51
|
Vanheule A, Audenaert K, Warris S, van de Geest H, Schijlen E, Höfte M, De Saeger S, Haesaert G, Waalwijk C, van der Lee T. Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genomics 2016; 17:670. [PMID: 27552804 PMCID: PMC4994206 DOI: 10.1186/s12864-016-2941-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/14/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Eukaryotes display remarkable genome plasticity, which can include supernumerary chromosomes that differ markedly from the core chromosomes. Despite the widespread occurrence of supernumerary chromosomes in fungi, their origin, relation to the core genome and the reason for their divergent characteristics are still largely unknown. The complexity of genome assembly due to the presence of repetitive DNA partially accounts for this. RESULTS Here we use single-molecule real-time (SMRT) sequencing to assemble the genome of a prominent fungal wheat pathogen, Fusarium poae, including at least one supernumerary chromosome. The core genome contains limited transposable elements (TEs) and no gene duplications, while the supernumerary genome holds up to 25 % TEs and multiple gene duplications. The core genome shows all hallmarks of repeat-induced point mutation (RIP), a defense mechanism against TEs, specific for fungi. The absence of RIP on the supernumerary genome accounts for the differences between the two (sub)genomes, and results in a functional crosstalk between them. The supernumerary genome is a reservoir for TEs that migrate to the core genome, and even large blocks of supernumerary sequence (>200 kb) have recently translocated to the core. Vice versa, the supernumerary genome acts as a refuge for genes that are duplicated from the core genome. CONCLUSIONS For the first time, a mechanism was determined that explains the differences that exist between the core and supernumerary genome in fungi. Different biology rather than origin was shown to be responsible. A "living apart together" crosstalk exists between the core and supernumerary genome, accelerating chromosomal and organismal evolution.
Collapse
Affiliation(s)
- Adriaan Vanheule
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Wageningen UR, Wageningen, The Netherlands
| | - Kris Audenaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | - Monica Höfte
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
52
|
Identification of Diverse Mycoviruses through Metatranscriptomics Characterization of the Viromes of Five Major Fungal Plant Pathogens. J Virol 2016; 90:6846-6863. [PMID: 27194764 DOI: 10.1128/jvi.00357-16] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Mycoviruses can have a marked effect on natural fungal communities and influence plant health and productivity. However, a comprehensive picture of mycoviral diversity is still lacking. To characterize the viromes of five widely dispersed plant-pathogenic fungi, Colletotrichum truncatum, Macrophomina phaseolina, Diaporthe longicolla, Rhizoctonia solani, and Sclerotinia sclerotiorum, a high-throughput sequencing-based metatranscriptomic approach was used to detect viral sequences. Total RNA and double-stranded RNA (dsRNA) from mycelia and RNA from samples enriched for virus particles were sequenced. Sequence data were assembled de novo, and contigs with predicted amino acid sequence similarities to viruses in the nonredundant protein database were selected. The analysis identified 72 partial or complete genome segments representing 66 previously undescribed mycoviruses. Using primers specific for each viral contig, at least one fungal isolate was identified that contained each virus. The novel mycoviruses showed affinity with 15 distinct lineages: Barnaviridae, Benyviridae, Chrysoviridae, Endornaviridae, Fusariviridae, Hypoviridae, Mononegavirales, Narnaviridae, Ophioviridae, Ourmiavirus, Partitiviridae, Tombusviridae, Totiviridae, Tymoviridae, and Virgaviridae More than half of the viral sequences were predicted to be members of the Mitovirus genus in the family Narnaviridae, which replicate within mitochondria. Five viral sequences showed strong affinity with three families (Benyviridae, Ophioviridae, and Virgaviridae) that previously contained no mycovirus species. The genomic information provides insight into the diversity and taxonomy of mycoviruses and coevolution of mycoviruses and their fungal hosts. IMPORTANCE Plant-pathogenic fungi reduce crop yields, which affects food security worldwide. Plant host resistance is considered a sustainable disease management option but may often be incomplete or lacking for some crops to certain fungal pathogens or strains. In addition, the rising issues of fungicide resistance demand alternative strategies to reduce the negative impacts of fungal pathogens. Those fungus-infecting viruses (mycoviruses) that attenuate fungal virulence may be welcome additions for mitigation of plant diseases. By high-throughput sequencing of the RNAs from 275 isolates of five fungal plant pathogens, 66 previously undescribed mycoviruses were identified. In addition to identifying new potential biological control agents, these results expand the grand view of the diversity of mycoviruses and provide possible insights into the importance of intracellular and extracellular transmission in fungus-virus coevolution.
Collapse
|
53
|
Álvarez-Cervantes J, Díaz-Godínez G, Mercado-Flores Y, Gupta VK, Anducho-Reyes MA. Phylogenetic analysis of β-xylanase SRXL1 of Sporisorium reilianum and its relationship with families (GH10 and GH11) of Ascomycetes and Basidiomycetes. Sci Rep 2016; 6:24010. [PMID: 27040368 PMCID: PMC4819176 DOI: 10.1038/srep24010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
In this paper, the amino acid sequence of the β-xylanase SRXL1 of Sporisorium reilianum, which is a pathogenic fungus of maize was used as a model protein to find its phylogenetic relationship with other xylanases of Ascomycetes and Basidiomycetes and the information obtained allowed to establish a hypothesis of monophyly and of biological role. 84 amino acid sequences of β-xylanase obtained from the GenBank database was used. Groupings analysis of higher-level in the Pfam database allowed to determine that the proteins under study were classified into the GH10 and GH11 families, based on the regions of highly conserved amino acids, 233-318 and 180-193 respectively, where glutamate residues are responsible for the catalysis.
Collapse
Affiliation(s)
| | - Gerardo Díaz-Godínez
- Laboratory of Biotechnology, Research Center for Biological Sciences, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Vijai Kumar Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
54
|
Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, Manners JM, Taylor JM. EffectorP: predicting fungal effector proteins from secretomes using machine learning. THE NEW PHYTOLOGIST 2016; 210:743-61. [PMID: 26680733 DOI: 10.1111/nph.13794] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/05/2015] [Indexed: 05/02/2023]
Abstract
Eukaryotic filamentous plant pathogens secrete effector proteins that modulate the host cell to facilitate infection. Computational effector candidate identification and subsequent functional characterization delivers valuable insights into plant-pathogen interactions. However, effector prediction in fungi has been challenging due to a lack of unifying sequence features such as conserved N-terminal sequence motifs. Fungal effectors are commonly predicted from secretomes based on criteria such as small size and cysteine-rich, which suffers from poor accuracy. We present EffectorP which pioneers the application of machine learning to fungal effector prediction. EffectorP improves fungal effector prediction from secretomes based on a robust signal of sequence-derived properties, achieving sensitivity and specificity of over 80%. Features that discriminate fungal effectors from secreted noneffectors are predominantly sequence length, molecular weight and protein net charge, as well as cysteine, serine and tryptophan content. We demonstrate that EffectorP is powerful when combined with in planta expression data for predicting high-priority effector candidates. EffectorP is the first prediction program for fungal effectors based on machine learning. Our findings will facilitate functional fungal effector studies and improve our understanding of effectors in plant-pathogen interactions. EffectorP is available at http://effectorp.csiro.au.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environment and Life Sciences, CSIRO Agriculture, Perth, 6014, WA, Australia
| | - Donald M Gardiner
- Queensland Bioscience Precinct, CSIRO Agriculture, Brisbane, 4067, QLD, Australia
| | - Peter N Dodds
- Black Mountain Laboratories, CSIRO Agriculture, Canberra, 2601, ACT, Australia
| | - Francesco Tini
- Queensland Bioscience Precinct, CSIRO Agriculture, Brisbane, 4067, QLD, Australia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, 06121, Umbria, Italy
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, 06121, Umbria, Italy
| | - Karam B Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture, Perth, 6014, WA, Australia
| | - John M Manners
- Black Mountain Laboratories, CSIRO Agriculture, Canberra, 2601, ACT, Australia
| | - Jennifer M Taylor
- Black Mountain Laboratories, CSIRO Agriculture, Canberra, 2601, ACT, Australia
| |
Collapse
|
55
|
Lu S, Edwards MC. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions. PHYTOPATHOLOGY 2016; 106:166-76. [PMID: 26524547 DOI: 10.1094/phyto-09-15-0215-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pathogen-derived, small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (FHB), a devastating disease of wheat. We report here a comprehensive analysis of SSCPs encoded in the genome of this fungus and selection of candidate effector proteins through proteomics and sequence/transcriptional analyses. A total of 190 SSCPs were identified in the genome of F. graminearum (isolate PH-1) based on the presence of N-terminal signal peptide sequences, size (≤200 amino acids), and cysteine content (≥2%) of the mature proteins. Twenty-five (approximately 13%) SSCPs were confirmed to be true extracellular proteins by nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis of a minimal medium-based in vitro secretome. Sequence analysis suggested that 17 SSCPs harbor conserved functional domains, including two homologous to Ecp2, a known effector produced by the tomato pathogen Cladosporium fulvum. Transcriptional analysis revealed that at least 34 SSCPs (including 23 detected in the in vitro secretome) are expressed in infected wheat heads; about half are up-regulated with expression patterns correlating with the development of FHB. This work provides a solid candidate list for SSCP-derived effectors that may play roles in mediating F. graminearum-wheat interactions. The in vitro secretome-based method presented here also may be applicable for identifying candidate effectors in other ascomycete pathogens of crop plants.
Collapse
Affiliation(s)
- Shunwen Lu
- U.S. Department of Agriculture-Agricultural Research Services, Cereal Crops Research Unit, Fargo, ND 58102-2765
| | - Michael C Edwards
- U.S. Department of Agriculture-Agricultural Research Services, Cereal Crops Research Unit, Fargo, ND 58102-2765
| |
Collapse
|
56
|
Belowground Defence Strategies Against Fusarium oxysporum. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
57
|
Pellegrin C, Morin E, Martin FM, Veneault-Fourrey C. Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins. Front Microbiol 2015; 6:1278. [PMID: 26635749 PMCID: PMC4649063 DOI: 10.3389/fmicb.2015.01278] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/31/2015] [Indexed: 12/20/2022] Open
Abstract
Fungi are major players in the carbon cycle in forest ecosystems due to the wide range of interactions they have with plants either through soil degradation processes by litter decayers or biotrophic interactions with pathogenic and ectomycorrhizal symbionts. Secretion of fungal proteins mediates these interactions by allowing the fungus to interact with its environment and/or host. Ectomycorrhizal (ECM) symbiosis independently appeared several times throughout evolution and involves approximately 80% of trees. Despite extensive physiological studies on ECM symbionts, little is known about the composition and specificities of their secretomes. In this study, we used a bioinformatics pipeline to predict and analyze the secretomes of 49 fungal species, including 11 ECM fungi, wood and soil decayers and pathogenic fungi to tackle the following questions: (1) Are there differences between the secretomes of saprophytic and ECM fungi? (2) Are small-secreted proteins (SSPs) more abundant in biotrophic fungi than in saprophytic fungi? and (3) Are there SSPs shared between ECM, saprotrophic and pathogenic fungi? We showed that the number of predicted secreted proteins is similar in the surveyed species, independently of their lifestyle. The secretome from ECM fungi is characterized by a restricted number of secreted CAZymes, but their repertoires of secreted proteases and lipases are similar to those of saprotrophic fungi. Focusing on SSPs, we showed that the secretome of ECM fungi is enriched in SSPs compared with other species. Most of the SSPs are coded by orphan genes with no known PFAM domain or similarities to known sequences in databases. Finally, based on the clustering analysis, we identified shared- and lifestyle-specific SSPs between saprotrophic and ECM fungi. The presence of SSPs is not limited to fungi interacting with living plants as the genome of saprotrophic fungi also code for numerous SSPs. ECM fungi shared lifestyle-specific SSPs likely involved in symbiosis that are good candidates for further functional analyses.
Collapse
Affiliation(s)
- Clement Pellegrin
- UMR 1136 Interactions Arbres/Microorganismes, Université de LorraineVandoeuvre-lès-Nancy, France
- UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Institut National de la Recherche Agronomique, INRA-NancyChampenoux, France
| | - Emmanuelle Morin
- UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Institut National de la Recherche Agronomique, INRA-NancyChampenoux, France
| | - Francis M. Martin
- UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Institut National de la Recherche Agronomique, INRA-NancyChampenoux, France
| | - Claire Veneault-Fourrey
- UMR 1136 Interactions Arbres/Microorganismes, Université de LorraineVandoeuvre-lès-Nancy, France
- UMR 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Institut National de la Recherche Agronomique, INRA-NancyChampenoux, France
| |
Collapse
|