51
|
Recruitment of the TolA protein to cell constriction sites in Escherichia coli via three separate mechanisms, and a critical role for FtsWI activity in recruitment of both TolA and TolQ. J Bacteriol 2021; 204:e0046421. [PMID: 34748387 DOI: 10.1128/jb.00464-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Tol-Pal system of Gram-negative bacteria helps maintain integrity of the cell envelope and ensures that invagination of the envelope layers during cell fission occurs in a well-coordinated manner. In E. coli, the five Tol-Pal proteins (TolQ, R, A, B and Pal) accumulate at cell constriction sites in a manner that normally requires the activity of the cell constriction initiation protein FtsN. While septal recruitment of TolR, TolB and Pal also requires the presence of TolQ and/or TolA, each of the the latter two can recognize constriction sites independently of the other system proteins. What attracts TolQ or TolA to these sites is unclear. We show that FtsN attracts both proteins in an indirect fashion, and that PBP1A, PBP1B and CpoB are dispensable for their septal recruitment. However, the β-lactam aztreonam readily interferes with septal accumulation of both TolQ and TolA, indicating that FtsN-stimulated production of septal peptidoglycan by the FtsWI synthase is critical to their recruitment. We also discovered that each of TolA's three domains can recognize division sites in a separate fashion. Notably, the middle domain (TolAII) is responsible for directing TolA to constriction sites in the absence of other Tol-Pal proteins and CpoB, while recruitment of TolAI and TolAIII requires TolQ and a combination of TolB, Pal, and CpoB, respectively. Additionally, we describe the construction and use of functional fluorescent sandwich fusions of the ZipA division protein, which should be more broadly valuable in future studies of the E. coli cell division machinery. IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction will eventually occur. In the well-studied bacterium Escherichia coli, this machinery contains over thirty distinct proteins. We studied how two such proteins, TolA and TolQ, which also play a role in maintaining integrity of the outer-membrane, are recruited to the machinery. We find that TolA can be recruited by three separate mechanisms, and that both proteins rely on the activity of a well-studied cell division enzyme for their recruitment.
Collapse
|
52
|
Abstract
Colicins are protein antibiotics deployed by Escherichia coli to eliminate competing strains. Colicins frequently exploit outer membrane (OM) nutrient transporters to penetrate the selectively permeable bacterial cell envelope. Here, by applying live-cell fluorescence imaging, we were able to monitor the entry of the pore-forming toxin colicin B (ColB) into E. coli and localize it within the periplasm. We further demonstrate that single-stranded DNA coupled to ColB can also be transported to the periplasm, emphasizing that the import routes of colicins can be exploited to carry large cargo molecules into bacteria. Moreover, we characterize the molecular mechanism of ColB association with its OM receptor FepA by applying a combination of photoactivated cross-linking, mass spectrometry, and structural modeling. We demonstrate that complex formation is coincident with large-scale conformational changes in the colicin. Thereafter, active transport of ColB through FepA involves the colicin taking the place of the N-terminal half of the plug domain that normally occludes this iron transporter. IMPORTANCE Decades of excessive use of readily available antibiotics has generated a global problem of antibiotic resistance and, hence, an urgent need for novel antibiotic solutions. Bacteriocins are protein-based antibiotics produced by bacteria to eliminate closely related competing bacterial strains. Bacteriocin toxins have evolved to bypass the complex cell envelope in order to kill bacterial cells. Here, we uncover the cellular penetration mechanism of a well-known but poorly understood bacteriocin called colicin B that is active against Escherichia coli. Moreover, we demonstrate that the colicin B-import pathway can be exploited to deliver conjugated DNA cargo into bacterial cells. Our work leads to a better understanding of the way bacteriocins, as potential alternative antibiotics, execute their mode of action as well as highlighting how they might even be exploited in the genomic manipulation of Gram-negative bacteria.
Collapse
|
53
|
Assis RDAB, Sagawa CHD, Zaini PA, Saxe HJ, Wilmarth PA, Phinney BS, Salemi M, Moreira LM, Dandekar AM. A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms. Int J Mol Sci 2021; 22:10374. [PMID: 34638715 PMCID: PMC8508651 DOI: 10.3390/ijms221910374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/11/2023] Open
Abstract
Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including phytopathogens belonging to the Xanthomonadaceae family. To define its role in walnut blight disease, a dysfunctional mutant of chorismate mutase was created in a copper resistant strain Xaj417 (XajCM). Infections of immature walnut Juglans regia (Jr) fruit with XajCM were hypervirulent compared with infections with the wildtype Xaj417 strain. The in vitro growth rate, size and cellular morphology were similar between the wild-type and XajCM mutant strains, however the quantification of bacterial cells by dPCR within walnut hull tissues showed a 27% increase in XajCM seven days post-infection. To define the mechanism of hypervirulence, proteome analysis was conducted to compare walnut hull tissues inoculated with the wild type to those inoculated with the XajCM mutant strain. Proteome analysis revealed 3296 Jr proteins (five decreased and ten increased with FDR ≤ 0.05) and 676 Xaj417 proteins (235 increased in XajCM with FDR ≤ 0.05). Interestingly, the most abundant protein in Xaj was a polygalacturonase, while in Jr it was a polygalacturonase inhibitor. These results suggest that this secreted chorismate mutase may be an important virulence suppressor gene that regulates Xaj417 virulence response, allowing for improved bacterial survival in the plant tissues.
Collapse
Affiliation(s)
- Renata de A. B. Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Cíntia H. D. Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Houston J. Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (B.S.P.); (M.S.)
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (B.S.P.); (M.S.)
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| |
Collapse
|
54
|
Collins SM, Brown AC. Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles. Front Immunol 2021; 12:733064. [PMID: 34616401 PMCID: PMC8488215 DOI: 10.3389/fimmu.2021.733064] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are nanometer-scale, spherical vehicles released by Gram-negative bacteria into their surroundings throughout growth. These OMVs have been demonstrated to play key roles in pathogenesis by delivering certain biomolecules to host cells, including toxins and other virulence factors. In addition, this biomolecular delivery function enables OMVs to facilitate intra-bacterial communication processes, such as quorum sensing and horizontal gene transfer. The unique ability of OMVs to deliver large biomolecules across the complex Gram-negative cell envelope has inspired the use of OMVs as antibiotic delivery vehicles to overcome transport limitations. In this review, we describe the advantages, applications, and biotechnological challenges of using OMVs as antibiotic delivery vehicles, studying both natural and engineered antibiotic applications of OMVs. We argue that OMVs hold great promise as antibiotic delivery vehicles, an urgently needed application to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
55
|
Abstract
Bacteria often secrete diffusible protein toxins (bacteriocins) to kill bystander cells during interbacterial competition. Here, we use biochemical, biophysical and structural analyses to show how a bacteriocin exploits TolC, a major outer-membrane antibiotic efflux channel in Gram-negative bacteria, to transport itself across the outer membrane of target cells. Klebicin C (KlebC), a rRNase toxin produced by Klebsiella pneumoniae, binds TolC of a related species (K. quasipneumoniae) with high affinity through an N-terminal, elongated helical hairpin domain common amongst bacteriocins. The KlebC helical hairpin opens like a switchblade to bind TolC. A cryo-EM structure of this partially translocated state, at 3.1 Å resolution, reveals that KlebC associates along the length of the TolC channel. Thereafter, the unstructured N-terminus of KlebC protrudes beyond the TolC iris, presenting a TonB-box sequence to the periplasm. Association with proton-motive force-linked TonB in the inner membrane drives toxin import through the channel. Finally, we demonstrate that KlebC binding to TolC blocks drug efflux from bacteria. Our results indicate that TolC, in addition to its known role in antibiotic export, can function as a protein import channel for bacteriocins. Bacteria can secrete diffusible protein toxins that kill competing bacteria. Here, the authors use biochemical, biophysical and structural analyses to show how one of these toxins exploits TolC (a major antibiotic efflux channel) to transport itself across the outer membrane of target cells.
Collapse
|
56
|
Jia X, Liu F, Zhao K, Lin J, Fang Y, Cai S, Lin C, Zhang H, Chen L, Chen J. Identification of Essential Genes Associated With Prodigiosin Production in Serratia marcescens FZSF02. Front Microbiol 2021; 12:705853. [PMID: 34367107 PMCID: PMC8339205 DOI: 10.3389/fmicb.2021.705853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Prodigiosin is a promising secondary metabolite produced mainly by Serratia strains. To study the global regulatory mechanism of prodigiosin biosynthesis, a mutagenesis library containing 23,000 mutant clones was constructed with the EZ-Tn5 transposon, and 114 clones in the library showed altered prodigiosin production ability. For 37 of the 114 clones, transposon insertion occurred on the prodigiosin biosynthetic cluster genes; transposon inserted genes of the 77 clones belonged to 33 different outside prodigiosin biosynthetic cluster genes. These 33 genes can be divided into transcription-regulating genes, membrane protein-encoding genes, and metabolism enzyme-encoding genes. Most of the genes were newly reported to be involved in prodigiosin production. Transcriptional levels of the pigA gene were significantly downregulated in 22 mutants with different inserted genes, which was in accordance with the phenotype of decreased prodigiosin production. Functional confirmation of the mutant genes involved in the pyrimidine nucleotide biosynthesis pathway was carried out by adding orotate and uridylate (UMP) into the medium. Gene complementation confirmed the regulatory function of the EnvZ/OmpR two-component regulatory system genes envZ and ompR in prodigiosin production.
Collapse
Affiliation(s)
- Xianbo Jia
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural and Sciences, Fuzhou, China
| | - Fangchen Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke Zhao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Lin
- Faculty of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Fang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural and Sciences, Fuzhou, China
| | - Shouping Cai
- Institute of Forest Protection, Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Chenqiang Lin
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural and Sciences, Fuzhou, China
| | - Hui Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural and Sciences, Fuzhou, China
| | - Longjun Chen
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural and Sciences, Fuzhou, China
| | - Jichen Chen
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural and Sciences, Fuzhou, China
| |
Collapse
|
57
|
Abstract
The outer membrane of Gram-negative bacteria is essential for their survival in harsh environments and provides intrinsic resistance to many antibiotics. This membrane is remarkable; it is a highly asymmetric lipid bilayer. The inner leaflet of the outer membrane contains phospholipids, whereas the fatty acyl chains attached to lipopolysaccharide (LPS) comprise the hydrophobic portion of the outer leaflet. This lipid asymmetry, and in particular the exclusion of phospholipids from the outer leaflet, is key to creating an almost impenetrable barrier to hydrophobic molecules that can otherwise pass through phospholipid bilayers. It has long been known that these lipids are not made in the outer membrane. It is now believed that conserved multisubunit protein machines extract these lipids after their synthesis is completed at the inner membrane and transport them to the outer membrane. A longstanding question is how the cell builds and maintains this asymmetric lipid bilayer in coordination with the assembly of the other components of the cell envelope. This Review describes the trans-envelope lipid transport systems that have been identified to participate in outer-membrane biogenesis: LPS transport via the Lpt machine, and phospholipid transport via the Mla pathway and several recently proposed transporters.
Collapse
Affiliation(s)
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
58
|
El Rayes J, Rodríguez-Alonso R, Collet JF. Lipoproteins in Gram-negative bacteria: new insights into their biogenesis, subcellular targeting and functional roles. Curr Opin Microbiol 2021; 61:25-34. [PMID: 33667939 DOI: 10.1016/j.mib.2021.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Bacterial lipoproteins are globular proteins anchored to a membrane by a lipid moiety. By discovering new functions carried out by lipoproteins, recent research has highlighted the crucial roles played by these proteins in the cell envelope of Gram-negative bacteria. Here, after discussing the wide range of activities carried out by lipoproteins in the model bacterium Escherichia coli, we review new insights into the essential mechanisms involved in lipoprotein maturation, sorting and targeting to their final destination. A special attention will also be given to the recent identification of lipoproteins on the surface of E. coli and of other bacteria. The renewed interest in lipoproteins is driven by the need to identify novel targets for antibiotic development.
Collapse
Affiliation(s)
- Jessica El Rayes
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Raquel Rodríguez-Alonso
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Jean-François Collet
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
59
|
Ratliff AC, Buchanan SK, Celia H. Ton motor complexes. Curr Opin Struct Biol 2020; 67:95-100. [PMID: 33157479 DOI: 10.1016/j.sbi.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
The Ton complex is a molecular motor that uses the proton gradient at the inner membrane of Gram-negative bacteria to apply forces on outer membrane proteins, allowing active transport of nutrients into the periplasmic space. For decades, contradictory data has been reported on the structure and stoichiometry of the Ton complex. However, recent reports strongly support a subunit stoichiometry of 5:2 for the ExbB-ExbD subcomplex. In this review, we summarize the recent discoveries of the structures and proposed mechanisms of the Ton system, as well as similar protein motor complexes in Gram-negative bacteria.
Collapse
Affiliation(s)
- Anna C Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|