54
|
Wallner M, Eaton DM, Berretta RM, Borghetti G, Wu J, Baker ST, Feldsott EA, Sharp TE, Mohsin S, Oyama MA, von Lewinski D, Post H, Wolfson MR, Houser SR. A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function. Sci Rep 2017; 7:16587. [PMID: 29185443 PMCID: PMC5707379 DOI: 10.1038/s41598-017-15851-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023] Open
Abstract
Heart Failure with preserved Ejection Fraction (HFpEF) represents a major public health problem. The causative mechanisms are multifactorial and there are no effective treatments for HFpEF, partially attributable to the lack of well-established HFpEF animal models. We established a feline HFpEF model induced by slow-progressive pressure overload. Male domestic short hair cats (n = 20), underwent either sham procedures (n = 8) or aortic constriction (n = 12) with a customized pre-shaped band. Pulmonary function, gas exchange, and invasive hemodynamics were measured at 4-months post-banding. In banded cats, echocardiography at 4-months revealed concentric left ventricular (LV) hypertrophy, left atrial (LA) enlargement and dysfunction, and LV diastolic dysfunction with preserved systolic function, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension. Furthermore, LV diastolic dysfunction was associated with increased LV fibrosis, cardiomyocyte hypertrophy, elevated NT-proBNP plasma levels, fluid and protein loss in pulmonary interstitium, impaired lung expansion, and alveolar-capillary membrane thickening. We report for the first time in HFpEF perivascular fluid cuff formation around extra-alveolar vessels with decreased respiratory compliance. Ultimately, these cardiopulmonary abnormalities resulted in impaired oxygenation. Our findings support the idea that this model can be used for testing novel therapeutic strategies to treat the ever growing HFpEF population.
Collapse
Affiliation(s)
- Markus Wallner
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Deborah M Eaton
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Remus M Berretta
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Giulia Borghetti
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Jichuan Wu
- Temple University Lewis Katz School of Medicine, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Philadelphia, PA, United States
| | - Sandy T Baker
- Temple University Lewis Katz School of Medicine, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Philadelphia, PA, United States
| | - Eric A Feldsott
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Thomas E Sharp
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Sadia Mohsin
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States
| | - Mark A Oyama
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heiner Post
- Department of Cardiology, Campus Virchow-Klinikum, Charite Universitätsmedizin, Berlin, Germany
| | - Marla R Wolfson
- Temple University Lewis Katz School of Medicine, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Philadelphia, PA, United States
| | - Steven R Houser
- Temple University Lewis Katz School of Medicine, Cardiovascular Research Center, Philadelphia, PA, United States.
| |
Collapse
|
58
|
Targeting Endothelial Function to Treat Heart Failure with Preserved Ejection Fraction: The Promise of Exercise Training. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4865756. [PMID: 28706575 PMCID: PMC5494585 DOI: 10.1155/2017/4865756] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
Abstract
Although the burden of heart failure with preserved ejection fraction (HFpEF) is increasing, there is no therapy available that improves prognosis. Clinical trials using beta blockers and angiotensin converting enzyme inhibitors, cardiac-targeting drugs that reduce mortality in heart failure with reduced ejection fraction (HFrEF), have had disappointing results in HFpEF patients. A new “whole-systems” approach has been proposed for designing future HFpEF therapies, moving focus from the cardiomyocyte to the endothelium. Indeed, dysfunction of endothelial cells throughout the entire cardiovascular system is suggested as a central mechanism in HFpEF pathophysiology. The objective of this review is to provide an overview of current knowledge regarding endothelial dysfunction in HFpEF. We discuss the molecular and cellular mechanisms leading to endothelial dysfunction and the extent, presence, and prognostic importance of clinical endothelial dysfunction in different vascular beds. We also consider implications towards exercise training, a promising therapy targeting system-wide endothelial dysfunction in HFpEF.
Collapse
|