51
|
Abstract
The transcriptional co-activator OCA-B [for Oct co-activator from B cells, also known as OBF-1 (OCT-binding factor-1) and Bob1] is not required for B-cell genesis but does regulate subsequent B-cell development and function. OCA-B deficient mice show strain-specific, partial blocks at multiple stages of B-cell maturation and a complete disruption of germinal center formation in all strains, causing humoral immune deficiency and susceptibility to infection. OCA-B probably exerts its effects through the regulation of octamer-motif controlled gene expression. The OCA-B gene encodes two proteins of distinct molecular weight, designated p34 and p35. The p34 isoform localizes in the nucleus, whereas the p35 isoform is myristoylated and is bound to the cytoplasmic membrane. p35 can traffic to the nucleus and probably activates octamer-dependent transcription, although this OCA-B isoform might regulate B cells through membrane-related signal transduction.
Collapse
Affiliation(s)
- Michael A Teitell
- Departments of Pathology and Pediatrics, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 675 Charles Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
52
|
Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol 2003; 21:205-30. [PMID: 12524387 DOI: 10.1146/annurev.immunol.21.120601.141138] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma cells are terminally differentiated final effectors of the humoral immune response. Plasma cells that result from antigen activation of B-1 and marginal zone B cells provide the first, rapid response to antigen. Plasma cells that develop after a germinal center reaction provide higher-affinity antibody and often survive many months in the bone marrow. Transcription factors Bcl-6 and Pax5, which are required for germinal center B cells, block plasmacytic differentiation and repress Blimp-1 and XBP-1, respectively. When Bcl-6-dependent repression of Blimp-1 is relieved, Blimp-1 ensures that plasmacytic development is irreversible by repressing BCL-6 and PAX5. In plasma cells, Blimp-1, XBP-1, IRF4, and other regulators cause cessation of cell cycle, decrease signaling from the B cell receptor and communication with T cells, inhibit isotype switching and somatic hypermutation, downregulate CXCR5, and induce copious immunoglobulin synthesis and secretion. Thus, commitment to plasmacytic differentiation involves inhibition of activities associated with earlier B cell developmental stages as well as expression of the plasma cell phenotype.
Collapse
Affiliation(s)
- Kathryn L Calame
- Department of Microbiology and Biochemistry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
53
|
Kim U, Siegel R, Ren X, Gunther CS, Gaasterland T, Roeder RG. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses. Proc Natl Acad Sci U S A 2003; 100:8868-73. [PMID: 12857960 PMCID: PMC166405 DOI: 10.1073/pnas.1033108100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.
Collapse
Affiliation(s)
- Unkyu Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
54
|
Brunner C, Marinkovic D, Klein J, Samardzic T, Nitschke L, Wirth T. B cell-specific transgenic expression of Bcl2 rescues early B lymphopoiesis but not B cell responses in BOB.1/OBF.1-deficient mice. J Exp Med 2003; 197:1205-11. [PMID: 12732662 PMCID: PMC2193979 DOI: 10.1084/jem.20022014] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mice deficient for the transcriptional coactivator BOB.1/OBF.1 show several defects in B cell differentiation. Numbers of immature transitional B cells in the bone marrow are reduced and fewer B cells reach the periphery. Furthermore, germinal center B cells are absent and marginal zone (MZ) B lymphocytes are markedly reduced. Increased levels of B cell apoptosis in these mice prompted us to analyze expression and function of antiapoptotic proteins. Bcl2 expression is strongly reduced in BOB.1/OBF.1-deficient pre-B cells. When BOB.1/OBF.1-deficient mice were crossed with Bcl2-transgenic mice, B cell development in the bone marrow and numbers of B cells in peripheral lymphoid organs were normalized. However, neither germinal center B cells nor MZ B cells were rescued. Additionally, Bcl2 did not rescue the defects in signaling and affinity maturation found in BOB.1/OBF.1-deficient mice. Interestingly, Bcl2-transgenic mice by themselves show an MZ B cell defect. Virtually no functional MZ B cells were detected in these mice. In contrast, mice deficient for Bcl2 show a relative increase in MZ B cell numbers, indicating a previously undetected function of Bcl2 for this B cell compartment.
Collapse
Affiliation(s)
- Cornelia Brunner
- Department of Physiological Chemistry, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
55
|
Marafioti T, Ascani S, Pulford K, Sabattini E, Piccioli M, Jones M, Zinzani PL, Delsol G, Mason DY, Pileri SA. Expression of B-lymphocyte-associated transcription factors in human T-cell neoplasms. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:861-71. [PMID: 12598320 PMCID: PMC1868085 DOI: 10.1016/s0002-9440(10)63882-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study we have investigated the expression of three B-cell-associated transcription factors in normal lymphoid tissue and in T-cell neoplasms (three cell lines, and more than 50 biopsy samples). Nuclear OCT-1 immunoreactivity was seen in normal B cells, in many extrafollicular T cells, and in a heterogeneous pattern (ranging in intensity from weak to moderate) in most T-cell neoplasms. OCT-2 immunostaining was primarily restricted in normal lymphoid tissue to B cells, and was absent from most T-cell neoplasms. In contrast, immunostaining for BOB-1/OCA-B--essentially restricted to B cells in normal lymphoid tissue, with the exception of activated T-lymphocytes--was seen in all of the T-cell lines tested and the majority of the tumor cells in all categories of T-cell lymphoma. Thus labeling for each of these three B-cell-associated transcription factors can be seen to varying degrees in T-cell neoplasms. However, the high frequency of BOB-1 expression in T-cell neoplasms, in contrast to its absence from resting peripheral T cells, suggests that its expression might be a prerequisite for neoplastic transformation, and prompts a search for the transcriptional target(s) of this factor in T cells.
Collapse
Affiliation(s)
- Teresa Marafioti
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Sun J, Matthias G, Mihatsch MJ, Georgopoulos K, Matthias P. Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1699-706. [PMID: 12574333 DOI: 10.4049/jimmunol.170.4.1699] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here we show that mice lacking the zinc finger transcription factor Aiolos develop the symptoms of human systemic lupus erythematosus (SLE), which is characterized by the production of anti-dsDNA Ab and immune complex-mediated glomerulonephritis. This finding indicates that normal Aiolos function is necessary to maintain immune homeostasis and suppress the development of systemic autoimmune disease and implicates Aiolos as a possible candidate gene for SLE. Interestingly, Aiolos-null mice can no longer mount autoimmune reactions and completely fail to develop SLE when they are deficient for the B cell-specific transcription coactivator OBF-1. The lack of OBF-1 reverses several Aiolos mutant mouse phenotypes, such as B cell hyperproliferation, high expression of activation marker on B cells, and spontaneous germinal center formation. Unexpectedly, B cell development at the immature B cell stage is severely impaired in the bone marrow of Aiolos/OBF-1 double-deficient mice, demonstrating the key role of these factors in the transition from pre-B to immature B cells. Our results indicate that B cells play a crucial role in the development of SLE in Aiolos mutant mice and might be useful for the strategy of SLE treatment.
Collapse
Affiliation(s)
- Jian Sun
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | | | | | |
Collapse
|
57
|
Pileri SA, Gaidano G, Zinzani PL, Falini B, Gaulard P, Zucca E, Pieri F, Berra E, Sabattini E, Ascani S, Piccioli M, Johnson PWM, Giardini R, Pescarmona E, Novero D, Piccaluga PP, Marafioti T, Alonso MA, Cavalli F. Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:243-53. [PMID: 12507907 PMCID: PMC1851125 DOI: 10.1016/s0002-9440(10)63815-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2002] [Indexed: 11/29/2022]
Abstract
Although primary mediastinal (thymic) large B-cell lymphoma has been primarily studied, its precise phenotype, molecular characteristics, and histogenesis are still a matter of debate. The International Extranodal Lymphoma Study Group collected 137 such cases for extensive pathological review. Histologically, the lymphomatous growth was predominantly diffuse with fibrosis that induced compartmentalized cell aggregation. It consisted of large cells with varying degrees of nuclear polymorphism and clear to basophilic cytoplasm. On immunohistochemistry, the following phenotype was observed: CD45(+), CD20(+), CD79a(+), PAX5/BSAP(+), BOB.1(+), Oct-2(+), PU.1(+), Bcl-2(+), CD30(+), HLA-DR(+), MAL protein(+/-), Bcl-6(+/-), MUM1/IRF4(+/-), CD10(-/+), CD21(-), CD15(-), CD138(-), CD68(-), and CD3(-). Immunoglobulins were negative both at immunohistochemistry and in situ hybridization. Molecular analysis, performed in 45 cases, showed novel findings. More than half of the cases displayed BCL-6 gene mutations, which usually occurred along with functioning somatic IgV(H) gene mutations and Bcl-6 and/or MUM1/IRF4 expression. The present study supports the concept that a sizable fraction of cases of this lymphoma are from activated germinal center or postgerminal center cells. However, it differs from other aggressive B-cell lymphomas in that it shows defective immunoglobulin production despite the expression of OCT-2, BOB.1, and PU.1 transcription factors and the lack of IgV(H) gene crippling mutations.
Collapse
Affiliation(s)
- Stefano A Pileri
- Istituto di Ematologia e Oncologia Medica, L. e A. Seràgnoli Unità Cliniche e di Anatomia Patologica, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Samardzic T, Marinkovic D, Nielsen PJ, Nitschke L, Wirth T. BOB.1/OBF.1 deficiency affects marginal-zone B-cell compartment. Mol Cell Biol 2002; 22:8320-31. [PMID: 12417733 PMCID: PMC134056 DOI: 10.1128/mcb.22.23.8320-8331.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marginal-zone (MZ) B cells represent a first line of defense against particulate blood-borne antigens. Together with the B1 cells, they are responsible for the early response against type II T-independent antigens. The molecular pathways controlling the development of MZ B cells are only poorly understood. We found that these cells are virtually absent in mice deficient in the BOB.1/OBF.1 coactivator. Loss of these B cells was demonstrated by the lack of cells showing the appropriate cell surface phenotype but also by histological analyses and tri-nitro-phenol-Ficoll capturing. The lack of these cells is a B-cell-intrinsic defect, as shown by bone marrow complementation experiments. We also show that the expression of BOB.1/OBF.1 in peripheral B cells is required for the development of MZ B lymphocytes. Our analysis of BOB.1/OBF.1-deficient splenic B cells reveals alterations in cell motility, tumor necrosis factor receptor expression, and B-cell receptor (BCR) signaling. These changes could contribute to the loss of MZ B lymphocytes by altering the maturation of the cells. Interestingly, development of and BCR signaling in B1 B cells are completely normal in BOB.1/OBF.1 mutant mice.
Collapse
Affiliation(s)
- Tatjana Samardzic
- Department of Physiological Chemistry, Ulm University, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
59
|
Feldhahn N, Schwering I, Lee S, Wartenberg M, Klein F, Wang H, Zhou G, Wang SM, Rowley JD, Hescheler J, Krönke M, Rajewsky K, Küppers R, Müschen M. Silencing of B cell receptor signals in human naive B cells. J Exp Med 2002; 196:1291-305. [PMID: 12438421 PMCID: PMC2193982 DOI: 10.1084/jem.20020881] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To identify changes in the regulation of B cell receptor (BCR) signals during the development of human B cells, we generated genome-wide gene expression profiles using the serial analysis of gene expression (SAGE) technique for CD34(+) hematopoietic stem cells (HSCs), pre-B cells, naive, germinal center (GC), and memory B cells. Comparing these SAGE profiles, genes encoding positive regulators of BCR signaling were expressed at consistently lower levels in naive B cells than in all other B cell subsets. Conversely, a large group of inhibitory signaling molecules, mostly belonging to the immunoglobulin superfamily (IgSF), were specifically or predominantly expressed in naive B cells. The quantitative differences observed by SAGE were corroborated by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. In a functional assay, we show that down-regulation of inhibitory IgSF receptors and increased responsiveness to BCR stimulation in memory as compared with naive B cells at least partly results from interleukin (IL)-4 receptor signaling. Conversely, activation or impairment of the inhibitory IgSF receptor LIRB1 affected BCR-dependent Ca(2+) mobilization only in naive but not memory B cells. Thus, LIRB1 and IL-4 may represent components of two nonoverlapping gene expression programs in naive and memory B cells, respectively: in naive B cells, a large group of inhibitory IgSF receptors can elevate the BCR signaling threshold to prevent these cells from premature activation and clonal expansion before GC-dependent affinity maturation. In memory B cells, facilitated responsiveness upon reencounter of the immunizing antigen may result from amplification of BCR signals at virtually all levels of signal transduction.
Collapse
Affiliation(s)
- Niklas Feldhahn
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Casellas R, Jankovic M, Meyer G, Gazumyan A, Luo Y, Roeder R, Nussenzweig M. OcaB is required for normal transcription and V(D)J recombination of a subset of immunoglobulin kappa genes. Cell 2002; 110:575-85. [PMID: 12230975 DOI: 10.1016/s0092-8674(02)00911-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OcaB, a transcriptional coactivator also known as Bob-1 or OBF-1, was isolated on the basis of its ability to enhance transcription of immunoglobulin (Ig) genes in vitro. Paradoxically, OcaB(-/-) mice showed no apparent deficiency in Ig gene transcription, only cellular immune defects including absence of germinal centers (GC) and decreased numbers of immature B cells; the genes targeted by OcaB were not determined. Here we report that OcaB is essential for V(D)J recombination of a subset of Igkappa genes. We show that OcaB modulates recombination by directly enhancing Igkappa gene transcription in vivo.
Collapse
|
61
|
Grammer AC, Lipsky PE. CD154-CD40 interactions mediate differentiation to plasma cells in healthy individuals and persons with systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 2002; 46:1417-29. [PMID: 12115170 DOI: 10.1002/art.10287] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amrie C Grammer
- National Institute of Arthritis and Musculoskeletal and Skin Diseases/NIH, 9000 Rockville Pike, Building 10, Room 6D47A, Bethesda, MD 20892, USA.
| | | |
Collapse
|
62
|
Shore P, Dietrich W, Corcoran LM. Oct-2 regulates CD36 gene expression via a consensus octamer, which excludes the co-activator OBF-1. Nucleic Acids Res 2002; 30:1767-73. [PMID: 11937630 PMCID: PMC113195 DOI: 10.1093/nar/30.8.1767] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The POU domain transcription factor, Oct-2, is essential for the B cell-specific expression of CD36 in mouse B cells. In order to determine how Oct-2 mediates expression of CD36 in B cells, we cloned and analysed the mouse CD36 promoter. In contrast to the human CD36 promoter, the mouse promoter contains a consensus octamer element of the type ATGCTAAT. This octamer element can be bound by either Oct-1 or Oct-2 but requires the expression of Oct-2 to activate transcription in B cells. Mutation of the octamer element renders the CD36 promoter refractory to activation by Oct-2. Furthermore, we demonstrate that the CD36 octamer element does not support recruitment of the B cell-specific co-activator OBF-1 and that CD36 expression is unaffected in primary B cells derived from obf-1(-/-) mice. We conclude that Oct-2 activates CD36 gene expression in mouse B cells via the octamer element in the promoter. Our data also demonstrate that CD36 is the first example of an Oct-2-dependent gene whose expression in B cells is independent of OBF-1. These findings support the notion that Oct-2 regulates gene transcription by both OBF-1-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Paul Shore
- School of Biological Sciences, University of Manchester, 2.205, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
63
|
Yasui T, Muraoka M, Takaoka-Shichijo Y, Ishida I, Takegahara N, Uchida J, Kumanogoh A, Suematsu S, Suzuki M, Kikutani H. Dissection of B cell differentiation during primary immune responses in mice with altered CD40 signals. Int Immunol 2002; 14:319-29. [PMID: 11867568 DOI: 10.1093/intimm/14.3.319] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CD40 is essential for efficient humoral immune responses. CD40 has two cytoplasmic domains required for binding of tumor necrosis factor receptor-associated factors (TRAF). The TRAF6-binding site is within the membrane proximal cytoplasmic (Cmp) region, while a PXQXT motif in the membrane distal cytoplasmic (Cmd) region needs to engage TRAF2/3/5. To dissect CD40 signals necessary for B cell differentiation, we generated transgenic mice expressing wild-type and mutant human CD40 (hCD40) molecules in a mouse CD40-deficient (mCD40(-/-)) background. The B cell-specific expression of hCD40 in mCD40(-/-) mice resulted in T-dependent antibody responses including germinal center (GC) formation. Mutant hCD40 molecules that carry either a point mutation of the TRAF2/3/5-binding site or a deletion of the Cmd region rescued extrafollicular B cell differentiation but not GC formation. A mutant hCD40 that comprises of only the TRAF2/3/5-binding site in the cytoplasmic region also rescued low but significant titers of antigen-specific IgG1 without GC formation. These results demonstrated that two distinct signals either from the Cmp or from the Cmd region induced the extrafollicular B cell differentiation and Ig class switching; however, GC formation required both. We conclude that combinations of these two signals determine which of the extrafollicular or the follicular (GC) differentiation pathway B cells enter.
Collapse
Affiliation(s)
- Teruhito Yasui
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Sáez AI, Artiga MJ, Sánchez-Beato M, Sánchez-Verde L, García JF, Camacho FI, Franco R, Piris MA. Analysis of octamer-binding transcription factors Oct2 and Oct1 and their coactivator BOB.1/OBF.1 in lymphomas. Mod Pathol 2002; 15:211-20. [PMID: 11904338 DOI: 10.1038/modpathol.3880518] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct1 and Oct2 are transcription factors of the POU homeo-domain family that bind to the Ig gene octamer sites, regulating B-cell-specific genes. The function of these transcription factors is dependent on the activity of B-cell-restricted coactivators such as BOB.1/OBF.1. Independent studies of the expression of these proteins in non-Hodgkin's lymphoma have been restricted to single markers, and most lack data concerning immunohistochemical expression. Thus, we have investigated the expression of Oct1, Oct2, and BOB.1/OBF.1 in human reactive lymphoid tissue and in a series of 140 Hodgkin and non-Hodgkin's lymphomas. None of these proteins was found to be restricted to B cells, although only B cells expressed high levels of all three markers. Additionally, germinal center B cells showed stronger Oct2 and BOB.1/OBF.1 staining. Consequently, most B-cell lymphomas showed reactivity for all three antibodies. Oct2 expression was significantly higher in germinal center-derived lymphomas, although other B-cell lymphomas also displayed a high level of Oct2 expression. Although T-cell lymphomas and Hodgkin's lymphomas expressed some of these proteins, they commonly exhibited less reactivity than B-cell lymphomas. Despite not being entirely cell-specific, the strong nuclear expression of Oct2 and BOB.1/OBF.1 by germinal center- derived lymphomas makes these antibodies a potentially useful tool in lymphoma diagnosis.
Collapse
Affiliation(s)
- Ana-Isabel Sáez
- Molecular Pathology Program, Centro Nacional de Investigaciones Oncológicas Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Plasma cells are cellular factories devoted entirely to the manufacture and export of a single product: soluble immunoglobulin (Ig). As the final mediators of a humoral response, plasma cells play a critical role in adaptive immunity. Although intense effort has been devoted to studying the regulation and requirements for early B cell development, little information has been available on plasma cells. However, more recent work-including studies on genetically altered mice and data from microarray analyses-has begun to identify the regulatory cascades that initiate and maintain the plasma cell phenotype. This review will summarize our current understanding of the molecules that regulate commitment to a plasma cell fate and those that mediate plasma cell function.
Collapse
Affiliation(s)
- K L Calame
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
66
|
Sharif MN, Radomska HS, Miller DM, Eckhardt LA. Unique function for carboxyl-terminal domain of Oct-2 in Ig-secreting cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4421-9. [PMID: 11591767 DOI: 10.4049/jimmunol.167.8.4421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity of Ig gene promoters and enhancers is regulated by two related transcription factors, Oct-1 (ubiquitous) and Oct-2 (B lineage specific), which bind the octamer motif (ATTTGCAT) present in these elements. As Ig promoter-binding factors, Oct-1 and Oct-2 each work together with a B lymphocyte-specific cofactor OCA-B/OBF-1/Bob-1 that interacts with them through their POU (DNA-binding) domains. Because both can mediate Ig promoter activity in B cells, there has been some question as to whether these two octamer-binding factors serve distinct functions in lymphocytes. We have shown previously that the silencing of B lymphocyte-specific genes in plasmacytoma x T lymphoma hybrids can be prevented by preserving Oct-2 expression. The pronounced effect of this transcription factor on the phenotype of plasmacytoma x T lymphoma hybrids established a critical role for Oct-2 not only in maintaining Ig gene expression, but in maintaining the overall genetic program of Ig-secreting cells. In the present study, we have explored the functional differences between Oct-1 and Oct-2 using chimeric Oct-1/Oct-2 proteins in cell fusion assays. Our results provide further evidence for an essential role for Oct-2 in Ig-secreting cells and identify the C-terminal domain of Oct-2 as responsible for its unique function in these cells.
Collapse
Affiliation(s)
- M N Sharif
- Department of Biological Sciences, Hunter College, Graduate School of City University of New York, New York, NY 10021, USA
| | | | | | | |
Collapse
|
67
|
Laurencikiene J, Deveikaite V, Severinson E. HS1,2 enhancer regulation of germline epsilon and gamma2b promoters in murine B lymphocytes: evidence for specific promoter-enhancer interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3257-65. [PMID: 11544313 DOI: 10.4049/jimmunol.167.6.3257] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During an immune response, activated B cells develop into high rate Ig-secreting plasma cells. They also switch from production of IgM to IgG, IgA, or IgE. This process requires a DNA recombination event, which is regulated at the transcriptional level by the production of isotype-specific, sterile germline (GL) transcripts. Induction of these transcripts is controlled by GL promoters and, possibly, by IgH 3' enhancers. We investigated the interaction of the GL epsilon and gamma2b promoters with the HS1,2 enhancer using transiently transfected mouse primary B cells and cell lines. The constructs used for the transfections contained a GL promoter upstream and HS1,2 downstream of a luciferase reporter gene. Both GL epsilon and gamma2b promoters synergized strongly with the HS1,2 enhancer in activated primary B cells, a mature B cell line, and a plasma cell line. We show that the major activity of HS1,2 in activated primary B cells occurs within a 310-bp fragment that includes NF-kappaB, OCT, and NF of activated B cells (Ets/AP-1) sites. By mutating the consensus sequences for various transcription factors, we have determined which sites in HS1,2 are important for synergy with the GL epsilon and gamma2b promoters. Our findings indicate that different sites in HS1,2 might selectively interact with the GL epsilon and gamma2b promoters. We also provide evidence that B cell-specific activator protein is not an absolute suppressor of HS1,2 activity.
Collapse
Affiliation(s)
- J Laurencikiene
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
68
|
Abstract
The BOB.1/OBF.1 coactivator is critically involved in mediating octamer-dependent transcriptional activity in B lymphocytes. Mice lacking this coactivator show various defects in B-cell development, most notably they completely lack germinal centers. Consistent with this phenotype, BOB.1/OBF.1 levels are massively upregulated in germinal center B cells as compared with resting B cells. We have addressed the mechanism of upregulation and found that only a minor part of this regulation can be attributed to increased levels of BOB.1/OBF.1-specific mRNA. Apparently, BOB.1/OBF.1 is also regulated at the protein level. In support of this suggestion we have been able to identify two related BOB.1/OBF.1 interacting proteins, SIAH1 and SIAH2, in a yeast two-hybrid screen. SIAH1 and SIAH2 are known regulators of protein stability. Cotransfection experiments revealed that coexpression of SIAH results in a destabilization of BOB.1/OBF.1 protein without affecting mRNA levels. Further more, proteasome inhibitors block the degradation of BOB.1/OBF.1 protein. Finally, B-cell receptor cross-linking also resulted in the degradation of BOB.1/OBF.1 and consequently reduced transcriptional activation of BOB.1/OBF.1-dependent reporters.
Collapse
Affiliation(s)
| | - Yunsheng He
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg and Department of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm,
Pathologisches Institut, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany and Metabolism Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Axel Greiner
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg and Department of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm,
Pathologisches Institut, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany and Metabolism Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Louis Staudt
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg and Department of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm,
Pathologisches Institut, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany and Metabolism Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Thomas Wirth
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Strasse 5, 97078 Würzburg and Department of Physiological Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm,
Pathologisches Institut, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany and Metabolism Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA Corresponding author e-mail:
| |
Collapse
|
69
|
Tiedt R, Bartholdy BA, Matthias G, Newell JW, Matthias P. The RING finger protein Siah-1 regulates the level of the transcriptional coactivator OBF-1. EMBO J 2001; 20:4143-52. [PMID: 11483517 PMCID: PMC149178 DOI: 10.1093/emboj/20.15.4143] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transcriptional coactivator OBF-1, which interacts with Oct-1 and Oct-2 and the octamer site DNA, has been shown to be critical for development of a normal immune response and the formation of germinal centers in secondary lymphoid organs. Here we have identified the RING finger protein Siah-1 as a protein interacting specifically with OBF-1. This interaction is mediated by the C-terminal part of Siah-1 and by residues in the N-terminus of OBF-1, partly distinct from the residues required for formation of a complex with the Oct POU domains and the DNA. Interaction between Siah-1 and OBF-1 leads to downregulation of OBF-1 protein level but not mRNA, and to a corresponding reduction in octamer site-dependent transcription activation. Inhibition of the ubiquitin-proteasome pathway in B cells leads to elevated levels of OBF-1 protein. Furthermore, in immunized mice, OBF-1 protein amounts are dramatically increased in primary activated B cells, without concomitant increase in OBF-1 mRNA. These data suggest that Siah-1 is part of a novel regulatory loop controlling the level of OBF-1 protein in B cells.
Collapse
Affiliation(s)
| | | | | | | | - Patrick Matthias
- Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
Corresponding author e-mail:
| |
Collapse
|
70
|
Knödel M, Kuss A, Berberich I, Schimpl A. Blimp-1 over-expression abrogates IL-4- and CD40-mediated suppression of terminal B cell differentiation but arrests isotype switching. Eur J Immunol 2001. [DOI: 10.1002/1521-4141(200107)31:7<1972::aid-immu1972>3.0.co;2-t] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
71
|
Hess J, Nielsen PJ, Fischer KD, Bujard H, Wirth T. The B lymphocyte-specific coactivator BOB.1/OBF.1 is required at multiple stages of B-cell development. Mol Cell Biol 2001; 21:1531-9. [PMID: 11238890 PMCID: PMC86699 DOI: 10.1128/mcb.21.5.1531-1539.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional coactivator BOB.1/OBF.1 confers B-cell specificity on the transcription factors Oct1 and Oct2 at octamer site-containing promoters. A hallmark of the BOB.1/OBF.1 mutation in the mouse is the absence of germinal center development in secondary lymphoid organs, demonstrating the requirement for BOB.1/OBF.1 in antigen-dependent stages of B-cell differentiation. Here we analyzed earlier stages of B lymphopoiesis in BOB.1/OBF.1-deficient mice. Examination of B-cell development in the bone marrow revealed that the numbers of transitional immature (B220(+) IgM(hi)) B cells were reduced and that B-cell apoptosis was increased. When in competition with wild-type cells, BOB.1/OBF.1(-/-) bone marrow cells exhibited defects in repopulating the bone marrow B-cell compartment and were unable to establish a presence in the periphery of host mice. The defective bone marrow populations in BOB.1/OBF.1(-/-) mice were rescued by conditional expression of a BOB.1/OBF.1 transgene controlled by the tetracycline gene expression system. However, the restored populations did not restore the numbers of IgD(hi) B cells in the periphery, where the BOB.1/OBF.1 transgene was not expressed. These results show that BOB.1/OBF.1(-/-) B cells exhibit multistage defects in B-cell development, including impaired production of transitional B cells and defective maturation of recirculating B cells.
Collapse
Affiliation(s)
- J Hess
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, D-97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
72
|
|
73
|
|
74
|
Ma C, Staudt LM. Molecular definition of the germinal centre stage of B-cell differentiation. Philos Trans R Soc Lond B Biol Sci 2001; 356:83-9. [PMID: 11205335 PMCID: PMC1087695 DOI: 10.1098/rstb.2000.0752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic-scale gene expression analysis provides views of biological processes as a whole that are difficult to obtain using traditional single-gene experimental approaches. In the case of differentiating systems, gene expression profiting can define a stage of differentiation by the characteristic expression of hundreds of genes. Using specialized DNA microarrays termed 'Lymphochips', gene expression during mature B-cell differentiation has been defined. Germinal centre B cells represent a stage of differentiation that can be defined by a gene expression signature that is not shared by other highly proliferative B-cell populations such as mitogenically activated peripheral blood B cells. The germinal centre gene expression signature is maintained to a significant degree in lymphoma cell lines derived from this stage of differentiation, demonstrating that this gene expression programme does not require ongoing interactions with other germinal centre cell types. Analysis of representative cDNA libraries prepared from resting and activated peripheral blood B cells, germinal centre centroblasts, centrocytes and tonsillar memory B cells has confirmed and extended the results of DNA microarray gene expression analysis.
Collapse
Affiliation(s)
- C Ma
- Division of Clinical Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
75
|
Schubart K, Massa S, Schubart D, Corcoran LM, Rolink AG, Matthias P. B cell development and immunoglobulin gene transcription in the absence of Oct-2 and OBF-1. Nat Immunol 2001; 2:69-74. [PMID: 11135581 DOI: 10.1038/83190] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct-2 and OBF-1 (also called OCA-B or Bob-1) are B cell-specific transcription factors that bind to the conserved octamer site of immunoglobulin promoters, yet their role in immunoglobulin transcription has remained unclear. We generated mice in which the lymphoid compartment was reconstituted with cells that lack both Oct-2 and OBF-1. Even in the absence of these two transcription factors, B cells develop normally to the membrane immunoglobulin M-positive (IgM+) stage and immunoglobulin gene transcription is essentially unaffected. These observations imply that the ubiquitous factor Oct-1 plays a previously unrecognized role in the control of immunoglobulin gene transcription and suggest the existence of another, as yet unidentified, cofactor. In addition, both factors are essential for germinal center formation, although OBF-1 is more important than Oct-2 for IgG production after immunization.
Collapse
Affiliation(s)
- K Schubart
- Friedrich Miescher Institute, Maulbeerstr. 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
76
|
Reichlin A, Hu Y, Meffre E, Nagaoka H, Gong S, Kraus M, Rajewsky K, Nussenzweig MC. B cell development is arrested at the immature B cell stage in mice carrying a mutation in the cytoplasmic domain of immunoglobulin beta. J Exp Med 2001; 193:13-23. [PMID: 11136817 PMCID: PMC2195879 DOI: 10.1084/jem.193.1.13] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The B cell receptor (BCR) regulates B cell development and function through immunoglobulin (Ig)alpha and Ig beta, a pair of membrane-bound Ig superfamily proteins, each of which contains a single cytoplasmic immunoreceptor tyrosine activation motif (ITAM). To determine the function of Ig beta, we produced mice that carry a deletion of the cytoplasmic domain of Ig beta (Ig beta Delta C mice) and compared them to mice that carry a similar mutation in Ig alpha (MB1 Delta C, herein referred to as Ig alpha Delta C mice). Ig beta Delta C mice differ from Ig alpha Delta C mice in that they show little impairment in early B cell development and they produce immature B cells that respond normally to BCR cross-linking as determined by Ca(2+) flux. However, Ig beta Delta C B cells are arrested at the immature stage of B cell development in the bone marrow and die by apoptosis. We conclude that the cytoplasmic domain Ig beta is required for B cell development beyond the immature B cell stage and that Ig alpha and Ig beta have distinct biologic activities in vivo.
Collapse
Affiliation(s)
- Amy Reichlin
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Yun Hu
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Eric Meffre
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Hitoshi Nagaoka
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Shiaoching Gong
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Manfred Kraus
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Klaus Rajewsky
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| |
Collapse
|
77
|
Kim U, Gunther CS, Roeder RG. Genetic analyses of NFKB1 and OCA-B function: defects in B cells, serum IgM level, and antibody responses in Nfkb1-/-Oca-b-/- mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6825-32. [PMID: 11120805 DOI: 10.4049/jimmunol.165.12.6825] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Defined patterns of gene expression during cell differentiation are likely to be ensured by multiple factors playing redundant roles. By generating mice deficient in both NFKB1 and OCA-B, we show here that the two transcription factors are required for B-1 cell differentiation and serum IgM production. In addition, relative to Nfkb1(-/-) or Oca-b(-/-) mice, the Nfkb1(-/-)Oca-b(-/-) mice show a decrease in conventional B cell frequencies in the spleen and augmented reductions in T-independent and T-dependent Ab responses. These results suggest that NFKB1 and OCA-B play compensatory roles in multiple aspects of B cell differentiation.
Collapse
Affiliation(s)
- U Kim
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
78
|
Tiesinga JJ, Wu CD, Inghirami G. CD5+ follicle center lymphoma. Immunophenotyping detects a unique subset of "floral" follicular lymphoma. Am J Clin Pathol 2000; 114:912-21. [PMID: 11338480 DOI: 10.1309/v6pj-bdap-f0lu-cb6t] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The "floral" variant of follicle center lymphoma (FCL) may be confused with progressive transformation of germinal centers or lymphocyte predominance Hodgkin lymphoma. Immunohistochemistry and gene rearrangement studies are usually sufficient to differentiate among these entities. We present 11 cases of floral FCL that were evaluated at our institution by flow cytometry, immunohistochemistry, or both and by polymerase chain reaction-based molecular analysis. In 4 cases, the neoplastic B cells coexpressed CD5 antigens; 3 of these 4 cases also were CD10+, and all demonstrated rearrangement within the bcl-2 locus. These findings demonstrate that a subset of floral FCL is CD5+. Recognition of this immunophenotype is important to avoid misdiagnosis of nodular variants of small lymphocytic lymphoma and mantle cell lymphoma. Studies suggest that expression of CD5 by neoplastic germinal center cells might result from alterations of the follicular microenvironment and/or inappropriate B-cell responses to cytokine networks.
Collapse
Affiliation(s)
- J J Tiesinga
- Department of Pathology, Hematopathology Division, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
79
|
Andersson T, Samuelsson A, Matthias P, Pettersson S. The lymphoid-specific cofactor OBF-1 is essential for the expression of a V(H) promoter/HS1,2 enhancer-linked transgene in late B cell development. Mol Immunol 2000; 37:889-99. [PMID: 11282393 DOI: 10.1016/s0161-5890(01)00005-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice deficient for the lymphoid-specific cofactor OBF-1 display reduced levels of IgG, IgA and IgE. To examine whether the lowered immunoglobulin expression is linked to reduced activity of IgH cis-regulatory elements, OBF-1(-/-) mice were crossed with mice expressing transgenes driven by a V(H) or beta-globin promoter linked to the HS1,2 enhancer. Here we show that OBF-1 is essential for the induced expression of a V(H) promoter-linked transgene, in contrast to a beta-globin promoter-dependent transgene, in LPS/IL-4 or CD40-stimulated splenic B cells. Furthermore, impaired transgene expression is observed in OBF-1(-/-) peritoneal B cells. This deficiency may be linked to OBF-1, as peritoneal cells from normal mice express OBF-1 protein constitutively. Our data link OBF-1 to IgH gene expression in late B lymphoid development.
Collapse
Affiliation(s)
- T Andersson
- Center for Genomics Research, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | | | | | |
Collapse
|
80
|
Guinamard R, Okigaki M, Schlessinger J, Ravetch JV. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol 2000; 1:31-6. [PMID: 10881171 DOI: 10.1038/76882] [Citation(s) in RCA: 397] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lymphoid organs contain specialized microanatomic structures composed of lymphoid, myeloid and stromal cells that are vital to the generation of an effective adaptive immune response. Although the existence of these specialized structures has been known for over a century, the developmental signals that generate them and the specific roles of these structures in the immune response have remained largely elusive. Because of their position adjacent to the marginal sinuses, marginal zone B (MZB) cells are amongst the first population of cells seen by blood born antigens and are presumed to have a critical role in host defense against bacterial pathogens. Here we demonstrate that a deficiency of the tyrosine kinase (Pyk-2) results in a cell autonomous defect of MZB cell production. In response to repetitive polysaccharide antigens (T-independent type II (TI-II)) Pyk-2-deficient mice displayed marked suppression of IgM, IgG3 and IgG2a production. Furthermore, complement receptor engagement proved necessary for the specific targeting of polysaccharide antigens to MZB cells. These results suggest how innate immune responses mediated through complement coupling are translated into an adaptive response by MZB cells, and provide a potential mechanism for the T cell independence of humoral responses to polysaccharide antigens.
Collapse
Affiliation(s)
- R Guinamard
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, 1230 York Ave, New York, NY 10021, USA
| | | | | | | |
Collapse
|
81
|
Stevens S, Wang L, Roeder RG. Functional analysis of the OCA-B promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6372-9. [PMID: 10843692 DOI: 10.4049/jimmunol.164.12.6372] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OCA-B was identified as a B cell-specific coactivator that functions with either Oct-1 or Oct-2 to mediate efficient cell type-specific transcription via the octamer site (ATGCAAAT) both in vivo and in vitro. Mice lacking OCA-B exhibit normal Ag-independent B cell maturation. In contrast, Ag-dependent functions, including production of secondary Ig isotypes and germinal center formation, are greatly affected. To better understand OCA-B expression and, ultimately, the defects observed in the OCA-B knockout mice, we have cloned the OCA-B promoter and examined its function in both transformed and primary B cells. We show here that the OCA-B promoter is developmentally regulated, with activity increasing throughout B cell differentiation. Through physical and functional assays, we have found an activating transcription factor/cAMP response element binding protein binding site (or cAMP response element) that is crucial for OCA-B promoter activity. Furthermore, we demonstrate that IL-4 and anti-CD40 induce both the OCA-B promoter and octamer-dependent promoters, thus implicating OCA-B in B cell signaling events in the nucleus.
Collapse
Affiliation(s)
- S Stevens
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
82
|
Stevens S, Ong J, Kim U, Eckhardt LA, Roeder RG. Role of OCA-B in 3'-IgH enhancer function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5306-12. [PMID: 10799892 DOI: 10.4049/jimmunol.164.10.5306] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OCA-B (alternately called Bob1 and OBF-1) is a B cell-specific coactivator that interacts with the ubiquitously expressed Oct-1 and the B cell-restricted Oct-2 to activate transcription via the octamer site (5'-ATGCAAAT-3'). OCA-B-/- mice appear to undergo normal Ag-independent B cell maturation. However, Ag-dependent B cell differentiation, including germinal center formation, production of secondary Ig isotypes, and proliferation in response to surface Ig cross-linking, is greatly affected. We demonstrate that the observed reductions in expression of class-switched isotypes in OCA-B-/- mice may be due in part to deficiencies in the function of the 3'-IgH enhancer elements. Furthermore, we find that surface Ig cross-linking represses all the Ig enhancers and that this repression is absent in OCA-B-/- B cells. These results suggest an important role for OCA-B in Ig enhancer function in vivo.
Collapse
Affiliation(s)
- S Stevens
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
83
|
Greiner A, Müller KB, Hess J, Pfeffer K, Müller-Hermelink HK, Wirth T. Up-regulation of BOB.1/OBF.1 expression in normal germinal center B cells and germinal center-derived lymphomas. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:501-7. [PMID: 10666379 PMCID: PMC1850056 DOI: 10.1016/s0002-9440(10)64754-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/1999] [Indexed: 12/24/2022]
Abstract
The BOB.1/OBF.1/OCAB.1 protein is a lymphocyte-specific transcriptional coactivator. It interacts with the Oct1 and Oct2 transcription factors and contributes to the transcriptional activity of octamer motifs. The analysis of established B cell lines had suggested that BOB.1/OBF.1 is constitutively expressed at all stages of B cell development. Here we show that expression of BOB. 1/OBF.1 is regulated within the B cell lineage. Specifically, germinal center B cells show highly increased BOB.1/OBF.1 levels. We can induce the up-regulation by stimulating primary splenic B cells, eg, by triggering CD40 signaling in the presence of interleukin-4. Expression of BOB.1/OBF.1 is detectable but reduced in spleens from mice unable to undergo the germinal center reaction due to mutations in the TNF receptor p55 or lymphotoxin beta (LTbeta) receptor genes. Furthermore, we demonstrate that BOB.1/OBF.1 expression is highly regulated in human B cell lymphomas. Whereas lymphomas representing pre- and postfollicular B cell developmental stages are negative for BOB.1/OBF.1, high-level expression of BOB.1/OBF.1 is characteristic of germinal center-derived tumors. In these tumors BOB.1/OBF.1 is typically coexpressed with high levels of Bcl6. These results imply that overexpression of BOB.1/OBF.1, like overexpression of Bcl6, might play a role in the pathogenesis of germinal center-derived B cell lymphomas. Furthermore, overexpression of BOB.1/OBF.1 represents a characteristic feature of these tumors that is useful in their identification.
Collapse
Affiliation(s)
- A Greiner
- Pathologisches Institut, Würzburg. Würzburg. München, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Schubart DB, Rolink A, Schubart K, Matthias P. Cutting edge: lack of peripheral B cells and severe agammaglobulinemia in mice simultaneously lacking Bruton's tyrosine kinase and the B cell-specific transcriptional coactivator OBF-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:18-22. [PMID: 10604987 DOI: 10.4049/jimmunol.164.1.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBF-1 is a B cell-restricted transcriptional coactivator that is recruited to octamer-containing promoters by interacting with the POU domain of Oct-1 or Oct-2. We have shown earlier that mice lacking OBF-1 were dramatically impaired in their ability to mount humoral immune responses and did not develop germinal centers in the spleen; however, they had a largely normal B cell development in the bone marrow. In this study, we demonstrate that OBF-1-deficient mice also have an early defect in B cell development and show that OBF-1-/- immature B cells are greatly impaired at the transition from the bone marrow to the spleen. In addition, when the OBF-1 mutation is combined to a mutation in the gene encoding Bruton's tyrosine kinase, a striking phenotype is observed. These double-deficient animals lack peripheral B cells and have virtually no serum Igs, thus closely resembling human X chromosome-linked agammaglobulinemia.
Collapse
Affiliation(s)
- D B Schubart
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
85
|
Abstract
Targeted disruption of either of the B cell-specific transcription factors Oct-2 or OCA-B/BOB-1/OBF-1 dramatically affects B cell terminal differentiation. The 3' enhancer of immunoglobulin heavy chain (IgH) locus is important for transcription of the locus in terminal plasma cells. Allele-specific suppression of mutant Oct-2 binding sites in this enhancer by a variant Oct-2 protein revealed that in a mature B cell line this enhancer was specifically dependent upon Oct-2, as contrasted to the closely related Oct-1 transcription factor. Phosphorylation of the Oct-2 protein was important for this activation and was synergistic for coactivation by the OCA-B factor. These results indicate that Oct-2 and OCA-B interact with the 3' enhancer in regulation of the IgH locus during B cell activation.
Collapse
Affiliation(s)
- H Tang
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
86
|
Chang JF, Phillips K, Lundbäck T, Gstaiger M, Ladbury JE, Luisi B. Oct-1 POU and octamer DNA co-operate to recognise the Bob-1 transcription co-activator via induced folding. J Mol Biol 1999; 288:941-52. [PMID: 10329190 DOI: 10.1006/jmbi.1999.2711] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of immunoglobulin genes is controlled in part by the DNA-binding protein Oct-1 and the B cell-specific transcription co-activator, Bob1 (also known as OCA-B or OBF-1) that together form a complex on the Igkappa promoter. We have characterised the assembly of the ternary complex using biophysical methods. Bob1 binds specifically as a monomer to the complex of the Oct-1 DNA-binding domain (Oct-1 POU) and the Igkappa promoter, but binds weakly to either Oct-1 POU or the Igkappa promoter alone, indicating that both are required to make an avid complex. Ternary complex formation requires a defined DNA sequence, as the stability of the complex can be strongly affected by a single base-pair change or by removing 5-methyl groups from selected thymine bases.In isolation, Bob1 appears to have little secondary structure, but may become partially structured upon recruitment into the ternary complex as demonstrated by circular dichroism spectra and calorimetry. These and other findings suggest that ternary complex formation requires a defined geometry of the POU/DNA complex, and that the co-activator makes stereo-specific contacts to both the POU protein and the major groove of the DNA that induces its fold.
Collapse
Affiliation(s)
- J F Chang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
Upon treatment with lipopolysaccharide (LPS), primary B cells proliferate and differentiate into plasma cells with concomitant up-regulation of immunoglobulin (Ig) gene expression. Here we examine the role of the Igkappa 3' enhancer in this process using a kappa3'-enhancer-driven beta-globin reporter gene in transgenic mice. We find that LPS treatment up-regulates kappa3' enhancer activity as a function of differentiation rather than proliferation, since proliferation only (induced by cross-linking of CD40) is insufficient to activate the element, whilst differentiation with only limited proliferation (LPS + transforming growth factor-beta) does allow activation to occur. The Igkappa 3' enhancer is also induced by cross-linking of surface Ig and this signal can synergize with LPS activation, suggesting that distinct activation pathways are used. Nevertheless, both of these pathways can be inhibited by co-cross-linking of CD40. Thus Ig enhancers in the heavy and light chain loci are differentially regulated in response to CD40.
Collapse
Affiliation(s)
- K B Meyer
- The Wellcome/CRC Institute of Cancer and Developmental Biology and Department of Pathology, University of Cambridge, GB.
| |
Collapse
|
88
|
Affiliation(s)
- L H Glimcher
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115-6017, USA.
| | | |
Collapse
|