51
|
Veksler A, Kolomeisky AB. Speed-selectivity paradox in the protein search for targets on DNA: is it real or not? J Phys Chem B 2013; 117:12695-701. [PMID: 23316873 DOI: 10.1021/jp311466f] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein search for targets on DNA starts all major biological processes. Although significant experimental and theoretical efforts have been devoted to investigation of these phenomena, mechanisms of protein-DNA interactions during the search remain not fully understood. One of the most surprising observations is known as a speed-selectivity paradox. It suggests that experimentally observed fast findings of targets require smooth protein-DNA binding potentials, while the stability of the specific protein-DNA complex imposes a large energy gap which should significantly slow down the protein molecule. We developed a discrete-state stochastic approach that allowed us to investigate explicitly target search phenomena and to analyze the speed-selectivity paradox. A general dynamic phase diagram for different search regimes is constructed. The effect of the target position on search dynamics is investigated. Using experimentally observed parameters, it is found that slow protein diffusion on DNA does not lead to an increase in the search times. Thus, our theory resolves the speed-selectivity paradox by arguing that it does not exist. It is just an artifact of using approximate continuum theoretical models for analyzing protein search in the region of the parameter space beyond the range of validity of these models. In addition, the presented method, for the first time, provides an explanation for fast target search at the level of single protein molecules. Our theoretical predictions agree with all available experimental observations, and extensive Monte Carlo computer simulations are performed to support analytical calculations.
Collapse
Affiliation(s)
- Alex Veksler
- Department of Chemistry, Rice University , Houston, Texas 77005, United States
| | | |
Collapse
|
52
|
Abstract
We introduce a probabilistic model for protein sliding motion along DNA during the search of a target sequence. The model accounts for possible effects due to sequence-dependent interaction between the nonspecific DNA and the protein. Hydrogen bonds formed at the target site are used as the main sequence-dependent interaction between protein and DNA. The resulting dynamical properties and the possibility of an experimental verification are discussed in details. We show that, while at large times the process reaches a linear diffusion regime, it initially displays a sub-diffusive behavior. The sub-diffusive regime can last sufficiently long to be of biological interest.
Collapse
Affiliation(s)
- Maria Barbi
- Dipartimento di Fisica "E.R. Caianiell" and INFM, Università di Salerno, Baronissi (SA), Italy ; Laboratoire de Physique Théorique des Liquides, Université Pierre et Marie Curie, case courrier 121, 4 Place Jussieu, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
53
|
Feng Y, Love RP, Chelico L. HIV-1 viral infectivity factor (Vif) alters processive single-stranded DNA scanning of the retroviral restriction factor APOBEC3G. J Biol Chem 2013; 288:6083-94. [PMID: 23316055 PMCID: PMC3585047 DOI: 10.1074/jbc.m112.421875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
APOBEC3G is a retroviral restriction factor that can inhibit the replication of human immunodeficiency virus, type 1 (HIV-1) in the absence of the viral infectivity factor (Vif) protein. Virion-encapsidated APOBEC3G can deaminate cytosine to uracil in viral (−)DNA, which leads to hypermutation and inactivation of the provirus. APOBEC3G catalyzes these deaminations processively on single-stranded DNA using sliding and jumping movements. Vif is thought to primarily overcome APOBEC3G through an interaction that mediates APOBEC3G ubiquitination and results in its proteasomal degradation. However, Vif may also inhibit APOBEC3G mRNA translation, virion encapsidation, and deamination activity. Here we investigated the molecular mechanism of VifIIIB- and VifHXB2-mediated inhibition of APOBEC3G deamination activity. Biochemical assays using a model HIV-1 replication assay and synthetic single-stranded or partially double-stranded DNA substrates demonstrated that APOBEC3G has an altered processive mechanism in the presence of Vif. Specifically, VifHXB2 inhibited the jumping and VifIIIB inhibited the sliding movements of APOBEC3G. The absence of such an effect by Vif on degradation-resistant APOBEC3G D128K indicates that a Vif-APOBEC3G interaction mediates this effect. That the partially processive APOBEC3G was less effective at inducing mutagenesis in a model HIV-1 replication assay suggests that Vif co-encapsidation with APOBEC3G can promote sublethal mutagenesis of HIV-1 proviral DNA.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
54
|
Barbi M, Paillusson F. Protein–DNA Electrostatics. DYNAMICS OF PROTEINS AND NUCLEIC ACIDS 2013; 92:253-97. [DOI: 10.1016/b978-0-12-411636-8.00007-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
55
|
Abstract
How do two identical DNA sequences find each other during homologous recombination, amidst a 'sea' of unrelated DNA? New studies reveal how RecA promotes the search for homology by sampling DNA in three dimensions.
Collapse
Affiliation(s)
- Kevin Hiom
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital & Medical School, Dundee, Scotland DD1 9SY, UK.
| |
Collapse
|
56
|
Pollak AJ, Reich NO. Proximal recognition sites facilitate intrasite hopping by DNA adenine methyltransferase: mechanistic exploration of epigenetic gene regulation. J Biol Chem 2012; 287:22873-81. [PMID: 22570478 DOI: 10.1074/jbc.m111.332502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The methylation of adenine in palindromic 5'-GATC-3' sites by Escherichia coli Dam supports diverse roles, including the essential regulation of virulence genes in several human pathogens. As a result of a unique hopping mechanism, Dam methylates both strands of the same site prior to fully dissociating from the DNA, a process referred to as intrasite processivity. The application of a DpnI restriction endonuclease-based assay allowed the direct interrogation of this mechanism with a variety of DNA substrates. Intrasite processivity is disrupted when the DNA flanking a single GATC site is longer than 400 bp on either side. Interestingly, the introduction of a second GATC site within this flanking DNA reinstates intrasite methylation of both sites. Our results show that intrasite methylation occurs only when GATC sites are clustered, as is found in gene segments both known and postulated to undergo in vivo epigenetic regulation by Dam methylation. We propose a model for intrasite methylation in which Dam bound to flanking DNA is an obligate intermediate. Our results provide insights into how intrasite processivity, which appears to be context-dependent, may contribute to the diverse biological roles that are carried out by Dam.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Chemistry and Biochemistry University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
57
|
Sheinman M, Bénichou O, Kafri Y, Voituriez R. Classes of fast and specific search mechanisms for proteins on DNA. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:026601. [PMID: 22790348 DOI: 10.1088/0034-4885/75/2/026601] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Problems of search and recognition appear over different scales in biological systems. In this review we focus on the challenges posed by interactions between proteins, in particular transcription factors, and DNA and possible mechanisms which allow for fast and selective target location. Initially we argue that DNA-binding proteins can be classified, broadly, into three distinct classes which we illustrate using experimental data. Each class calls for a different search process and we discuss the possible application of different search mechanisms proposed over the years to each class. The main thrust of this review is a new mechanism which is based on barrier discrimination. We introduce the model and analyze in detail its consequences. It is shown that this mechanism applies to all classes of transcription factors and can lead to a fast and specific search. Moreover, it is shown that the mechanism has interesting transient features which allow for stability at the target despite rapid binding and unbinding of the transcription factor from the target.
Collapse
Affiliation(s)
- M Sheinman
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
58
|
Schonhoft JD, Stivers JT. Timing facilitated site transfer of an enzyme on DNA. Nat Chem Biol 2012; 8:205-10. [PMID: 22231272 PMCID: PMC3262087 DOI: 10.1038/nchembio.764] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/01/2011] [Indexed: 12/29/2022]
Abstract
Many enzymes that react with specific sites in DNA exhibit the property of facilitated diffusion, where the DNA chain is used as a conduit to accelerate site location. Despite the importance of such mechanisms in gene regulation and DNA repair, there have been few viable approaches to elucidate the microscopic process of facilitated diffusion. Here we describe a new method where a small molecule trap (uracil) is used to clock a DNA repair enzyme as it hops and slides between damaged sites in DNA. The “molecular clock” provides unprecedented information: the mean length for DNA sliding, the 1D sliding constant, the maximum hopping radius and time frame for DNA hopping events. In addition, the data establish that the DNA phosphate backbone is a sufficient requirement for DNA sliding.
Collapse
Affiliation(s)
- Joseph D Schonhoft
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
59
|
Chakrabarti J, Chandra N, Raha P, Roy S. High-affinity quasi-specific sites in the genome: how the DNA-binding proteins cope with them. Biophys J 2011; 101:1123-9. [PMID: 21889449 DOI: 10.1016/j.bpj.2011.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/25/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the O(R)1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA.
Collapse
Affiliation(s)
- J Chakrabarti
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | | | | | | |
Collapse
|
60
|
Theoretical and computational modeling of target-site search kinetics in vitro and in vivo. Biophys J 2011; 101:856-65. [PMID: 21843476 DOI: 10.1016/j.bpj.2011.06.066] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 11/20/2022] Open
Abstract
Access to genetically encoded data depends on the dynamics of DNA-binding proteins searching for specific target sites in the genome. This search process is thought to occur by facilitated diffusion-a combination of three-dimensional diffusion and one-dimensional sliding. Although facilitated diffusion is capable of significantly speeding up the search in vitro, the importance of this mechanism in vivo remains unclear. We use numeric simulations and analytical theory to model the target-search dynamics of DNA-binding proteins under a wide range of conditions. Our models reproduce experimental measurements of search-rate enhancement within bulk in vitro experiments, as well as the target search time for transcription factors measured in vivo. We find that facilitated diffusion can accelerate the search process only for a limited range of parameters and only under dilute DNA conditions. We address the role of DNA configuration and confinement, demonstrating that facilitated diffusion does not speed up the search on coiled versus straight DNA. Furthermore, we show that, under in vivo conditions, the search process becomes effectively diffusive and is independent of DNA configuration. We believe our results cast in a new light the role of facilitated diffusion in DNA targeting kinetics within the cell.
Collapse
|
61
|
Abstract
Gene expression originates from individual DNA molecules within living cells. Like many single-molecule processes, gene expression and regulation are stochastic, that is, sporadic in time. This leads to heterogeneity in the messenger-RNA and protein copy numbers in a population of cells with identical genomes. With advanced single-cell fluorescence microscopy, it is now possible to quantify transcriptomes and proteomes with single-molecule sensitivity. Dynamic processes such as transcription-factor binding, transcription and translation can be monitored in real time, providing quantitative descriptions of the central dogma of molecular biology and the demonstration that a stochastic single-molecule event can determine the phenotype of a cell.
Collapse
|
62
|
Sasnauskas G, Kostiuk G, Tamulaitis G, Siksnys V. Target site cleavage by the monomeric restriction enzyme BcnI requires translocation to a random DNA sequence and a switch in enzyme orientation. Nucleic Acids Res 2011; 39:8844-56. [PMID: 21771860 PMCID: PMC3203586 DOI: 10.1093/nar/gkr588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endonucleases that generate double-strand breaks in DNA often possess two identical subunits related by rotational symmetry, arranged so that the active sites from each subunit act on opposite DNA strands. In contrast to many endonucleases, Type IIP restriction enzyme BcnI, which recognizes the pseudopalindromic sequence 5′-CCSGG-3′ (where S stands for C or G) and cuts both DNA strands after the second C, is a monomer and possesses a single catalytic center. We show here that to generate a double-strand break BcnI nicks one DNA strand, switches its orientation on DNA to match the polarity of the second strand and then cuts the phosphodiester bond on the second DNA strand. Surprisingly, we find that an enzyme flip required for the second DNA strand cleavage occurs without an excursion into bulk solution, as the same BcnI molecule acts processively on both DNA strands. We provide evidence that after cleavage of the first DNA strand, BcnI remains associated with the nicked intermediate and relocates to the opposite strand by a short range diffusive hopping on DNA.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
63
|
Abstract
Fluorescent protein labelling, as well as impressive progress in live cell imaging have revolutionised the view on how essential nuclear functions like gene transcription regulation and DNA repair are organised. Here, we address questions like how DNA-interacting molecules find and bind their target sequences in the vast amount of DNA. In addition, we discuss methods that have been developed for quantitative analysis of data from fluorescence recovery after photobleaching experiments (FRAP).
Collapse
|
64
|
Tafvizi A, Mirny LA, van Oijen AM. Dancing on DNA: kinetic aspects of search processes on DNA. Chemphyschem 2011; 12:1481-9. [PMID: 21560221 DOI: 10.1002/cphc.201100112] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Indexed: 11/12/2022]
Abstract
Recognition and binding of specific sites on DNA by proteins is central for many cellular functions such as transcription, replication, and recombination. In the search for its target site, the DNA-associated protein is facing both thermodynamic and kinetic difficulties. The thermodynamic challenge lies in recognizing and tightly binding a cognate (specific) site among the billions of other (non-specific) sequences on the DNA. The kinetic difficulty lies in finding a cognate site in mere seconds amidst the crowded cellular environment that is filled with other DNA sequences and proteins. Herein, we discuss the history of the DNA search problem, the theoretical background and the various experimental methods used to study the kinetics of proteins searching for target sites on DNA.
Collapse
Affiliation(s)
- Anahita Tafvizi
- Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
65
|
Feng Y, Chelico L. Intensity of deoxycytidine deamination of HIV-1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain. J Biol Chem 2011; 286:11415-26. [PMID: 21300806 DOI: 10.1074/jbc.m110.199604] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
APOBEC3G is a single-stranded (ss) DNA deaminase that restricts replication of HIV-1 by inducing viral genome mutagenesis through deamination of cytosine to uracil on HIV-1 cDNA. APOBEC3G has polydisperse oligomeric states and deaminates ssDNA processively through jumping and sliding. APOBEC3G has a catalytically inactive N-terminal CD1 domain that mediates processivity and an active C-terminal CD2 domain that catalyzes deaminations. Here, we assess the determinants of APOBEC3G deamination efficiency mediated by the CD1 domain by comparing native APOBEC3G and two CD1 mutants, a monomeric mutant (F126A/W127A) and a clinical mutant associated with high viral loads (H186R). Biochemical assays on ssDNA or partially dsDNA and with a reconstituted HIV replication system demonstrate that both mutants of Apo3G have altered DNA scanning properties in either jumping (F126A/W127A) or sliding (H186R), which results in decreased abilities to induce mutagenesis during reverse transcription. The data reveal a functionality for Apo3G oligomers in deamination and provide the first biochemical characterization of the clinical mutant H186R. The data demonstrate that the balance between the jumping and sliding of Apo3G is needed for efficient mutational inactivation of HIV-1.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
66
|
Suzuki Y, Yokokawa M, Yoshimura SH, Takeyasu K. Biological Application of Fast-Scanning Atomic Force Microscopy. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2 2011. [DOI: 10.1007/978-3-642-10497-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
67
|
Kolomeisky AB. Physics of protein-DNA interactions: mechanisms of facilitated target search. Phys Chem Chem Phys 2010; 13:2088-95. [PMID: 21113556 DOI: 10.1039/c0cp01966f] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the most critical aspects of protein-DNA interactions is the ability of protein molecules to quickly find and recognize specific target sequences on DNA. Experimental measurements indicate that the corresponding association rates to few specific sites among large number of non-specific sites are typically large. For some proteins they might be even larger than maximal allowed three-dimensional diffusion rates. Although significant progress in understanding protein search and recognition of targets on DNA has been achieved, detailed mechanisms of these processes are still strongly debated. Here we present a critical review of current theoretical approaches and some experimental observations in this area. Specifically, the role of lowering dimensionality, non-specific interactions, diffusion along the DNA molecules, protein and target sites concentrations, and electrostatic effects are critically analyzed. Possible future directions and outstanding problems are also presented and discussed.
Collapse
|
68
|
DNA damage regulates the mobility of Brca2 within the nucleoplasm of living cells. Proc Natl Acad Sci U S A 2010; 107:21937-42. [PMID: 21098284 DOI: 10.1073/pnas.1009577107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How the biochemical reactions that lead to the repair of DNA damage are controlled by the diffusion and availability of protein reactants within the nucleoplasm is poorly understood. Here, we use gene targeting to replace Brca2 (a cancer suppressor protein essential for DNA repair) with a functional enhanced green fluorescent protein (EGFP)-tagged form, followed by fluorescence correlation spectroscopy to measure Brca2-EGFP diffusion in the nucleoplasm of living cells exposed to DNA breakage. Before damage, nucleoplasmic Brca2 molecules exhibit complex states of mobility, with long dwell times within a sub-fL observation volume, indicative of restricted motion. DNA damage significantly enhances the mobility of Brca2 molecules in the S/G2 phases of the cell cycle, via signaling through damage-activated protein kinases. Brca2 mobilization is accompanied by increased binding within the nucleoplasm to its cargo, the Rad51 recombinase, measured by fluorescence cross-correlation spectroscopy. Together, these results suggest that DNA breakage triggers the redistribution of soluble nucleoplasmic Brca2 molecules from a state of restricted diffusion, into a mobile fraction available for Rad51 binding. Our findings identify signal-regulated changes in nucleoplasmic protein diffusion as a means to control biochemical reactions in the cell nucleus.
Collapse
|
69
|
de la Rosa MAD, Koslover EF, Mulligan PJ, Spakowitz AJ. Dynamic strategies for target-site search by DNA-binding proteins. Biophys J 2010; 98:2943-53. [PMID: 20550907 DOI: 10.1016/j.bpj.2010.02.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/01/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022] Open
Abstract
Gene regulatory proteins find their target sites on DNA remarkably quickly; the experimental binding rate for lac repressor is orders-of-magnitude higher than predicted by free diffusion alone. It has been proposed that nonspecific binding aids the search by allowing proteins to slide and hop along DNA. We develop a reaction-diffusion theory of protein translocation that accounts for transport both on and off the strand and incorporates the physical conformation of DNA. For linear DNA modeled as a wormlike chain, the distribution of hops available to a protein exhibits long, power-law tails that make the long-time displacement along the strand superdiffusive. Our analysis predicts effective superdiffusion coefficients for given nonspecific binding and unbinding rate parameters. Translocation rate exhibits a maximum at intermediate values of the binding rate constant, while search efficiency is optimized at larger binding rate constant values. Thus, our theory predicts a region of values of the nonspecific binding and unbinding rate parameters that balance the protein translocation rate and the efficiency of the search. Published data for several proteins falls within this predicted region of parameter values.
Collapse
|
70
|
Hedglin M, O’Brien PJ. Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein. ACS Chem Biol 2010; 5:427-36. [PMID: 20201599 DOI: 10.1021/cb1000185] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spontaneous DNA damage occurs throughout the genome, requiring that DNA repair enzymes search each nucleotide every cell cycle. This search is postulated to be more efficient if the enzyme can diffuse along the DNA, but our understanding of this process is incomplete. A key distinction between mechanisms of diffusion is whether the protein maintains continuous contact (sliding) or whether it undergoes microscopic dissociation (hopping). We describe a simple chemical assay to detect the ability of a DNA modifying enzyme to hop and have applied it to human alkyladenine DNA glycosylase (AAG), a monomeric enzyme that initiates repair of alkylated and deaminated purine bases. Our results indicate that AAG uses hopping to effectively search both strands of a DNA duplex in a single binding encounter. This raised the possibility that AAG might be capable of circumnavigating blocks such as tightly bound proteins. We tested this hypothesis by binding an EcoRI endonuclease dimer between two sites of DNA damage and measuring the ability of AAG to act at both damaged sites in a single binding encounter. Remarkably, AAG bypasses this roadblock in approximately 50% of the binding events. We infer that AAG makes significant excursions from the surface of the DNA, allowing reorientation between strands and the bypass of a bound protein. This has important biological implications for the search for DNA damage because eukaryotic DNA is replete with proteins and only transiently accessible.
Collapse
Affiliation(s)
| | - Patrick J. O’Brien
- Chemical Biology Program
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-5606
| |
Collapse
|
71
|
Gilmore JL, Suzuki Y, Tamulaitis G, Siksnys V, Takeyasu K, Lyubchenko YL. Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry 2009; 48:10492-8. [PMID: 19788335 DOI: 10.1021/bi9010368] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The study of interactions of protein with DNA is important for gaining a fundamental understanding of how numerous biological processes occur, including recombination, transcription, repair, etc. In this study, we use the EcoRII restriction enzyme, which employs a three-site binding mechanism to catalyze cleavage of a single recognition site. Using high-speed atomic force microscopy (HS-AFM) to image single-molecule interactions in real time, we were able to observe binding, translocation, and dissociation mechanisms of the EcoRII protein. The results show that the protein can translocate along DNA to search for the specific binding site. Also, once specifically bound at a single site, the protein is capable of translocating along the DNA to locate the second specific binding site. Furthermore, two alternative modes of dissociation of the EcoRII protein from the loop structure were observed, which result in the protein stably bound as monomers to two sites or bound to a single site as a dimer. From these observations, we propose a model in which this pathway is involved in the formation and dynamics of a catalytically active three-site complex.
Collapse
Affiliation(s)
- Jamie L Gilmore
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | | | | | | | |
Collapse
|
72
|
Coffin SR, Reich NO. Escherichia coli DNA adenine methyltransferase: the structural basis of processive catalysis and indirect read-out. J Biol Chem 2009; 284:18390-400. [PMID: 19419959 PMCID: PMC2709375 DOI: 10.1074/jbc.m109.005876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/08/2009] [Indexed: 11/06/2022] Open
Abstract
We have investigated the structural basis of processive GATC methylation by the Escherichia coli DNA adenine methyltransferase, which is critical in chromosome replication and mismatch repair. We determined the contribution of the orthologically conserved phosphate interactions involving residues Arg(95), Asn(126), Asn(132), Arg(116), and Lys(139), which directly contact the DNA outside the cognate recognition site (GATC) to processive catalysis, and that of residue Arg(137), which is not conserved and contacts the DNA backbone within the GATC sequence. Alanine substitutions at the conserved positions have large impacts on processivity yet do not impact k(cat)/K(m)(DNA) or DNA affinity (K(D)(DNA)). However, these mutants cause large preferences for GATC sites varying in flanking sequences when considering the pre-steady state efficiency constant k(chem)/K(D)(DNA). These changes occur mainly at the level of the methylation rate constant, which results in the observed decreases in processive catalysis. Thus, processivity and catalytic efficiency (k(cat)/K(m)(DNA)) are uncoupled in these mutants. These results reveal that the binding energy involved in DNA recognition contributes to the assembly of the active site rather than tight binding. Furthermore, the conserved residues (Arg(95), Asn(126), Asn(132), and Arg(116)) repress the modulation of the response of the enzyme to flanking sequence effects. Processivity impacted mutants do not show substrate-induced dimerization as is observed for the wild type enzyme. This study describes the structural means by which an enzyme that does not completely enclose its substrate has evolved to achieve processive catalysis, and how interactions with DNA flanking the recognition site alter this processivity.
Collapse
Affiliation(s)
| | - Norbert O. Reich
- From the Department of Chemistry and Biochemistry and
- the Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510
| |
Collapse
|
73
|
Chelico L, Pham P, Goodman MF. Mechanisms of APOBEC3G-catalyzed processive deamination of deoxycytidine on single-stranded DNA. Nat Struct Mol Biol 2009; 16:454-5; author reply 455-6. [PMID: 19421154 DOI: 10.1038/nsmb0509-454] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
74
|
Lin Y, Zhao T, Jian X, Farooqui Z, Qu X, He C, Dinner AR, Scherer NF. Using the bias from flow to elucidate single DNA repair protein sliding and interactions with DNA. Biophys J 2009; 96:1911-7. [PMID: 19254550 DOI: 10.1016/j.bpj.2008.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/05/2008] [Indexed: 11/28/2022] Open
Abstract
We perform single-molecule spatial tracking measurements of a DNA repair protein, the C-terminal domain of Ada (C-Ada) from Escherichia coli, moving on DNA extended by flow. The trajectories of single proteins labeled with a fluorophore are constructed. We analyze single-protein dwell times on DNA for different flow rates and conclude that sliding (with essentially no hopping) is the mechanism of C-Ada motion along stretched DNA. We also analyze the trajectory results with a drift-diffusion Langevin equation approach to elucidate the influence of flow on the protein motion; systematic variation of the flow enables one to estimate the microscopic friction. We integrate the step-size probability distribution to obtain a version of the fluctuation theorem that articulates the relation between the entropy production and consumption under the adjustable drag (i.e., bias) from the flow. This expression allows validation of the Langevin equation description of the motion. Comparison of the rate of sliding with recent computer simulations of DNA repair suggests that C-Ada could conduct its repair function while moving at near the one-dimensional diffusion limit.
Collapse
Affiliation(s)
- Yihan Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
An end to 40 years of mistakes in DNA-protein association kinetics? Biochem Soc Trans 2009; 37:343-8. [PMID: 19290859 DOI: 10.1042/bst0370343] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteins that bind to specific sequences in long DNA molecules have to locate their target sites amid myriad alternative sequences, yet they do so at remarkably rapid rates, sometimes approaching 10(10) M(-1) x s(-1). Hence, it has been asserted widely that binding to specific DNA sites can surpass the maximal rate for 3D (three-dimensional) diffusion through solution and that this could only be accounted for by a reduction in the dimensionality of the search for the target in effect by 1D (one-dimensional) diffusion (or 'sliding') along the DNA contour. It will be shown here that there is, in fact, no known example of a protein binding to a specific DNA site at a rate above the diffusion limit, and that the rapidity of these reactions is due primarily to electrostatic interactions between oppositely charged molecules. It will also be shown that, contrary to popular belief, reduced dimensionality does not, in general, increase the rate of target-site location but instead reduces it. Finally, it will be demonstrated that proteins locate their target sites primarily by multiple dissociation/reassociation events to other (nearby or distant) sites within the same DNA molecule, and that 1D diffusion is limited to local searches covering approximately 50 bp around each landing site.
Collapse
|
76
|
Abstract
When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.
Collapse
|
77
|
Gao M, Skolnick J. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions. PLoS Comput Biol 2009; 5:e1000341. [PMID: 19343221 PMCID: PMC2659451 DOI: 10.1371/journal.pcbi.1000341] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/26/2009] [Indexed: 11/19/2022] Open
Abstract
DNA–protein interactions are involved in many essential biological
activities. Because there is no simple mapping code between DNA base pairs and
protein amino acids, the prediction of DNA–protein interactions is a
challenging problem. Here, we present a novel computational approach for
predicting DNA-binding protein residues and DNA–protein interaction
modes without knowing its specific DNA target sequence. Given the structure of a
DNA-binding protein, the method first generates an ensemble of complex
structures obtained by rigid-body docking with a nonspecific canonical B-DNA.
Representative models are subsequently selected through clustering and ranking
by their DNA–protein interfacial energy. Analysis of these encounter
complex models suggests that the recognition sites for specific DNA binding are
usually favorable interaction sites for the nonspecific DNA probe and that
nonspecific DNA–protein interaction modes exhibit some similarity to
specific DNA–protein binding modes. Although the method requires as
input the knowledge that the protein binds DNA, in benchmark tests, it achieves
better performance in identifying DNA-binding sites than three previously
established methods, which are based on sophisticated machine-learning
techniques. We further apply our method to protein structures predicted through
modeling and demonstrate that our method performs satisfactorily on protein
models whose root-mean-square Cα deviation from native is up to 5
Å from their native structures. This study provides valuable
structural insights into how a specific DNA-binding protein interacts with a
nonspecific DNA sequence. The similarity between the specific
DNA–protein interaction mode and nonspecific interaction modes may
reflect an important sampling step in search of its specific DNA targets by a
DNA-binding protein. Many essential biological activities require interactions between DNA and
proteins. These proteins usually use certain amino acids, called DNA-binding
sites, to recognize their specific DNA targets. To facilitate the search of its
specific DNA targets, a DNA-binding protein often associates with nonspecific
DNA and then diffuses along the DNA. Due to the weak interactions between
nonspecific DNA and the protein, structural characterization of nonspecific
DNA–protein complexes is experimentally challenging. This paper
describes a computational modeling study on nonspecific DNA–protein
complexes and comparative analysis with respect to specific
DNA–protein complexes. The study found that the specific DNA-binding
sites on a protein are typically favorable for nonspecific DNA and that
nonspecific and specific DNA–protein interaction modes are quite
similar. This similarity may reflect an important sampling step in the search
for the specific DNA target sequence by a DNA-binding protein. On the basis of
these observations, a novel method was proposed for predicting DNA-binding sites
and binding modes of a DNA-binding protein without knowing its specific DNA
target sequence. Ultimately, the combination of this method and protein
structure prediction may lead the way to high throughput modeling of
DNA–protein interactions.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biology, Georgia
Institute of Technology, Atlanta, Georgia, United States of America
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia
Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
78
|
Chelico L, Pham P, Goodman MF. Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci 2009; 364:583-93. [PMID: 19022738 DOI: 10.1098/rstb.2008.0195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activation-induced (cytidine) deaminase (AID) efficiently introduces multiple and diversified deaminations in immunoglobulin (Ig) variable and switch regions. Here, we review studies of AID, and the APOBEC family member, APOBEC3G, demonstrating that both enzymes introduce multiple deaminations by processive action on single-stranded DNA and that deaminations occur stochastically at hot- and cold-spot targets. In a more detailed analysis of AID, we examine phosphorylation-null mutants, particularly, S38A and S43P. S43P mutant AID has been identified in a patient with hyper-IgM immunodeficiency syndrome. The phosphorylation-null mutants have essentially the same specific activity, processivity and ability to undergo transcription-dependent deamination compared with wild-type (WT) AID. Although the phosphorylation-null mutants still deaminate 5'-WRC hot spots, the mutant deamination spectra differ from WT AID. The mutants strongly prefer two motifs, 5'AGC and 5'GGC, which are disfavoured by WT AID. Differences in deamination specificities can be attributed primarily to the replacement of Ser rather than to the absence of phosphorylation. The 5'GGC motif occurs with exceptionally high frequency on the non-transcribed strand of human switch regions, IgG4 and IgE. The potential for S43P to catalyse large numbers of aberrant deaminations in switch region sequences suggests a possible relationship between non-canonical AID deamination specificity and a loss of antibody diversification.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | |
Collapse
|
79
|
Hedglin M, O'Brien PJ. Human alkyladenine DNA glycosylase employs a processive search for DNA damage. Biochemistry 2008; 47:11434-45. [PMID: 18839966 DOI: 10.1021/bi801046y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA repair proteins conduct a genome-wide search to detect and repair sites of DNA damage wherever they occur. Human alkyladenine DNA glycosylase (AAG) is responsible for recognizing a variety of base lesions, including alkylated and deaminated purines, and initiating their repair via the base excision repair pathway. We have investigated the mechanism by which AAG locates sites of damage using an oligonucleotide substrate containing two sites of DNA damage. This substrate was designed so that AAG randomly binds to either of the two lesions. AAG-catalyzed base excision creates a repair intermediate, and the subsequent partitioning between dissociation and diffusion to the second site can be quantified from the rates of formation of the different products. Our results demonstrate that AAG has the ability to slide for short distances along DNA at physiological salt concentrations. The processivity of AAG decreases with increasing ionic strength to become fully distributive at high ionic strengths, suggesting that electrostatic interactions between the negatively charged DNA and the positively charged DNA binding surface are important for nonspecific DNA binding. Although the amino terminus of the protein is dispensable for glycosylase activity at a single site, we find that deletion of the 80 amino-terminal amino acids significantly decreases the processivity of AAG. These observations support the idea that diffusion on undamaged DNA contributes to the search for sites of DNA damage.
Collapse
Affiliation(s)
- Mark Hedglin
- Chemical Biology Program, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
80
|
Abstract
Many genetic processes depend on proteins interacting with specific sequences on DNA. Despite the large excess of nonspecific DNA in the cell, proteins can locate their targets rapidly. After initial nonspecific binding, they are believed to find the target site by 1D diffusion ("sliding") interspersed by 3D dissociation/reassociation, a process usually referred to as facilitated diffusion. The 3D events combine short intrasegmental "hops" along the DNA contour, intersegmental "jumps" between nearby DNA segments, and longer volume "excursions." The impact of DNA conformation on the search pathway is, however, still unknown. Here, we show direct evidence that DNA coiling influences the specific association rate of EcoRV restriction enzymes. Using optical tweezers together with a fast buffer exchange system, we obtained association times of EcoRV on single DNA molecules as a function of DNA extension, separating intersegmental jumping from other search pathways. Depending on salt concentration, targeting rates almost double when the DNA conformation is changed from fully extended to a coiled configuration. Quantitative analysis by an extended facilitated diffusion model reveals that only a fraction of enzymes are ready to bind to DNA. Generalizing our results to the crowded environment of the cell we predict a major impact of intersegmental jumps on target localization speed on DNA.
Collapse
|
81
|
Nowarski R, Britan-Rosich E, Shiloach T, Kotler M. Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nat Struct Mol Biol 2008; 15:1059-66. [PMID: 18820687 DOI: 10.1038/nsmb.1495] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 09/02/2008] [Indexed: 12/25/2022]
Abstract
Deamination of cytidine residues in single-stranded DNA (ssDNA) is an important mechanism by which apolipoprotein B mRNA-editing, catalytic polypeptide-like (APOBEC) enzymes restrict endogenous and exogenous viruses. The dynamic process underlying APOBEC-induced hypermutation is not fully understood. Here we show that enzymatically active APOBEC3G can be detected in wild-type Vif(+) HIV-1 virions, albeit at low levels. In vitro studies showed that single enzyme-DNA encounters result in distributive deamination of adjacent cytidines. Nonlinear translocation of APOBEC3G, however, directed scattered deamination of numerous targets along the DNA. Increased ssDNA concentrations abolished enzyme processivity in the case of short, but not long, DNA substrates, emphasizing the key role of rapid intersegmental transfer in targeting the deaminase. Our data support a model by which APOBEC3G intersegmental transfer via monomeric binding to two ssDNA segments results in dispersed hypermutation of viral genomes.
Collapse
Affiliation(s)
- Roni Nowarski
- Department of Pathology and the Lautenberg Center for General and Tumor Immunology, the Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
82
|
Visualizing one-dimensional diffusion of proteins along DNA. Nat Struct Mol Biol 2008; 15:768-74. [PMID: 18679428 DOI: 10.1038/nsmb.1441] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 05/08/2008] [Indexed: 01/30/2023]
Abstract
The ability of proteins to locate specific target sequences or structures among a vast excess of nonspecific DNA is a fundamental property that affects virtually all aspects of biology. Despite this importance, experimental methods have lagged behind the establishment of theoretical principles describing potential target location mechanisms. However, recent advances in single-molecule detection now allow direct visual observation of proteins diffusing along DNA. Here we present an overview of these new observations and discuss the advantages, limitations and future prospects for imaging the motion of proteins along DNA.
Collapse
|
83
|
Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Proc Natl Acad Sci U S A 2008; 105:10791-6. [PMID: 18669665 DOI: 10.1073/pnas.0801612105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The astonishingly efficient location and excision of damaged DNA bases by DNA repair glycosylases is an especially intriguing problem in biology. One example is the enzyme uracil DNA glycosylase (UNG), which captures and excises rare extrahelical uracil bases that have emerged from the DNA base stack by spontaneous base pair breathing motions. Here, we explore the efficiency and mechanism by which UNG executes intramolecular transfer and excision of two uracil sites embedded on the same or opposite DNA strands at increasing site spacings. The efficiency of intramolecular site transfer decreased from 41 to 0% as the base pair spacing between uracil sites on the same DNA strand increased from 20 to 800 bp. The mechanism of transfer is dominated by DNA hopping between landing sites of approximately 10 bp size, over which rapid 1D scanning likely occurs. Consistent with DNA hopping, site transfer at 20- and 56-bp spacings was unaffected by whether the uracils were placed on the same or opposite strands. Thus, UNG uses hopping and 3D diffusion through bulk solution as the principal pathways for efficient patrolling of long genomic DNA sequences for damage. Short-range sliding over the range of a helical turn allows for redundant inspection of very local DNA sequences and trapping of spontaneously emerging extrahelical uracils.
Collapse
|
84
|
Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion. Proc Natl Acad Sci U S A 2008; 105:10721-6. [PMID: 18658237 DOI: 10.1073/pnas.0802676105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many DNA-interacting proteins diffuse on DNA to perform their biochemical functions. Processivity factors diffuse on DNA to permit unimpeded elongation by their associated DNA polymerases, but little is known regarding their rates and mechanisms of diffusion. The processivity factor of herpes simplex virus DNA polymerase, UL42, unlike "sliding clamp" processivity factors that normally form rings around DNA, binds DNA directly and tightly as a monomer, but can still diffuse on DNA. To investigate the mechanism of UL42 diffusion on DNA, we examined the effects of salt concentration on diffusion coefficient. Ensemble studies, employing electrophoretic mobility shift assays on relatively short DNAs, showed that off-rates of UL42 from DNA depended on DNA length at higher but not lower salt concentrations, consistent with the diffusion coefficient being salt-dependent. Direct assays of the motion of single fluorescently labeled UL42 molecules along DNA revealed increased diffusion at higher salt concentrations. Remarkably, the diffusion coefficients observed in these assays were approximately 10(4)-fold higher than those calculated from ensemble experiments. Discrepancies between the single-molecule and ensemble results were resolved by the observation, in single-molecule experiments, that UL42 releases relatively slowly from the ends of DNA in a salt-dependent manner. The results indicate that UL42 "hops" rather than "slides," i.e., it microscopically dissociates from and reassociates with DNA as it diffuses rather than remaining so intimately associated with DNA that cation condensation on the phosphate backbone does not affect its motion. These findings may be relevant to mechanisms of other processivity factors and DNA-binding proteins.
Collapse
|
85
|
Bonnet I, Biebricher A, Porté PL, Loverdo C, Bénichou O, Voituriez R, Escudé C, Wende W, Pingoud A, Desbiolles P. Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res 2008; 36:4118-27. [PMID: 18544605 PMCID: PMC2475641 DOI: 10.1093/nar/gkn376] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The restriction endonuclease EcoRV can rapidly locate a short recognition site within long non-cognate DNA using 'facilitated diffusion'. This process has long been attributed to a sliding mechanism, in which the enzyme first binds to the DNA via nonspecific interaction and then moves along the DNA by 1D diffusion. Recent studies, however, provided evidence that 3D translocations (hopping/jumping) also help EcoRV to locate its target site. Here we report the first direct observation of sliding and jumping of individual EcoRV molecules along nonspecific DNA. Using fluorescence microscopy, we could distinguish between a slow 1D diffusion of the enzyme and a fast translocation mechanism that was demonstrated to stem from 3D jumps. Salt effects on both sliding and jumping were investigated, and we developed numerical simulations to account for both the jump frequency and the jump length distribution. We deduced from our study the 1D diffusion coefficient of EcoRV, and we estimated the number of jumps occurring during an interaction event with nonspecific DNA. Our results substantiate that sliding alternates with hopping/jumping during the facilitated diffusion of EcoRV and, furthermore, set up a framework for the investigation of target site location by other DNA-binding proteins.
Collapse
Affiliation(s)
- Isabelle Bonnet
- Laboratoire Kastler Brossel, ENS, UPMC-Paris 6, CNRS UMR 8552, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Coffin SR, Reich NO. Modulation of Escherichia coli DNA methyltransferase activity by biologically derived GATC-flanking sequences. J Biol Chem 2008; 283:20106-16. [PMID: 18502761 DOI: 10.1074/jbc.m802502200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.
Collapse
Affiliation(s)
- Stephanie R Coffin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | |
Collapse
|
87
|
Chelico L, Sacho EJ, Erie DA, Goodman MF. A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem 2008; 283:13780-91. [PMID: 18362149 DOI: 10.1074/jbc.m801004200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
APOBEC3G (A3G) restricts HIV-1 infection by catalyzing processive C --> U deaminations on single-stranded DNA (ssDNA) with marked 3' --> 5' deamination polarity. Here we show that A3G exists in oligomeric states whose composition is dictated primarily by interactions with DNA, with salt playing an important, yet secondary, role. Directional deaminations correlate with the presence of dimers, tetramers, and larger oligomers observed by atomic force microscopy, and random deaminations appear to correlate mainly with monomers. The presence of a 30-nt weakly deaminated "dead" zone located at the 3'-ssDNA end implies the presence of a preferred asymmetric direction for A3G catalysis. Single turnover reaction rates reveal a salt-dependent inhibition of C deamination toward the 3'-ssDNA region, offering a molecular basis underlying A3G deamination polarity. Presteady state analysis demonstrates rapid diffusion-limited A3G-ssDNA binding, a slower salt-dependent conformational change, possibly indicative of DNA wrapping, and long (5-15 min) protein-DNA complex lifetimes. We suggest that diverse A3G oligomerization modes contribute to the human immunodeficiency virus, type 1, proviral DNA mutational bias.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | |
Collapse
|
88
|
Alsallaq R, Zhou HX. Protein association with circular DNA: Rate enhancement by nonspecific binding. J Chem Phys 2008; 128:115108. [DOI: 10.1063/1.2888996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
89
|
Larijani M, Martin A. Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol Cell Biol 2007; 27:8038-48. [PMID: 17893327 PMCID: PMC2169167 DOI: 10.1128/mcb.01046-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/06/2007] [Accepted: 09/12/2007] [Indexed: 01/05/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates antibody diversification processes by deaminating immunoglobulin sequences. Since transcription of target genes is required for deamination in vivo and AID exclusively mutates single-stranded DNA (ssDNA) in vitro, AID has been postulated to mutate transcription bubbles. However, since ssDNA generated by transcription can assume multiple structures, it is unknown which of these are targeted in vivo. Here we examine the enzymatic and binding properties of AID for different DNA structures. We report that AID has minimal activity on stem-loop structures and preferentially deaminates five-nucleotide bubbles. We compared AID activity on cytidines placed at various distances from the single-stranded/double-stranded DNA junction of bubble substrates and found that the optimal target consists of a single-stranded NWRCN motif. We also show that high-affinity binding is required for but does not necessarily lead to efficient deamination. Using nucleotide analogues, we show that AID's WRC preference (W = A or T; R = A or G) involves the recognition of a purine in the R position and that the carbonyl or amino side chains of guanosine negatively influence specificity at the W position. Our results indicate that AID is likely to target short-tract regions of ssDNA produced by transcription elongation and that it requires a fully single-stranded WRC motif.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Immunology, University of Toronto, Medical Sciences Bldg. 5265, Toronto, Canada M5S 1A8
| | | |
Collapse
|
90
|
Rezania V, Tuszynski J, Hendzel M. Modeling transcription factor binding events to DNA using a random walker/jumper representation on a 1D/2D lattice with different affinity sites. Phys Biol 2007; 4:256-67. [PMID: 18185004 DOI: 10.1088/1478-3975/4/4/003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Surviving in a diverse environment requires corresponding organism responses. At the cellular level, such adjustment relies on the transcription factors (TFs) which must rapidly find their target sequences amidst a vast amount of non-relevant sequences on DNA molecules. Whether these transcription factors locate their target sites through a 1D or 3D pathway is still a matter of speculation. It has been suggested that the optimum search time is when the protein equally shares its search time between 1D and 3D diffusions. In this paper, we study the above problem using Monte Carlo simulations by considering a simple physical model. A 1D strip, representing a DNA, with a number of low affinity sites, corresponding to non-target sites, and high affinity sites, corresponding to target sites, is considered and later extended to a 2D strip. We study the 1D and 3D exploration pathways, and combinations thereof by considering three different types of molecules: a walker that randomly walks along the strip with no dissociation; a jumper that represents dissociation and then re-association of a TF with the strip at later time at a distant site; and a hopper that is similar to the jumper but it dissociates and then re-associates at a faster rate than the jumper. We analyze the final probability distribution of molecules for each case and find that TFs can locate their targets on the experimental time scale even if they spend only 15% of their search time diffusing freely in the solution. This agrees with recent experimental results obtained by Elf et al (2007 Science 316 1191) and is in contrast to previously reported theoretical predictions. Our results also agree with the experimental evidence for the role of chaperons and proteasomes in stabilizing and destabilizing TFs binding, respectively, during the regulation process. Therefore, the results of our manuscript can provide a refined theoretical framework for the process.
Collapse
Affiliation(s)
- Vahid Rezania
- Division of Experimental Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | | | | |
Collapse
|
91
|
Bénichou O, Moreau M, Suet PH, Voituriez R. Intermittent search process and teleportation. J Chem Phys 2007; 126:234109. [PMID: 17600406 DOI: 10.1063/1.2741516] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors study an intermittent search process combining diffusion and "teleportation" phases in a d-dimensional spherical continuous system and in a regular lattice. The searcher alternates diffusive phases, during which targets can be discovered, and fast phases (teleportation) which randomly relocate the searcher, but do not allow for target detection. The authors show that this alternation can be favorable for minimizing the time of first discovery, and that this time can be optimized by a convenient choice of the mean waiting times of each motion phase. The optimal search strategy is explicitly derived in the continuous case and in the lattice case. Arguments are given to show that much more general intermittent motions do provide optimal search strategies in d dimensions. These results can be useful in the context of heterogeneous catalysis or in various biological examples of transport through membrane pores.
Collapse
Affiliation(s)
- O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée (UMR 7600), Université Paris 6, 4 Place Jussieu, 75252 Paris, France
| | | | | | | |
Collapse
|
92
|
Pham P, Chelico L, Goodman MF. DNA deaminases AID and APOBEC3G act processively on single-stranded DNA. DNA Repair (Amst) 2007; 6:689-92; author reply 693-4. [PMID: 17291835 DOI: 10.1016/j.dnarep.2007.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2007] [Indexed: 11/21/2022]
|
93
|
van Zon JS, Morelli MJ, Tănase-Nicola S, ten Wolde PR. Diffusion of transcription factors can drastically enhance the noise in gene expression. Biophys J 2006; 91:4350-67. [PMID: 17012327 PMCID: PMC1779939 DOI: 10.1529/biophysj.106.086157] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 09/06/2006] [Indexed: 11/18/2022] Open
Abstract
We study by Green's Function Reaction Dynamics the effect of the diffusive motion of repressor molecules on the noise in mRNA and protein levels for a gene that is under the control of a repressor. We find that spatial fluctuations due to diffusion can drastically enhance the noise in gene expression. After dissociation from the operator, a repressor can rapidly rebind to the DNA. Our results show that the rebinding trajectories are so short that, on this timescale, the RNA polymerase (RNAP) cannot effectively compete with the repressor for binding to the promoter. As a result, a dissociated repressor molecule will on average rebind many times, before it eventually diffuses away. These rebindings thus lower the effective dissociation rate, and this increases the noise in gene expression. Another consequence of the timescale separation between repressor rebinding and RNAP association is that the effect of spatial fluctuations can be described by a well-stirred, zero-dimensional, model by renormalizing the reaction rates for repressor-DNA (un) binding. Our results thus support the use of well-stirred, zero-dimensional models for describing noise in gene expression. We also show that for a fixed repressor strength, the noise due to diffusion can be minimized by increasing the number of repressors or by decreasing the rate of the open complex formation. Lastly, our results emphasize that power spectra are a highly useful tool for studying the propagation of noise through the different stages of gene expression.
Collapse
Affiliation(s)
- Jeroen S van Zon
- Division of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
94
|
Merlitz H, Klenin KV, Wu CX, Langowski J. Facilitated diffusion of DNA-binding proteins: Simulation of large systems. J Chem Phys 2006; 125:014906. [PMID: 16863332 DOI: 10.1063/1.2211614] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recently introduced method of excess collisions to estimate reaction times of protein-DNA systems in the presence of facilitated diffusion ("sliding") requires a cell of full system size. This bottleneck is avoided with a modification, by which a set of empirical parameters is calibrated using numerical simulations of a small test system. Once this is done, reaction times for systems of arbitrary dimensions are derived by extrapolation. It is shown that at physiological sliding lengths a test system of the order of 100 nm radius suffices to extract accurate reaction times for realistic cell dimensions. The achieved speedup, when compared to explicit simulations of the reaction process, is increasing in third order of the extrapolated radius of the cell.
Collapse
Affiliation(s)
- Holger Merlitz
- Department of Physics and ITPA, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | | | |
Collapse
|
95
|
Steiniger M, Adams CD, Marko JF, Reznikoff WS. Defining characteristics of Tn5 Transposase non-specific DNA binding. Nucleic Acids Res 2006; 34:2820-32. [PMID: 16717287 PMCID: PMC1464417 DOI: 10.1093/nar/gkl179] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While non-specific DNA plays a role in target localization for many recombinases, transcription factors and restriction enzymes, the importance of non-specific DNA interactions for transposases has not been investigated. Here, we discuss non-specific DNA-Tn5 Transposase (Tnp) interactions and suggest how they stabilize the Tnp and modulate Tnp localization of the 19 bp Tnp recognition end sequences (ESes). DNA protection assays indicate that full-length Tnp interacts efficiently with supercoiled DNA that does not contain ESes. These interactions significantly prolong the lifetime of Tnp, in vitro. The balance between non-specific DNA bound and free Tnp is affected by DNA topology, yet, intermolecular transfer of active Tnp occurs with both supercoiled and linear non-specific DNA. Experiments with substrates of varying lengths show that Tn5 Tnp can utilize non-specific DNA to facilitate localization of an intramolecular ES over distances less than 464 bp. Finally, synaptic complex formation is inhibited in the presence of increasing concentrations of supercoiled and linear pUC19. These experiments strongly suggest that Tn5 Tnp has a robust non-specific DNA binding activity, that non-specific DNA modulates ES sequence localization within the global DNA, most likely through a direct transfer mechanism, and that non-specific DNA binding may play a role in the cis bias manifested by Tn5 transposition.
Collapse
Affiliation(s)
| | | | - John F. Marko
- Department of Physics, University of Illinois at ChicagoChicago, IL 60607, USA
| | - William S. Reznikoff
- To whom correspondence should be addressed. Tel: +1 608 262 3608; Fax: +1 608 265 2603;
| |
Collapse
|
96
|
Affiliation(s)
- Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109-0606, USA.
| |
Collapse
|
97
|
Chelico L, Pham P, Calabrese P, Goodman MF. APOBEC3G DNA deaminase acts processively 3' --> 5' on single-stranded DNA. Nat Struct Mol Biol 2006; 13:392-9. [PMID: 16622407 DOI: 10.1038/nsmb1086] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/17/2006] [Indexed: 01/11/2023]
Abstract
Akin to a 'Trojan horse,' APOBEC3G DNA deaminase is encapsulated by the HIV virion. APOBEC3G facilitates restriction of HIV-1 infection in T cells by deaminating cytosines in nascent minus-strand complementary DNA. Here, we investigate the biochemical basis for C --> U targeting. We observe that APOBEC3G binds randomly to single-stranded DNA, then jumps and slides processively to deaminate target motifs. When confronting partially double-stranded DNA, to which APOBEC3G cannot bind, sliding is lost but jumping is retained. APOBEC3G shows catalytic orientational specificity such that deamination occurs predominantly 3' --> 5' without requiring hydrolysis of a nucleotide cofactor. Our data suggest that the G --> A mutational gradient generated in viral genomic DNA in vivo could result from an intrinsic processive directional attack by APOBEC3G on single-stranded cDNA.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biological Sciences Molecular and Computational Section, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | |
Collapse
|
98
|
Blumberg S, Pennington MW, Meiners JC. Do femtonewton forces affect genetic function? A review. J Biol Phys 2006; 32:73-95. [PMID: 19669453 DOI: 10.1007/s10867-005-9002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022] Open
Abstract
Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a 'substrate tension switch' could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo. We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.
Collapse
Affiliation(s)
- Seth Blumberg
- Department of Physics and Biophysics Research Division, Randall Laboratory, University of Michigan, Ann Arbor, MI 48109-1120, USA.
| | | | | |
Collapse
|
99
|
Tamulaitis G, Sasnauskas G, Mucke M, Siksnys V. Simultaneous binding of three recognition sites is necessary for a concerted plasmid DNA cleavage by EcoRII restriction endonuclease. J Mol Biol 2006; 358:406-19. [PMID: 16529772 DOI: 10.1016/j.jmb.2006.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 11/28/2022]
Abstract
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.
Collapse
|
100
|
Samiee KT, Moran-Mirabal JM, Cheung YK, Craighead HG. Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophys J 2006; 90:3288-99. [PMID: 16461393 PMCID: PMC1432119 DOI: 10.1529/biophysj.105.072819] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zero mode waveguides (ZMWs), subwavelength optical nanostructures with dimensions ranging from 50 to 200 nm, have been used to study systems involving ligand-receptor interactions. We show that under proper conditions, lipid membranes will invaginate into the nanostructures, which confine optical excitation to subattoliter volumes. Fluorescence correlation spectroscopy (FCS) was used to characterize the diffusion of fluorescently tagged lipids in liquid-disordered phase 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and gel phase 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) membranes incubated on the nanostructured surface. In contrast to the POPC, DSPC membranes did not appear to enter the structures, suggesting that invagination is dependent on membrane rigidity. Although correlation curves obtained from POPC membranes conformed to previously derived models for diffusion in the evanescent field within the nanostructure, the diffusion constants obtained were systematically lower than expected. The validity of the one-dimensional diffusion model for membrane diffusion is discussed and it is concluded that the erroneous diffusion constants are a result of nontrivial membrane conformation within the ZMWs. Additionally, FCS was used to characterize the fraction of fluorescently labeled tetanus toxin C fragment bound to a ganglioside-populated POPC membrane within the ZMWs. This allowed the determination of the toxin's equilibrium binding constant at a concentration of 500 nM; higher than possible with diffraction-limited FCS. To our knowledge, the results presented here are the first reported for supported lipid bilayers in nanostructured devices. Furthermore, they open the possibility of studying membrane imbedded receptors and proteins at physiological concentrations with single-molecule resolution.
Collapse
Affiliation(s)
- K T Samiee
- Applied and Engineering Physics, Electrical and Computer Engineering, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|