has become increasingly antibiotic resistant. Phage therapy is potentially a useful approach to controlling this pathogen. Here, we present the genome sequence of the phiKMV-like K. pneumoniae podophage Pone.
Collapse
|
87
|
A human respiratory tract-associated bacterium with an extremely small genome. Commun Biol 2021; 4:628. [PMID: 34040152 PMCID: PMC8155191 DOI: 10.1038/s42003-021-02162-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
Recent advances in culture-independent microbiological analyses have greatly expanded our understanding of the diversity of unculturable microbes. However, human pathogenic bacteria differing significantly from known taxa have rarely been discovered. Here, we present the complete genome sequence of an uncultured bacterium detected in human respiratory tract named IOLA, which was determined by developing a protocol to selectively amplify extremely AT-rich genomes. The IOLA genome is 303,838 bp in size with a 20.7% GC content, making it the smallest and most AT-rich genome among known human-associated bacterial genomes to our best knowledge and comparable to those of insect endosymbionts. While IOLA belongs to order Rickettsiales (mostly intracellular parasites), the gene content suggests an epicellular parasitic lifestyle. Surveillance of clinical samples provides evidence that IOLA can be predominantly detected in patients with respiratory bacterial infections and can persist for at least 15 months in the respiratory tract, suggesting that IOLA is a human respiratory tract-associated bacterium. Kazumasa Fukuda et al. complete a new genome sequence for an uncultured bacterium detected in human respiratory tract named IOLA. The IOLA genome is found to be among the smallest and most AT-rich of known human-associated bacterial genomes and surveillance of clinical samples indicates that IOLA is in fact a human respiratory tract-associated bacterium.
Collapse
|
88
|
Abstract
Burkholderia gladioli is known to cause respiratory tract infections in cystic fibrosis patients. Here, we describe the annotation of the 38,038-bp genome sequence of Mana, a P2-like phage of B. gladioli Understanding the genomic characteristics of phages infecting pathogens like B. gladioli can lead to advancements in phage therapy.
Collapse
|
89
|
A guide to human microbiome research: study design, sample collection, and bioinformatics analysis. Chin Med J (Engl) 2021; 133:1844-1855. [PMID: 32604176 PMCID: PMC7469990 DOI: 10.1097/cm9.0000000000000871] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The purpose of this review is to provide medical researchers, especially those without a bioinformatics background, with an easy-to-understand summary of the concepts and technologies used in microbiome research. First, we define primary concepts such as microbiota, microbiome, and metagenome. Then, we discuss study design schemes, the methods of sample size calculation, and the methods for improving the reliability of research. We emphasize the importance of negative and positive controls in this section. Next, we discuss statistical analysis methods used in microbiome research, focusing on problems with multiple comparisons and ways to compare β-diversity between groups. Finally, we provide step-by-step pipelines for bioinformatics analysis. In summary, the meticulous study design is a key step to obtaining meaningful results, and appropriate statistical methods are important for accurate interpretation of microbiome data. The step-by-step pipelines provide researchers with insights into newly developed bioinformatics analysis methods.
Collapse
|
90
|
Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. Infection with Bacteroides Phage BV01 Alters the Host Transcriptome and Bile Acid Metabolism in a Common Human Gut Microbe. Cell Rep 2021; 32:108142. [PMID: 32937127 PMCID: PMC8354205 DOI: 10.1016/j.celrep.2020.108142] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phage-bacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.
Collapse
Affiliation(s)
| | - Lindsey K Ly
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
91
|
Pereira O, Hochart C, Boeuf D, Auguet JC, Debroas D, Galand PE. Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes (Ca. Poseidoniales) in the North Western Mediterranean Sea. THE ISME JOURNAL 2021; 15:1302-1316. [PMID: 33288859 PMCID: PMC8115670 DOI: 10.1038/s41396-020-00851-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
The Archaea Marine Group II (MGII) is widespread in the world's ocean where it plays an important role in the carbon cycle. Despite recent discoveries on the group's metabolisms, the ecology of this newly proposed order (Candidatus Poseidoniales) remains poorly understood. Here we used a combination of time-series metagenome-assembled genomes (MAGs) and high-frequency 16S rRNA data from the NW Mediterranean Sea to test if the taxonomic diversity within the MGIIb family (Candidatus Thalassarchaeaceae) reflects the presence of different ecotypes. The MAGs' seasonality revealed a MGIIb family composed of different subclades that have distinct lifestyles and physiologies. The vitamin metabolisms were notably different between ecotypes with, in some, a possible link to sunlight's energy. Diverse archaeal proteorhodopsin variants, with unusual signature in key amino acid residues, had distinct seasonal patterns corresponding to changing day length. In addition, we show that in summer, archaea, as opposed to bacteria, disappeared completely from surface waters. Our results shed light on the diversity and the distribution of the euryarchaeotal proteorhodopsin, and highlight that MGIIb is a diverse ecological group. The work shows that time-series based studies of the taxonomy, seasonality, and metabolisms of marine prokaryotes is critical to uncover their diverse role in the ocean.
Collapse
Affiliation(s)
- Olivier Pereira
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Corentin Hochart
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Dominique Boeuf
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, United States, Honolulu, HI, 96822, USA
| | - Jean Christophe Auguet
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France, Montpellier, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, 63000, Clermont-Ferrand, France
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France.
| |
Collapse
|
92
|
Complete Genome Sequence of Escherichia coli Bacteriophage U136B. Microbiol Resour Announc 2021; 10:10/13/e00030-21. [PMID: 33795337 PMCID: PMC8104045 DOI: 10.1128/mra.00030-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the genome sequence of bacteriophage U136B, which is reliant on the lipopolysaccharide and the antibiotic efflux protein TolC for infection of Escherichia coli and is a useful model for studying trade-offs and trade-ups that shape evolution. Phage U136B has a 49,233-bp genome with 87 predicted genes.
Collapse
|
93
|
Levin D, Raab N, Pinto Y, Rothschild D, Zanir G, Godneva A, Mellul N, Futorian D, Gal D, Leviatan S, Zeevi D, Bachelet I, Segal E. Diversity and functional landscapes in the microbiota of animals in the wild. Science 2021; 372:science.abb5352. [PMID: 33766942 DOI: 10.1126/science.abb5352] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Animals in the wild are able to subsist on pathogen-infected and poisonous food and show immunity to various diseases. These may be due to their microbiota, yet we have a poor understanding of animal microbial diversity and function. We used metagenomics to analyze the gut microbiota of more than 180 species in the wild, covering diverse classes, feeding behaviors, geographies, and traits. Using de novo metagenome assembly, we constructed and functionally annotated a database of more than 5000 genomes, comprising 1209 bacterial species of which 75% are unknown. The microbial composition, diversity, and functional content exhibit associations with animal taxonomy, diet, activity, social structure, and life span. We identify the gut microbiota of wild animals as a largely untapped resource for the discovery of therapeutics and biotechnology applications.
Collapse
Affiliation(s)
| | | | | | - Daphna Rothschild
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001 Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.,Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001 Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | | | | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001 Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Zeevi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001 Israel.,Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065, USA
| | - Ido Bachelet
- Wild Biotech, Rehovot, Israel.,Augmanity, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001 Israel. .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
94
|
Verma SK, Kaur S, Tevetia A, Chatterjee S, Sharma PC. Structural characterization and functional annotation of microbial proteases mined from solid tannery waste metagenome. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00727-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
95
|
Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Salva. Microbiol Resour Announc 2021; 10:10/10/e00083-21. [PMID: 33707323 PMCID: PMC7953286 DOI: 10.1128/mra.00083-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative pathogen causing severe and often refractory illnesses such as pneumonia and bacteremia. We present the genome of phage Salva, a novel S. maltophilia phage that is not closely related to any phages currently deposited in GenBank. The genome is 60,789 bp, containing 102 putative protein-coding genes. Stenotrophomonas maltophilia is a Gram-negative pathogen causing severe and often refractory illnesses such as pneumonia and bacteremia. We present the genome of phage Salva, a novel S. maltophilia phage that is not closely related to any phages currently deposited in GenBank. The genome is 60,789 bp, containing 102 putative protein-coding genes.
Collapse
|
96
|
Pehde BM, Niewohner D, Keomanivong FE, Carruthers MD. Genome Sequence and Characterization of Acinetobacter Phage DMU1. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:50-56. [PMID: 36148435 PMCID: PMC9041440 DOI: 10.1089/phage.2020.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: There has been a recent resurgence of research on the characterization of Acinetobacter phage for therapeutic use due to the morbidity and mortality associated with treatment failures in cases of multidrug-resistant Acinetobacter baumannii infections. Materials and Methods: A bacteriophage isolated from activated sludge that targets A. baumannii ATCC19606 was characterized by electron microscopy, genome sequencing, comparative genomics, and a host range analysis. Results: The morphology of Acinetobacter phage DMU1 resembles phages in Siphoviridae. Comparative genomic and phylogenetic analyses reveal that DMU1 is a siphophage and is most closely related to Acinetobacter phage SH-Ab 15497. Out of the strains tested, DMU1 was found to only infect A. baumannii strains ATCC19606 and ATCC17978. Conclusion: Acinetobacter phage DMU1 belongs to the Siphoviridae family and is most closely related to Acinetobacter phage SH-Ab 15497. Small-scale host-range analysis of DMU1 indicates a host range that is likely limited to specific A. baumannii strains.
Collapse
Affiliation(s)
- Bailey M. Pehde
- Department of Microbiology and Immunology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, USA
| | - Devon Niewohner
- Department of Microbiology and Immunology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, USA
| | - Faithe E. Keomanivong
- Department of Microbiology and Immunology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, USA
| | - Michael D. Carruthers
- Department of Microbiology and Immunology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa, USA
| |
Collapse
|
97
|
Corban JE, Ramsey J. Characterization and complete genome sequence of Privateer, a highly prolate Proteus mirabilis podophage. PeerJ 2021; 9:e10645. [PMID: 33614267 PMCID: PMC7881722 DOI: 10.7717/peerj.10645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis causes a large proportion of catheter-associated urinary tract infections, which are among the world's most common nosocomial infections. Here, we characterize P. mirabilis bacteriophage Privateer, a prolate podophage of the C3 morphotype isolated from Texas wastewater treatment plant activated sludge. Basic characterization assays demonstrated Privateer has a latent period of ~40 min and average burst size around 140. In the 90.7 kb Privateer genome, 43 functions were assigned for the 144 predicted protein-coding genes. Genes encoding DNA replication proteins, DNA modification proteins, four tRNAs, lysis proteins, and structural proteins were identified. Cesium-gradient purified Privateer particles analyzed via LC-MS/MS verified the presence of several predicted structural proteins, including a longer, minor capsid protein apparently produced by translational frameshift. Comparative analysis demonstrated Privateer shares 83% nucleotide similarity with Cronobacter phage vB_CsaP_009, but low nucleotide similarity with other known phages. Predicted structural proteins in Privateer appear to have evolutionary relationships with other prolate podophages, in particular the Kuraviruses.
Collapse
Affiliation(s)
- James E Corban
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jolene Ramsey
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
98
|
Raplee I, Walker L, Xu L, Surathu A, Chockalingam A, Stewart S, Han X, Rouse R, Li Z. Emergence of nosocomial associated opportunistic pathogens in the gut microbiome after antibiotic treatment. Antimicrob Resist Infect Control 2021; 10:36. [PMID: 33588951 PMCID: PMC7885457 DOI: 10.1186/s13756-021-00903-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction According to the Centers for Disease Control’s 2015 Hospital Acquired Infection Hospital Prevalence Survey, 1 in 31 hospital patients was infected with at least one nosocomial pathogen while being treated for unrelated issues. Many studies associate antibiotic administration with nosocomial infection occurrence. However, to our knowledge, there is little to no direct evidence of antibiotic administration selecting for nosocomial opportunistic pathogens. Aim This study aims to confirm gut microbiota shifts in an animal model of antibiotic treatment to determine whether antibiotic use favors pathogenic bacteria. Methodology We utilized next-generation sequencing and in-house metagenomic assembly and taxonomic assignment pipelines on the fecal microbiota of a urinary tract infection mouse model with and without antibiotic treatment. Results Antibiotic therapy decreased the number of detectable species of bacteria by at least 20-fold. Furthermore, the gut microbiota of antibiotic treated mice had a significant increase of opportunistic pathogens that have been implicated in nosocomial infections, like Acinetobacter calcoaceticus/baumannii complex, Chlamydia abortus, Bacteroides fragilis, and Bacteroides thetaiotaomicron. Moreover, antibiotic treatment selected for antibiotic resistant gene enriched subpopulations for many of these opportunistic pathogens. Conclusions Oral antibiotic therapy may select for common opportunistic pathogens responsible for nosocomial infections. In this study opportunistic pathogens present after antibiotic therapy harbored more antibiotic resistant genes than populations of opportunistic pathogens before treatment. Our results demonstrate the effects of antibiotic therapy on induced dysbiosis and expansion of opportunistic pathogen populations and antibiotic resistant subpopulations of those pathogens. Follow-up studies with larger samples sizes and potentially controlled clinical investigations should be performed to confirm our findings.
Collapse
Affiliation(s)
- Isaac Raplee
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lacey Walker
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Xu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Anil Surathu
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ashok Chockalingam
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sharron Stewart
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Xiaomei Han
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Rodney Rouse
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
99
|
Agricultural Soil Management Practices Differentially Shape the Bacterial and Fungal Microbiome of Sorghum bicolor. Appl Environ Microbiol 2021; 87:AEM.02345-20. [PMID: 33310712 PMCID: PMC8090879 DOI: 10.1128/aem.02345-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soils play important roles in biological productivity. While past work suggests that microbes affect soil health and respond to agricultural practices, it is not well known how soil management shapes crop host microbiomes. To elucidate the impact of management on microbial composition and function in the sorghum microbiome, we performed 16S rRNA gene and ITS2 amplicon sequencing and metatranscriptomics on soil and root samples collected from a site in California's San Joaquin Valley that is under long-term cultivation with 1) standard (ST) or no tilling (NT) and 2) cover-cropping (CC) or leaving the field fallow (NO). Our results revealed that microbial diversity, composition, and function change across tillage and cover type, with a heightened response in fungal communities, versus bacterial. Surprisingly, ST harbored greater microbial alpha diversity than NT, indicating that tillage may open niche spaces for broad colonization. Across management regimes, we observed class-level taxonomic level shifts. Additionally, we found significant functional restructuring across treatments, including enrichment for microbial lipid and carbohydrate transport and metabolism and cell motility with NT. Differences in carbon cycling were also observed, with increased prevalence of glycosyltransferase and glycoside hydrolase carbohydrate active enzyme families with CC. Lastly, treatment significantly influenced arbuscular mycorrhizal fungi, which had the greatest prevalence and activity under ST, suggesting that soil practices mediate known beneficial plant-microbe relationships. Collectively, our results demonstrate how agronomic practices impact critical interactions within the plant microbiome and inform future efforts to configure trait-associated microbiomes in crops.Importance While numerous studies show that farming practices can influence the soil microbiome, there are often conflicting results on how microbial diversity and activity respond to treatment. In addition, there is very little work published on how the corresponding crop plant microbiome is impacted. With bacteria and fungi known to critically affect soil health and plant growth, we concurrently compared how the practices of no and standard tillage, in combination with either cover-cropping or fallow fields, shape soil and plant-associated microbiomes between the two classifications. In determining not only the response to treatment in microbial diversity and composition, but for activity as well, this work demonstrates the significance of agronomic practice in modulating plant-microbe interactions, as well as encourages future work on the mechanisms involved in community assemblages supporting similar crop outcomes.
Collapse
|
100
|
Abstract
Burkholderia cenocepacia is a multidrug-resistant Gram-negative pathogen known to colonize patients with chronic granulomatous disease and cystic fibrosis. Here, we describe Burkholderia phage Mica, which is predicted to be a lysogenic myophage based on the similarity of its structural proteins to Enterobacteria phage P2 and Burkholderia phage KL3.
Collapse
|