51
|
Unwinding and rewinding: double faces of helicase? J Nucleic Acids 2012; 2012:140601. [PMID: 22888405 PMCID: PMC3409536 DOI: 10.1155/2012/140601] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/28/2012] [Indexed: 12/29/2022] Open
Abstract
Helicases are enzymes that use ATP-driven motor force to unwind double-stranded DNA or RNA. Recently, increasing evidence demonstrates that some helicases also possess rewinding activity—in other words, they can anneal two complementary single-stranded nucleic acids. All five members of the human RecQ helicase family, helicase PIF1, mitochondrial helicase TWINKLE, and helicase/nuclease Dna2 have been shown to possess strand-annealing activity. Moreover, two recently identified helicases—HARP and AH2 have only ATP-dependent rewinding activity. These findings not only enhance our understanding of helicase enzymes but also establish the presence of a new type of protein: annealing helicases. This paper discusses what is known about these helicases, focusing on their biochemical activity to zip and unzip double-stranded DNA and/or RNA, their possible regulation mechanisms, and biological functions.
Collapse
|
52
|
Kanagaraj R, Parasuraman P, Mihaljevic B, van Loon B, Burdova K, König C, Furrer A, Bohr VA, Hübscher U, Janscak P. Involvement of Werner syndrome protein in MUTYH-mediated repair of oxidative DNA damage. Nucleic Acids Res 2012; 40:8449-59. [PMID: 22753033 PMCID: PMC3458577 DOI: 10.1093/nar/gks648] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reactive oxygen species constantly generated as by-products of cellular metabolism readily attack genomic DNA creating mutagenic lesions such as 7,8-dihydro-8-oxo-guanine (8-oxo-G) that promote aging. 8-oxo-G:A mispairs arising during DNA replication are eliminated by base excision repair initiated by the MutY DNA glycosylase homologue (MUTYH). Here, by using formaldehyde crosslinking in mammalian cell extracts, we demonstrate that the WRN helicase/exonuclease defective in the premature aging disorder Werner syndrome (WS) is recruited to DNA duplex containing an 8-oxo-G:A mispair in a manner dependent on DNA polymerase λ (Polλ) that catalyzes accurate DNA synthesis over 8-oxo-G. Similarly, by immunofluorescence, we show that Polλ is required for accumulation of WRN at sites of 8-oxo-G lesions in human cells. Moreover, we show that nuclear focus formation of WRN and Polλ induced by oxidative stress is dependent on ongoing DNA replication and on the presence of MUTYH. Cell viability assays reveal that depletion of MUTYH suppresses the hypersensitivity of cells lacking WRN and/or Polλ to oxidative stress. Biochemical studies demonstrate that WRN binds to the catalytic domain of Polλ and specifically stimulates DNA gap filling by Polλ over 8-oxo-G followed by strand displacement synthesis. Our results suggest that WRN promotes long-patch DNA repair synthesis by Polλ during MUTYH-initiated repair of 8-oxo-G:A mispairs.
Collapse
Affiliation(s)
- Radhakrishnan Kanagaraj
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Aggarwal M, Brosh RM. Functional analyses of human DNA repair proteins important for aging and genomic stability using yeast genetics. DNA Repair (Amst) 2012; 11:335-48. [PMID: 22349084 DOI: 10.1016/j.dnarep.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/18/2022]
Abstract
Model systems have been extremely useful for studying various theories of aging. Studies of yeast have been particularly helpful to explore the molecular mechanisms and pathways that affect aging at the cellular level in the simple eukaryote. Although genetic analysis has been useful to interrogate the aging process, there has been both interest and debate over how functionally conserved the mechanisms of aging are between yeast and higher eukaryotes, especially mammalian cells. One area of interest has been the importance of genomic stability for age-related processes, and the potential conservation of proteins and pathways between yeast and human. Translational genetics have been employed to examine the functional roles of mammalian proteins using yeast as a pliable model system. In the current review recent advancements made in this area are discussed, highlighting work which shows that the cellular functions of human proteins in DNA repair and maintenance of genomic stability can be elucidated by genetic rescue experiments performed in yeast.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, United States
| | | |
Collapse
|
54
|
The human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus. Biochem J 2012; 440:293-300. [PMID: 21846330 DOI: 10.1042/bj20100991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hSuv3 (human Suv3) helicase has been shown to be a major player in mitochondrial RNA surveillance and decay, but its physiological role might go beyond this functional niche. hSuv3 has been found to interact with BLM (Bloom's syndrome protein) and WRN (Werner's syndrome protein), members of the RecQ helicase family involved in multiple DNA metabolic processes, and in protection and stabilization of the genome. In the present study, we have addressed the possible role of hSuv3 in genome maintenance by examining its potential association with key interaction partners of the RecQ helicases. By analysis of hSuv3 co-IP (co-immunoprecipitation) complexes, we identify two new interaction partners of hSuv3: the RPA (replication protein A) and FEN1 (flap endonuclease 1). Utilizing an in vitro biochemical assay we find that low amounts of RPA inhibit helicase activity of hSuv3 on a forked substrate. Another single-strand-binding protein, mtSSB (mitochondrial single-strand-binding protein), fails to affect hSuv3 activity, indicating that the functional interaction is specific for hSuv3 and RPA. Further in vitro studies demonstrate that the flap endonuclease activity of FEN1 is stimulated by hSuv3 independently of flap length. hSuv3 is generally thought to be a mitochondrial helicase, but the physical and functional interactions between hSuv3 and known RecQ helicase-associated proteins strengthen the hypothesis that hSuv3 may play a significant role in nuclear DNA metabolism as well.
Collapse
|
55
|
Swartzlander DB, Bauer NC, Corbett AH, Doetsch PW. Regulation of base excision repair in eukaryotes by dynamic localization strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:93-121. [PMID: 22749144 DOI: 10.1016/b978-0-12-387665-2.00005-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter discusses base excision repair (BER) and the known mechanisms defined thus far regulating BER in eukaryotes. Unlike the situation with nucleotide excision repair and double-strand break repair, little is known about how BER is regulated to allow for efficient and accurate repair of many types of DNA base damage in both nuclear and mitochondrial genomes. Regulation of BER has been proposed to occur at multiple, different levels including transcription, posttranslational modification, protein-protein interactions, and protein localization; however, none of these regulatory mechanisms characterized thus far affect a large spectrum of BER proteins. This chapter discusses a recently discovered mode of BER regulation defined in budding yeast cells that involves mobilization of DNA repair proteins to DNA-containing organelles in response to genotoxic stress.
Collapse
Affiliation(s)
- Daniel B Swartzlander
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
56
|
Finger LD, Atack JM, Tsutakawa S, Classen S, Tainer J, Grasby J, Shen B. The wonders of flap endonucleases: structure, function, mechanism and regulation. Subcell Biochem 2012; 62:301-26. [PMID: 22918592 PMCID: PMC3728657 DOI: 10.1007/978-94-007-4572-8_16] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5'-flaps with exquisite specificity. FENs are paradigms for the 5' nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5' nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication.
Collapse
Affiliation(s)
- L. David Finger
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - John M. Atack
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - Susan Tsutakawa
- Life Sciences Division, Lawrence Berkeley National, Laboratory, Berkeley, CA 94720, USA
| | - Scott Classen
- Physical Biosciences Division, The Scripps Research, Institute, La Jolla, CA 92037, USA
| | - John Tainer
- Life Sciences Division, Lawrence Berkeley, National Laboratory, Berkeley, CA 94720, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA, Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Jane Grasby
- Department of Chemistry, Centre for Chemical Biology, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | - Binghui Shen
- Division of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
57
|
Study on The Mechanism of Effects of Lomefloxacin on Biological Properties of Bloom Syndrome Helicase*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
59
|
RecQ helicases; at the crossroad of genome replication, repair, and recombination. Mol Biol Rep 2011; 39:4527-43. [PMID: 21947842 DOI: 10.1007/s11033-011-1243-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/14/2011] [Indexed: 01/07/2023]
Abstract
DNA helicases are ubiquitous enzymes that unwind double-stranded DNA in an ATP-dependent and directionally specific manner. Such an action is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Here, I focus on a subgroup of DNA helicases, the RecQ family, which is highly conserved in evolution. Members of this conserved family of proteins have a key role in protecting and stabilizing the genome against deleterious changes. Deficiencies in RecQ helicases can lead to high levels of genomic instability and, in humans, to premature aging and increased susceptibility to cancer. Their diverse roles in DNA metabolism, which include a role in telomere maintenance, reflect interactions with multiple cellular proteins, some of which are multifunctional and also have very diverse functions. In this review, protein structural motifs and the roles of different domains will be discussed first. The Review moves on to speculate about the different models to explain why RecQ helicases are required to protect against genome instability.
Collapse
|
60
|
Ahn B, Bohr VA. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease. Biochem Biophys Res Commun 2011; 411:684-9. [PMID: 21763283 DOI: 10.1016/j.bbrc.2011.06.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.
Collapse
Affiliation(s)
- Byungchan Ahn
- Department of Life Sciences, University of Ulsan, South Korea.
| | | |
Collapse
|
61
|
Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Prog Neurobiol 2011; 94:166-200. [PMID: 21550379 DOI: 10.1016/j.pneurobio.2011.04.013] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration.
Collapse
Affiliation(s)
- Dennis Kjølhede Jeppesen
- Danish Centre for Molecular Gerontology and Danish Aging Research Center, University of Aarhus, Department of Molecular Biology, Aarhus, Denmark
| | | | | |
Collapse
|
62
|
Zheng L, Dai H, Hegde ML, Zhou M, Guo Z, Wu X, Wu J, Su L, Zhong X, Mitra S, Huang Q, Kernstine KH, Pfeifer GP, Shen B. Fen1 mutations that specifically disrupt its interaction with PCNA cause aneuploidy-associated cancer. Cell Res 2011; 21:1052-67. [PMID: 21383776 DOI: 10.1038/cr.2011.35] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA replication and repair are critical processes for all living organisms to ensure faithful duplication and transmission of genetic information. Flap endonuclease 1 (Fen1), a structure-specific nuclease, plays an important role in multiple DNA metabolic pathways and maintenance of genome stability. Human FEN1 mutations that impair its exonuclease activity have been linked to cancer development. FEN1 interacts with multiple proteins, including proliferation cell nuclear antigen (PCNA), to form various functional complexes. Interactions with these proteins are considered to be the key molecular mechanisms mediating FEN1's key biological functions. The current challenge is to experimentally demonstrate the biological consequence of a specific interaction without compromising other functions of a desired protein. To address this issue, we established a mutant mouse model harboring a FEN1 point mutation (F343A/F344A, FFAA), which specifically abolishes the FEN1/PCNA interaction. We show that the FFAA mutation causes defects in RNA primer removal and long-patch base excision repair, even in the heterozygous state, resulting in numerous DNA breaks. These breaks activate the G2/M checkpoint protein, Chk1, and induce near-tetraploid aneuploidy, commonly observed in human cancer, consequently elevating the transformation frequency. Consistent with this, inhibition of aneuploidy formation by a Chk1 inhibitor significantly suppressed the cellular transformation. WT/FFAA FEN1 mutant mice develop aneuploidy-associated cancer at a high frequency. Thus, this study establishes an exemplary case for investigating the biological significance of protein-protein interactions by knock-in of a point mutation rather than knock-out of a whole gene.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Wu Y, Brosh RM. Helicase-inactivating mutations as a basis for dominant negative phenotypes. Cell Cycle 2011; 9:4080-90. [PMID: 20980836 DOI: 10.4161/cc.9.20.13667] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
There is ample evidence from studies of both unicellular and multicellular organisms that helicase-inactivating mutations lead to cellular dysfunction and disease phenotypes. In this review, we will discuss the mechanisms underlying the basis for abnormal phenotypes linked to mutations in genes encoding DNA helicases. Recent evidence demonstrates that a clinically relevant patient missense mutation in Fanconi Anemia Complementation Group J exerts detrimental effects on the biochemical activities of the FANCJ helicase, and these molecular defects are responsible for aberrant genomic stability and a poor DNA damage response. The ability of FANCJ to use the energy from ATP hydrolysis to produce the force required to unwind duplex or G-quadruplex DNA structures or destabilize protein bound to DNA is required for its DNA repair functions in vivo. Strikingly, helicase-inactivating mutations can exert a spectrum of dominant negative phenotypes, indicating that expression of the mutant helicase protein potentially interferes with normal DNA metabolism and has an effect on basic cellular processes such as DNA replication, the DNA damage response and protein trafficking. This review emphasizes that future studies of clinically relevant mutations in helicase genes will be important to understand the molecular pathologies of the associated diseases and their impact on heterozygote carriers.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | | |
Collapse
|
64
|
Lachapelle S, Gagné JP, Garand C, Desbiens M, Coulombe Y, Bohr VA, Hendzel MJ, Masson JY, Poirier GG, Lebel M. Proteome-wide identification of WRN-interacting proteins in untreated and nuclease-treated samples. J Proteome Res 2011; 10:1216-27. [PMID: 21210717 DOI: 10.1021/pr100990s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Werner syndrome (WS) is characterized by the premature onset of several age-associated pathologies. The protein defective in WS patients (WRN) is a helicase/exonuclease involved in DNA repair, replication, telomere maintenance, and transcription. Here, we present the results of a large-scale proteome analysis to determine protein partners of WRN. We expressed fluorescent tagged-WRN (eYFP-WRN) in human 293 embryonic kidney cells and detected interacting proteins by co-immunoprecipitation from cell extract. We identified by mass spectrometry 220 nuclear proteins that complexed with WRN. This number was reduced to 40 when broad-spectrum nucleases were added to the lysate. We consider these 40 proteins as directly interacting with WRN. Some of these proteins have previously been shown to interact with WRN, whereas most are new partners. Among the top 15 hits, we find the new interactors TMPO, HNRNPU, RPS3, RALY, RPS9 DDX21, and HNRNPM. These proteins are likely important components in understanding the function of WRN in preventing premature aging and deserve further investigation. We have confirmed endogenous WRN interaction with endogenous RPS3, a ribosomal protein with endonuclease activities involved in oxidative DNA damage recognition. Our results suggest that the use of nucleases during cell lysis severely restricts interacting protein partners and thus enhances specificity.
Collapse
Affiliation(s)
- Sophie Lachapelle
- Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec City, Québec, G1R 2J6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Labbé A, Garand C, Cogger VC, Paquet ER, Desbiens M, Le Couteur DG, Lebel M. Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndrome. J Gerontol A Biol Sci Med Sci 2010; 66:264-78. [PMID: 20974729 DOI: 10.1093/gerona/glq184] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Werner syndrome is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many features of Werner syndrome, including a pro-oxidant status and a shorter mean life span. Here, we show that resveratrol supplementation improved the hyperglycemia and the insulin resistance phenotype in these Wrn mutant mice. In addition, resveratrol reversed liver steatosis, lipid peroxidaton, and the defenestration phenotypes observed in such mice. Resveratrol, however, did not improve the hypertriglyceridemia, inflammatory stress, nor extend the mean life span of these mutant mice. Microarray and biologic pathway enrichment analyses on liver tissues revealed that resveratrol mainly decreased lipidogenesis and increased genes involved in the insulin signaling pathway and the glutathione metabolism in Wrn mutant mice. Finally, resveratrol-treated mutant mice exhibited an increase in the frequency of lymphoma and of several solid tumors. These results indicate that resveratrol supplementation might exert at least metabolic benefits for Werner syndrome patients.
Collapse
Affiliation(s)
- Adam Labbé
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
66
|
Zheng L, Jia J, Finger LD, Guo Z, Zer C, Shen B. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res 2010; 39:781-94. [PMID: 20929870 PMCID: PMC3035468 DOI: 10.1093/nar/gkq884] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Flap endonuclease-1 (FEN1) is a member of the Rad2 structure-specific nuclease family. FEN1 possesses FEN, 5′-exonuclease and gap-endonuclease activities. The multiple nuclease activities of FEN1 allow it to participate in numerous DNA metabolic pathways, including Okazaki fragment maturation, stalled replication fork rescue, telomere maintenance, long-patch base excision repair and apoptotic DNA fragmentation. Here, we summarize the distinct roles of the different nuclease activities of FEN1 in these pathways. Recent biochemical and genetic studies indicate that FEN1 interacts with more than 30 proteins and undergoes post-translational modifications. We discuss how FEN1 is regulated via these mechanisms. Moreover, FEN1 interacts with five distinct groups of DNA metabolic proteins, allowing the nuclease to be recruited to a specific DNA metabolic complex, such as the DNA replication machinery for RNA primer removal or the DNA degradosome for apoptotic DNA fragmentation. Some FEN1 interaction partners also stimulate FEN1 nuclease activities to further ensure efficient action in processing of different DNA structures. Post-translational modifications, on the other hand, may be critical to regulate protein–protein interactions and cellular localizations of FEN1. Lastly, we also review the biological significance of FEN1 as a tumor suppressor, with an emphasis on studies of human mutations and mouse models.
Collapse
Affiliation(s)
- Li Zheng
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
67
|
Rahn JJ, Lowery MP, Della-Coletta L, Adair GM, Nairn RS. Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes. Mech Ageing Dev 2010; 131:562-73. [PMID: 20708636 DOI: 10.1016/j.mad.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 08/03/2010] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination. We constructed Chinese hamster ovary (CHO) cell lines isogenic with the cell lines used in these previous studies by depleting WRN using shRNA vectors. When intrachromosomal, mitotic recombination was assayed in WRN-depleted CHO cells, a hyperrecombination phenotype was observed, and a small number of aberrant recombinants were generated. Targeted homologous recombination was also examined in WRN-depleted CHO cells using a plasmid-chromosome targeting assay. In these experiments, loss of WRN resulted in a significant decrease in nonhomologous integration events and ablation of recombinants that required random integration of the corrected targeting vector. Aberrant recombinants were also recovered, but only from WRN-depleted cells. The pleiotropic recombination phenotypes conferred by WRN depletion, reflected in distinct homologous and nonhomologous recombination pathways, suggest a role for WRN in processing specific types of homologous recombination intermediates as well as an important function in nonhomologous recombination.
Collapse
Affiliation(s)
- Jennifer J Rahn
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville, TX 78597, United States
| | | | | | | | | |
Collapse
|
68
|
Kobayashi J, Okui M, Asaithamby A, Burma S, Chen BPC, Tanimoto K, Matsuura S, Komatsu K, Chen DJ. WRN participates in translesion synthesis pathway through interaction with NBS1. Mech Ageing Dev 2010; 131:436-44. [PMID: 20600238 DOI: 10.1016/j.mad.2010.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 01/23/2023]
Abstract
Werner syndrome (WS), caused by mutation of the WRN gene, is an autosomal recessive disorder associated with premature aging and predisposition to cancer. WRN belongs to the RecQ DNA helicase family, members of which play a role in maintaining genomic stability. Here, we demonstrate that WRN rapidly forms discrete nuclear foci in an NBS1-dependent manner following DNA damage. NBS1 physically interacts with WRN through its FHA domain, which interaction is important for the phosphorylation of WRN. WRN subsequently forms DNA damage-dependent foci during the S phase, but not in the G1 phase. WS cells exhibit an increase in spontaneous focus formation of poleta and Rad18, which are important for translesion synthesis (TLS). WRN also interacts with PCNA in the absence of DNA damage, but DNA damage induces the dissociation of PCNA from WRN, leading to the ubiquitination of PCNA, which is essential for TLS. This dissociation correlates with ATM/NBS1-dependent degradation of WRN. Moreover, WS cells show constitutive ubiquitination of PCNA and interaction between PCNA and Rad18 E3 ligase in the absence of DNA damage. Taken together, these results indicate that WRN participates in the TLS pathway to prevent genomic instability in an ATM/NBS1-dependent manner.
Collapse
Affiliation(s)
- Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
70
|
Rossi ML, Ghosh AK, Kulikowicz T, Croteau DL, Bohr VA. Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair (Amst) 2010; 9:796-804. [PMID: 20451470 DOI: 10.1016/j.dnarep.2010.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 12/16/2022]
Abstract
Humans have five members of the well conserved RecQ helicase family: RecQ1, Bloom syndrome protein (BLM), Werner syndrome protein (WRN), RecQ4, and RecQ5, which are all known for their roles in maintaining genome stability. BLM, WRN, and RecQ4 are associated with premature aging and cancer predisposition. Of the three, RecQ4's biological and cellular roles have been least thoroughly characterized. Here we tested the helicase activity of purified human RecQ4 on various substrates. Consistent with recent results, we detected ATP-dependent RecQ4 unwinding of forked duplexes. However, our results provide the first evidence that human RecQ4's unwinding is independent of strand annealing, and that it does not require the presence of excess ssDNA. Moreover, we demonstrate that a point mutation of the conserved lysine in the Walker A motif abolished helicase activity, implying that not the N-terminal portion, but the helicase domain is solely responsible for the enzyme's unwinding activity. In addition, we demonstrate a novel stimulation of RecQ4's helicase activity by replication protein A, similar to that of RecQ1, BLM, WRN, and RecQ5. Together, these data indicate that specific biochemical activities and protein partners of RecQ4 are conserved with those of the other RecQ helicases.
Collapse
Affiliation(s)
- Marie L Rossi
- National Institute on Aging, Baltimore, MD 21224, United States
| | | | | | | | | |
Collapse
|
71
|
Aggarwal M, Sommers JA, Morris C, Brosh RM. Delineation of WRN helicase function with EXO1 in the replicational stress response. DNA Repair (Amst) 2010; 9:765-76. [PMID: 20447876 DOI: 10.1016/j.dnarep.2010.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 11/18/2022]
Abstract
The WRN gene defective in the premature aging disorder Werner syndrome encodes a helicase/exonuclease. We examined the ability of WRN to rescue DNA damage sensitivity of a yeast mutant defective in the Rad50 subunit of Mre11-Rad50-Xrs2 nuclease complex implicated in homologous recombination repair. Genetic studies revealed WRN operates in a yEXO1-dependent pathway to rescue rad50 sensitivity to methylmethane sulfonate (MMS). WRN helicase, but not exonuclease, is required for MMS resistance. WRN missense mutations in helicase or RecQ C-terminal domains interfered with the ability of WRN to rescue rad50 MMS sensitivity. WRN does not rescue rad50 ionizing radiation (IR) sensitivity, suggesting that WRN, in collaboration with yEXO1, is tailored to relieve replicational stress imposed by alkylated base damage. WRN and yEXO1 are associated with each other in vivo. Purified WRN stimulates hEXO1 nuclease activity on DNA substrates associated with a stalled or regressed replication fork. We propose WRN helicase operates in an EXO1-dependent pathway to help cells survive replicational stress. In contrast to WRN, BLM helicase defective in Bloom's syndrome failed to rescue rad50 MMS sensitivity, but partially restored IR resistance, suggesting a delineation of function by the human RecQ helicases.
Collapse
Affiliation(s)
- Monika Aggarwal
- National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
72
|
Chakraborty P, Grosse F. WRN helicase unwinds Okazaki fragment-like hybrids in a reaction stimulated by the human DHX9 helicase. Nucleic Acids Res 2010; 38:4722-30. [PMID: 20385589 PMCID: PMC2919725 DOI: 10.1093/nar/gkq240] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the Werner gene promote the segmental progeroid Werner syndrome (WS) with increased genomic instability and cancer. The Werner gene encodes a DNA helicase (WRN) that can engage in direct protein-protein interactions with DHX9, also known as RNA helicase A or nuclear DNA helicase II, which represents an essential enzyme involved in transcription and DNA repair. By using several synthetic nucleic acid substrates we demonstrate that WRN preferably unwinds RNA-containing Okazaki fragment-like substrates suggesting a role in lagging strand maturation of DNA replication. In contrast, DHX9 preferably unwinds RNA-RNA and RNA-DNA substrates, but fails to unwind Okazaki fragment-like hybrids. We further show that the preferential unwinding of RNA-containing substrates by WRN is stimulated by DHX9 in vitro, both on Okazaki fragment-like hybrids and on RNA-containing 'chicken-foot' structures. Collectively, our results suggest that WRN and DHX9 may also cooperate in vivo, e.g. at ongoing and stalled replication forks. In the latter case, the cooperation between both helicases may serve to form and to dissolve Holliday junction-like intermediates of regressed replication forks.
Collapse
Affiliation(s)
- Prasun Chakraborty
- Leibniz Institute for Age Research (Fritz Lipmann Institute), Jena, Germany
| | | |
Collapse
|
73
|
Balakrishnan L, Gloor JW, Bambara RA. Reconstitution of eukaryotic lagging strand DNA replication. Methods 2010; 51:347-57. [PMID: 20178844 DOI: 10.1016/j.ymeth.2010.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic DNA replication is a complex process requiring the proper functioning of a multitude of proteins to create error-free daughter DNA strands and maintain genome integrity. Even though synthesis and joining of Okazaki fragments on the lagging strand involves only half the DNA in the nucleus, the complexity associated with processing these fragments is about twice that needed for leading strand synthesis. Flap endonuclease 1 (FEN1) is the central component of the Okazaki fragment maturation pathway. FEN1 cleaves flaps that are displaced by DNA polymerase delta (pol delta), to create a nick that is effectively joined by DNA ligase I. The Pif1 helicase and Dna2 helicase/nuclease contribute to the maturation process by elongating the flap displaced by pol delta. Though the reason for generating long flaps is still a matter of debate, genetic studies have shown that Dna2 and Pif1 are both important components of DNA replication. Our current knowledge of the exact enzymatic steps that govern Okazaki fragment maturation has heavily derived from reconstitution reactions in vitro, which have augmented genetic information, to yield current mechanistic models. In this review, we describe both the design of specific DNA substrates that simulate intermediates of fragment maturation and protocols for reconstituting partial and complete lagging strand replication.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
74
|
Vallur AC, Maizels N. Distinct activities of exonuclease 1 and flap endonuclease 1 at telomeric g4 DNA. PLoS One 2010; 5:e8908. [PMID: 20126648 PMCID: PMC2811187 DOI: 10.1371/journal.pone.0008908] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/07/2010] [Indexed: 12/03/2022] Open
Abstract
Background Exonuclease 1 (EXO1) and Flap endonuclease 1 (FEN1) are members of the RAD2 family of structure-specific nucleases. Genetic analysis has identified roles for EXO1 and FEN1 in replication, recombination, DNA repair and maintenance of telomeres. Telomeres are composed of G-rich repeats that readily form G4 DNA. We recently showed that human EXO1 and FEN1 exhibit distinct activities on G4 DNA substrates representative of intermediates in immunoglobulin class switch recombination. Methodology/Principal Findings We have now compared activities of these enzymes on telomeric substrates bearing G4 DNA, identifying non-overlapping functions that provide mechanistic insight into the distinct telomeric phenotypes caused by their deficiencies. We show that hFEN1 but not hEXO1 cleaves substrates bearing telomeric G4 DNA 5′-flaps, consistent with the requirement for FEN1 in telomeric lagging strand replication. Both hEXO1 and hFEN1 are active on substrates bearing telomeric G4 DNA tails, resembling uncapped telomeres. Notably, hEXO1 but not hFEN1 is active on transcribed telomeric G-loops. Conclusion/Significance Our results suggest that EXO1 may act at transcription-induced telomeric structures to promote telomere recombination while FEN1 has a dominant role in lagging strand replication at telomeres. Both enzymes can create ssDNA at uncapped telomere ends thereby contributing to recombination.
Collapse
Affiliation(s)
- Aarthy C. Vallur
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
75
|
Speina E, Dawut L, Hedayati M, Wang Z, May A, Schwendener S, Janscak P, Croteau DL, Bohr VA. Human RECQL5beta stimulates flap endonuclease 1. Nucleic Acids Res 2010; 38:2904-16. [PMID: 20081208 PMCID: PMC2875029 DOI: 10.1093/nar/gkp1217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human RECQL5 is a member of the RecQ helicase family which is implicated in genome maintenance. Five human members of the family have been identified; three of them, BLM, WRN and RECQL4 are associated with elevated cancer risk. RECQL1 and RECQL5 have not been linked to any human disorder yet; cells devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physical and functional interaction of the large isomer of RECQL5, RECQL5β, with the human flap endonuclease 1, FEN1, which plays a critical role in DNA replication, recombination and repair. RECQL5β dramatically stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that RECQL5β and FEN1 interact physically and co-localize in the nucleus in response to DNA damage. Our findings, together with the previous literature on WRN, BLM and RECQL4’s stimulation of FEN1, suggests that the ability of RecQ helicases to stimulate FEN1 may be a general feature of this class of enzymes. This could indicate a common role for the RecQ helicases in the processing of oxidative DNA damage.
Collapse
Affiliation(s)
- Elzbieta Speina
- National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Rossi ML, Ghosh AK, Bohr VA. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 2010; 9:331-44. [PMID: 20075015 DOI: 10.1016/j.dnarep.2009.12.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1 in Schizosaccharomyces pombe, and homologs in Caenorhabditis elegans, Xenopus laevis, and Drosophila melanogaster. Defects in three of the RecQ helicases, RecQ4, BLM, and WRN, cause human pathologies linked with cancer predisposition and premature aging. Mutations in the WRN gene are the causative factor of Werner syndrome (WS). WRN is one of the best characterized of the RecQ helicases and is known to have roles in DNA replication and repair, transcription, and telomere maintenance. Studies both in vitro and in vivo indicate that the roles of WRN in a variety of DNA processes are mediated by post-translational modifications, as well as several important protein-protein interactions. In this work, we will summarize some of the early studies on the cellular roles of WRN and highlight the recent findings that shed some light on the link between the protein with its cellular functions and the disease pathology.
Collapse
Affiliation(s)
- Marie L Rossi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
77
|
Li B, Jog S, Candelario J, Reddy S, Comai L. Altered nuclear functions in progeroid syndromes: a paradigm for aging research. ScientificWorldJournal 2009; 9:1449-62. [PMID: 20024518 PMCID: PMC4213125 DOI: 10.1100/tsw.2009.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Syndromes of accelerated aging could provide an entry point for identifying and dissecting the cellular pathways that are involved in the development of age-related pathologies in the general population. However, their usefulness for aging research has been controversial, as it has been argued that these diseases do not faithfully reflect the process of natural aging. Here we review recent findings on the molecular basis of two progeroid diseases, Werner syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), and highlight functional connections to cellular processes that may contribute to normal aging.
Collapse
Affiliation(s)
- Baomin Li
- Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | | | | | | |
Collapse
|
78
|
Abstract
Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast, different DNA-damaging treatments known to activate PKCs did not induce RACK1/PKCs association in cells. Overall, our results indicate that a depletion of the WRN protein in normal fibroblasts causes the activation of several PKCs through translocation and association of RACK1 with such kinases.
Collapse
|
79
|
Shah SN, Opresko PL, Meng X, Lee MYWT, Eckert KA. DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D. Nucleic Acids Res 2009; 38:1149-62. [PMID: 19969545 PMCID: PMC2831333 DOI: 10.1093/nar/gkp1131] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Common fragile sites (CFS) are chromosomal regions that exhibit instability during DNA replication stress. Although the mechanism of CFS expression has not been fully elucidated, one known feature is a severely delayed S-phase. We used an in vitro primer extension assay to examine the progression of DNA synthesis through various sequences within FRA16D by the replicative human DNA polymerases δ and α, and with human cell-free extracts. We found that specific cis-acting sequence elements perturb DNA elongation, causing inconsistent DNA synthesis rates between regions on the same strand and complementary strands. Pol δ was significantly inhibited in regions containing hairpins and microsatellites, [AT/TA]24 and [A/T]19–28, compared with a control region with minimal secondary structure. Pol δ processivity was enhanced by full length Werner Syndrome protein (WRN) and by WRN fragments containing either the helicase domain or DNA-binding C-terminal domain. In cell-free extracts, stalling was eliminated at smaller hairpins, but persisted in larger hairpins and microsatellites. Our data support a model whereby CFS expression during cellular stress is due to a combination of factors—density of specific DNA secondary-structures within a genomic region and asymmetric rates of strand synthesis.
Collapse
Affiliation(s)
- Sandeep N Shah
- Department of Pathology, Gittlen Cancer Research Foundation and the Intercollege Graduate Degree Program in Genetics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
80
|
Divergent cellular phenotypes of human and mouse cells lacking the Werner syndrome RecQ helicase. DNA Repair (Amst) 2009; 9:11-22. [PMID: 19896421 DOI: 10.1016/j.dnarep.2009.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/13/2009] [Accepted: 09/25/2009] [Indexed: 01/06/2023]
Abstract
Werner syndrome (WS) is a human autosomal recessive genetic instability and cancer predisposition syndrome with features of premature aging. Several genetically determined mouse models of WS have been generated, however, none develops features of premature aging or an elevated risk of neoplasia unless additional genetic perturbations are introduced. In order to determine whether differences in cellular phenotype could explain the discrepant phenotypes of Wrn-/- mice and WRN-deficient humans, we compared the cellular phenotype of newly derived Wrn-/- mouse primary fibroblasts with previous analyses of primary and transformed fibroblasts from WS patients and with newly derived, WRN-depleted human primary fibroblasts. These analyses confirmed previously reported cellular phenotypes of WRN-mutant and WRN-deficient human fibroblasts, and demonstrated that the human WRN-deficient cellular phenotype can be detected in cells grown in 5% or in 20% oxygen. In contrast, we did not identify prominent cellular phenotypes present in WRN-deficient human cells in Wrn-/- mouse fibroblasts. Our results indicate that human and mouse fibroblasts have different functional requirements for WRN protein, and that the absence of a strong cellular phenotype may in part explain the failure of Wrn-/- mice to develop an organismal phenotype resembling Werner syndrome.
Collapse
|
81
|
Liu Y, Prasad R, Beard WA, Hou EW, Horton JK, McMurray CT, Wilson SH. Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. J Biol Chem 2009; 284:28352-28366. [PMID: 19674974 DOI: 10.1074/jbc.m109.050286] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The oxidized DNA base 8-oxoguanine (8-oxoG) is implicated in neuronal CAG repeat expansion associated with Huntington disease, yet it is unclear how such a DNA base lesion and its repair might cause the expansion. Here, we discovered size-limited expansion of CAG repeats during repair of 8-oxoG in a wild-type mouse cell extract. This expansion was deficient in extracts from cells lacking pol beta and HMGB1. We demonstrate that expansion is mediated through pol beta multinucleotide gap-filling DNA synthesis during long-patch base excision repair. Unexpectedly, FEN1 promotes expansion by facilitating ligation of hairpins formed by strand slippage. This alternate role of FEN1 and the polymerase beta (pol beta) multinucleotide gap-filling synthesis is the result of uncoupling of the usual coordination between pol beta and FEN1. HMGB1 probably promotes expansion by stimulating APE1 and FEN1 in forming single strand breaks and ligatable nicks, respectively. This is the first report illustrating that disruption of pol beta and FEN1 coordination during long-patch BER results in CAG repeat expansion.
Collapse
Affiliation(s)
- Yuan Liu
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - William A Beard
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Esther W Hou
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Julie K Horton
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Cynthia T McMurray
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, Minnesota 55905
| | - Samuel H Wilson
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
82
|
Schurman SH, Hedayati M, Wang Z, Singh DK, Speina E, Zhang Y, Becker K, Macris M, Sung P, Wilson DM, Croteau DL, Bohr VA. Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Mol Genet 2009; 18:3470-83. [PMID: 19567405 DOI: 10.1093/hmg/ddp291] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RECQL4 is a human RecQ helicase which is mutated in approximately two-thirds of individuals with Rothmund-Thomson syndrome (RTS), a disease characterized at the cellular level by chromosomal instability. BLM and WRN are also human RecQ helicases, which are mutated in Bloom and Werner's syndrome, respectively, and associated with chromosomal instability as well as premature aging. Here we show that primary RTS and RECQL4 siRNA knockdown human fibroblasts accumulate more H(2)O(2)-induced DNA strand breaks than control cells, suggesting that RECQL4 may stimulate repair of H(2)O(2)-induced DNA damage. RTS primary fibroblasts also accumulate more XRCC1 foci than control cells in response to endogenous or induced oxidative stress and have a high basal level of endogenous formamidopyrimidines. In cells treated with H(2)O(2), RECQL4 co-localizes with APE1, and FEN1, key participants in base excision repair. Biochemical experiments indicate that RECQL4 specifically stimulates the apurinic endonuclease activity of APE1, the DNA strand displacement activity of DNA polymerase beta, and incision of a 1- or 10-nucleotide flap DNA substrate by Flap Endonuclease I. Additionally, RTS cells display an upregulation of BER pathway genes and fail to respond like normal cells to oxidative stress. The data herein support a model in which RECQL4 regulates both directly and indirectly base excision repair capacity.
Collapse
Affiliation(s)
- Shepherd H Schurman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Aggarwal M, Brosh RM. Hitting the bull's eye: novel directed cancer therapy through helicase-targeted synthetic lethality. J Cell Biochem 2009; 106:758-63. [PMID: 19173305 DOI: 10.1002/jcb.22048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Designing strategies for anti-cancer therapy have posed a significant challenge. One approach has been to inhibit specific DNA repair proteins and their respective pathways to enhance chemotherapy and radiation therapy used to treat cancer patients. Synthetic lethality represents an approach that exploits pre-existing DNA repair deficiencies in certain tumors to develop inhibitors of DNA repair pathways that compensate for the tumor-associated repair deficiency. Since helicases play critical roles in the DNA damage response and DNA repair, particularly in actively dividing and replicating cells, it is proposed that the identification and characterization of synthetic lethal relationships of DNA helicases will be of value in developing improved anti-cancer treatment strategies. In this review, we discuss this hypothesis and current evidence for synthetic lethal interactions of eukaryotic DNA helicases in model systems.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, 251 Bayview Drive, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
84
|
Kang YH, Kang MJ, Kim JH, Lee CH, Cho IT, Hurwitz J, Seo YS. The MPH1 gene of Saccharomyces cerevisiae functions in Okazaki fragment processing. J Biol Chem 2009; 284:10376-86. [PMID: 19181670 PMCID: PMC2667725 DOI: 10.1074/jbc.m808894200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/28/2009] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae MPH1 was first identified as a gene encoding a 3' to 5' DNA helicase, which when deleted leads to a mutator phenotype. In this study, we isolated MPH1 as a multicopy suppressor of the dna2K1080E helicase-negative lethal mutant. Purified Mph1 stimulated the endonuclease activities of both Fen1 and Dna2, which act faithfully in the processing of Okazaki fragments. This stimulation required neither ATP hydrolysis nor the helicase activity of Mph1. Multicopy expression of MPH1 also suppressed the temperature-sensitive growth defects in cells expressing dna2Delta405N, which lacks the N-terminal 405 amino acids of Dna2. However, Mph1 did not stimulate the endonuclease activity of the Dna2Delta405N mutant protein. The stimulation of Fen1 by Mph1 was limited to flap-structured substrates; Mph1 hardly stimulated the 5' to 3' exonuclease activity of Fen1. Mph1 binds to flap-structured substrate more efficiently than to nicked duplex structures, suggesting that the stimulatory effect of Mph1 is exerted through its binding to DNA substrates. In addition, we found that Mph1 reversed the inhibitory effects of replication protein A on Fen1 activity. Our biochemical and genetic data indicate that the in vivo suppression of Dna2 defects observed with both dna2K1080E and dna2Delta405N mutants occur via stimulation of Fen1 activity. These findings suggest that Mph1 plays an important, although not essential, role in processing of Okazaki fragments by facilitating the formation of ligatable nicks.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
85
|
Chavez A, Tsou AM, Johnson FB. Telomeres do the (un)twist: helicase actions at chromosome termini. Biochim Biophys Acta Mol Basis Dis 2009; 1792:329-40. [PMID: 19245831 DOI: 10.1016/j.bbadis.2009.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Telomeres play critical roles in protecting genome stability, and their dysfunction contributes to cancer and age-related degenerative diseases. The precise architecture of telomeres, including their single-stranded 3' overhangs, bound proteins, and ability to form unusual secondary structures such as t-loops, is central to their function and thus requires careful processing by diverse factors. Furthermore, telomeres provide unique challenges to the DNA replication and recombination machinery, and are particularly suited for extension by the telomerase reverse transcriptase. Helicases use the energy from NTP hydrolysis to track along DNA and disrupt base pairing. Here we review current findings concerning how helicases modulate several aspects of telomere form and function.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
86
|
Cho IT, Kim DH, Kang YH, Lee CH, Amangyelid T, Nguyen TA, Hurwitz J, Seo YS. Human replication factor C stimulates flap endonuclease 1. J Biol Chem 2009; 284:10387-99. [PMID: 19208620 DOI: 10.1074/jbc.m808893200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is the enzyme responsible for specifically removing the flap structure produced during DNA replication, repair, and recombination. Here we report that the human replication factor C (RFC) complex stimulates the nuclease activity of human FEN1 in an ATP-independent manner. Although proliferating cell nuclear antigen is also known to stimulate FEN1, less RFC was required for comparable FEN1 stimulation. Kinetic analyses indicate that the mechanism by which RFC stimulates FEN1 is distinct from that by proliferating cell nuclear antigen. Heat-denatured RFC or its subunit retained, fully or partially, the ability to stimulate FEN1. Via systematic deletion analyses, we have defined three specific regions of RFC4 capable of stimulating FEN1. The region of RFC4 with the highest activity spans amino acids 170-194 and contains RFC box VII. Four amino acid residues (i.e. Tyr-182, Glu-188, Pro-189, and Ser-192) are especially important for FEN1 stimulatory activity. Thus, RFC, via several stimulatory motifs per molecule, potently activates FEN1. This function makes RFC a critical partner with FEN1 for the processing of eukaryotic Okazaki fragments.
Collapse
Affiliation(s)
- Il-Taeg Cho
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Ding SL, Shen CY. Model of human aging: recent findings on Werner's and Hutchinson-Gilford progeria syndromes. Clin Interv Aging 2008; 3:431-44. [PMID: 18982914 PMCID: PMC2682376 DOI: 10.2147/cia.s1957] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms involved in human aging are complicated. Two progeria syndromes, Werner's syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), characterized by clinical features mimicking physiological aging at an early age, provide insights into the mechanisms of natural aging. Based on recent findings on WS and HGPS, we suggest a model of human aging. Human aging can be triggered by two main mechanisms, telomere shortening and DNA damage. In telomere-dependent aging, telomere shortening and dysfunction may lead to DNA damage responses which induce cellular senescence. In DNA damage-initiated aging, DNA damage accumulates, along with DNA repair deficiencies, resulting in genomic instability and accelerated cellular senescence. In addition, aging due to both mechanisms (DNA damage and telomere shortening) is strongly dependent on p53 status. These two mechanisms can also act cooperatively to increase the overall level ofgenomic instability, triggering the onset of human aging phenotypes.
Collapse
Affiliation(s)
- Shian-Ling Ding
- Department of Nursing, Kang-Ning Junior College of Medical Care and Management,Taipei,Taiwan.
| | | |
Collapse
|
88
|
Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A 2008; 105:16906-11. [PMID: 18971343 DOI: 10.1073/pnas.0809380105] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The error-free repair of double-stranded DNA breaks by homologous recombination requires processing of broken ends. These processed ends are substrates for assembly of DNA strand exchange proteins that mediate DNA strand invasion. Here, we establish that human BLM helicase, a member of the RecQ family, stimulates the nucleolytic activity of human exonuclease 1 (hExo1), a 5'-->3' double-stranded DNA exonuclease. The stimulation is specific because other RecQ homologs fail to stimulate hExo1. Stimulation of DNA resection by hExo1 is independent of BLM helicase activity and is, instead, mediated by an interaction between the 2 proteins. Finally, we show that DNA ends resected by hExo1 and BLM are used by human Rad51, but not its yeast or bacterial counterparts, to promote homologous DNA pairing. This in vitro system recapitulates initial steps of homologous recombination and provides biochemical evidence for a role of BLM and Exo1 in the initiation of recombinational DNA repair.
Collapse
|
89
|
Bohr VA. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 2008; 33:609-20. [PMID: 18926708 DOI: 10.1016/j.tibs.2008.09.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/15/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
The RecQ helicases are guardians of the genome. Members of this conserved family of proteins have a key role in protecting and stabilizing the genome against deleterious changes. Deficiencies in RecQ helicases can lead to high levels of genomic instability and, in humans, to premature aging and increased susceptibility to cancer. Their diverse roles in DNA metabolism, which include a role in telomere maintenance, reflect interactions with multiple cellular proteins, some of which are multifunctional and also have very diverse functions. The results of in vitro cellular and biochemical studies have been complimented by recent in vivo studies using genetically modified mouse strains. Together, these approaches are helping to unravel the mechanism(s) of action and biological functions of the RecQ helicases.
Collapse
Affiliation(s)
- Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
90
|
Sidorova JM. Roles of the Werner syndrome RecQ helicase in DNA replication. DNA Repair (Amst) 2008; 7:1776-86. [PMID: 18722555 DOI: 10.1016/j.dnarep.2008.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 01/20/2023]
Abstract
Congenital deficiency in the WRN protein, a member of the human RecQ helicase family, gives rise to Werner syndrome, a genetic instability and cancer predisposition disorder with features of premature aging. Cellular roles of WRN are not fully elucidated. WRN has been implicated in telomere maintenance, homologous recombination, DNA repair, and other processes. Here I review the available data that directly address the role of WRN in preserving DNA integrity during replication and propose that WRN can function in coordinating replication fork progression with replication stress-induced fork remodeling. I further discuss this role of WRN within the contexts of damage tolerance group of regulatory pathways, and redundancy and cooperation with other RecQ helicases.
Collapse
Affiliation(s)
- Julia M Sidorova
- Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA.
| |
Collapse
|
91
|
Muftuoglu M, Kulikowicz T, Beck G, Lee JW, Piotrowski J, Bohr VA. Intrinsic ssDNA annealing activity in the C-terminal region of WRN. Biochemistry 2008; 47:10247-54. [PMID: 18771289 DOI: 10.1021/bi800807n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder in humans characterized by premature aging and genetic instability. WS is caused by mutations in the WRN gene, which encodes a member of the RecQ family of DNA helicases. Cellular and biochemical studies suggest that WRN plays roles in DNA replication, DNA repair, telomere maintenance, and homologous recombination and that WRN has multiple enzymatic activities including 3' to 5' exonuclease, 3' to 5' helicase, and ssDNA annealing. The goal of this study was to map and further characterize the ssDNA annealing activity of WRN. Enzymatic studies using truncated forms of WRN identified a C-terminal 79 amino acid region between the RQC and the HRDC domains (aa1072-1150) that is required for ssDNA annealing activity. Deletion of the region reduced or eliminated ssDNA annealing activity of the WRN protein. Furthermore, the activity appears to correlate with DNA binding and oligomerization status of the protein.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
92
|
Saharia A, Guittat L, Crocker S, Lim A, Steffen M, Kulkarni S, Stewart SA. Flap endonuclease 1 contributes to telomere stability. Curr Biol 2008; 18:496-500. [PMID: 18394896 DOI: 10.1016/j.cub.2008.02.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 11/19/2022]
Abstract
Telomere stability plays an important role in the preservation of genomic stability and is maintained through the coordinated actions of telomere-specific proteins and DNA repair and replication proteins [1, 2]. Flap endonuclease 1 (FEN1) is a protein that plays a role in lagging-strand DNA replication, base excision repair, homologous recombination, and reinitiation of stalled replication forks [3, 4]. Here, we demonstrate that FEN1 depletion leads to telomere dysfunction characterized by the presence of gammaH2AX and sister telomere loss. Expression of catalytically active telomerase, the reverse transcriptase that adds telomeric repeats to chromosome ends, was sufficient to rescue telomere dysfunction upon FEN1 depletion. Strikingly, FEN1 depletion exclusively abrogates telomeres replicated by lagging-strand DNA replication. Genetic rescue experiments utilizing FEN1 mutant proteins that retained the ability to localize to telomeric repeats revealed that FEN1's nuclease activity and ability to interact with the Werner protein (WRN) and telomere-binding protein (TRF2) were required for FEN1 activity at the telomere. Given FEN1's role in lagging-strand DNA replication and reinitiation of stalled replication forks, we propose that FEN1 contributes to telomere stability by ensuring efficient telomere replication.
Collapse
Affiliation(s)
- Abhishek Saharia
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Nazarkina ZK, Lavrik OI, Khodyreva SN. Flap endonuclease 1 and its role in eukaryotic DNA metabolism. Mol Biol 2008. [DOI: 10.1134/s0026893308030035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
94
|
Gupta R, Brosh RM. Helicases as prospective targets for anti-cancer therapy. Anticancer Agents Med Chem 2008; 8:390-401. [PMID: 18473724 DOI: 10.2174/187152008784220339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint.
Collapse
Affiliation(s)
- Rigu Gupta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
95
|
Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A, Ramsden D, Bohr VA. Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 2008; 47:7548-56. [PMID: 18558713 DOI: 10.1021/bi702325t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Werner syndrome is a rare human disease characterized by the premature onset of aging-associated pathologies, cancer predisposition, and genomic instability. The Werner protein (WRN), which is defective in Werner syndrome ( WS) patients, belongs to the RecQ family helicases and interacts with several DNA metabolic proteins, including DNA repair factors and telomere associated proteins. Nonhomologous end-joining (NHEJ) is an important pathway in the repair of DNA double strand breaks (DSBs), and the DNA-PK complex, composed of the heterodimer Ku 70/86 and the DNA-PK catalytic subunit (DNA-PKcs), together with the XRCC4-DNA ligase IV complex (X4L4), are major factors. One of the most prominent protein interactions of WRN is with Ku 70/86, and it is possible that WRN is involved in NHEJ via its associations with Ku 70/86 and DNA-PKcs. This study demonstrates that WRN physically interacts with the major NHEJ factor, X4L4, which stimulates WRN exonuclease but not its helicase activity. The human RecQ helicase, BLM, which possesses only helicase activity, does not bind to X4L4, and its helicase activity is not affected by X4L4. In a DNA end-joining assay, we find that a substrate, which is processed by WRN, is ligated by X4L4, thus further supporting the significance of their functional interaction.
Collapse
Affiliation(s)
- Rika Kusumoto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Futami K, Ishikawa Y, Goto M, Furuichi Y, Sugimoto M. Role of Werner syndrome gene product helicase in carcinogenesis and in resistance to genotoxins by cancer cells. Cancer Sci 2008; 99:843-8. [PMID: 18312465 PMCID: PMC11158842 DOI: 10.1111/j.1349-7006.2008.00778.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/07/2008] [Accepted: 01/14/2008] [Indexed: 11/30/2022] Open
Abstract
Werner syndrome (WS) is an autosomal recessive genetic disorder causing premature aging, and WRN has been identified as the causative gene of WS. The product of the WRN gene (WRN) acts as a DNA helicase with exonuclease activity, and data have accumulated showing that the WRN gene strongly participates in carcinogenesis: (1) the normal WRN gene likely participates in the immortalization of B-lymphoblastoid cell lines through telomeric crisis caused by telomere shortening, (2) a much higher incidence of rare cancers occurs in WS patients than in other kinds of patients, and (3) levels of WRN expressed in virus-transformed cells and cancer cells are usually markedly up-regulated and are inversely correlated with the sensitivity of these cells against various genotoxins, including camptothecin. In this paper, we review the events that show a close correlation of the WRN gene and WRN with carcinogenesis and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute, TECOM 2nd Building, 19-2 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | |
Collapse
|
97
|
Acetylation regulates WRN catalytic activities and affects base excision DNA repair. PLoS One 2008; 3:e1918. [PMID: 18398454 PMCID: PMC2276247 DOI: 10.1371/journal.pone.0001918] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 02/22/2008] [Indexed: 11/19/2022] Open
Abstract
Background The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol β-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER.
Collapse
|
98
|
RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 2008; 117:219-33. [DOI: 10.1007/s00412-007-0142-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/08/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
|
99
|
De Felice M, Aria V, Esposito L, De Falco M, Pucci B, Rossi M, Pisani FM. A novel DNA helicase with strand-annealing activity from the crenarchaeon Sulfolobus solfataricus. Biochem J 2007; 408:87-95. [PMID: 17683280 PMCID: PMC2049073 DOI: 10.1042/bj20070134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To protect their genetic material cells adopt different mechanisms linked to DNA replication, recombination and repair. Several proteins function at the interface of these DNA transactions. In the present study, we report on the identification of a novel archaeal DNA helicase. BlastP searches of the Sulfolobus solfataricus genome database allowed us to identify an open reading frame (SSO0112, 875 amino acid residues) having sequence similarity with the human RecQ5beta. The corresponding protein, termed Hel112 by us, was produced in Escherichia coli in soluble form, purified to homogeneity and characterized. Gel-filtration chromatography and glycerol-gradient sedimentation analyses revealed that Hel112 forms monomers and dimers in solution. Biochemical characterization of the two oligomeric species revealed that only the monomeric form has an ATP-dependent 3'-5' DNA-helicase activity, whereas, unexpectedly, both the monomeric and dimeric forms possess DNA strand-annealing capability. The Hel112 monomeric form is able to unwind forked and 3'-tailed DNA structures with high efficiency, whereas it is almost inactive on blunt-ended duplexes and bubble-containing molecules. This analysis reveals that S. solfataricus Hel112 shares some enzymatic features with the RecQ-like DNA helicases and suggests potential cellular functions of this protein.
Collapse
Affiliation(s)
- Mariarita De Felice
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111.80131-Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since several human RecQ helicases are defective in diseases associated with premature aging and cancer. In this review, we will provide an update on our understanding of the specific roles of human RecQ helicases in the maintenance of genomic stability through their catalytic activities and protein interactions in various pathways of cellular nucleic acid metabolism with an emphasis on DNA replication and repair. We will also discuss the clinical features of the premature aging disorders associated with RecQ helicase deficiencies and how they relate to the molecular defects.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|