51
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
52
|
Tang F, Richardson N, Albina A, Chaboissier MC, Perea-Gomez A. Mouse Gonad Development in the Absence of the Pro-Ovary Factor WNT4 and the Pro-Testis Factor SOX9. Cells 2020; 9:cells9051103. [PMID: 32365547 PMCID: PMC7291083 DOI: 10.3390/cells9051103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/03/2022] Open
Abstract
The transcription factors SRY and SOX9 and RSPO1/WNT4/β-Catenin signaling act as antagonistic pathways to drive testis and ovary development respectively, from a common gonadal primordium in mouse embryos. In this work, we took advantage of a double knockout mouse model to study gonadal development when Sox9 and Wnt4 are both mutated. We show that the XX gonad mutant for Wnt4 or for both Wnt4 and Sox9 develop as ovotestes, demonstrating that ectopic SOX9 function is not required for the partial female-to-male sex reversal caused by a Wnt4 mutation. Sox9 deletion in XY gonads leads to ovarian development accompanied by ectopic WNT/β-catenin signaling. In XY Sox9 mutant gonads, SRY-positive supporting precursors adopt a female-like identity and develop as pre-granulosa-like cells. This phenotype cannot be fully prevented by the deletion of Wnt4 or Rspo1, indicating that SOX9 is required for the early determination of the male supporting cell identity independently of repressing RSPO1/WNT4/β-Catenin signaling. However, in XY Sox9 Wnt4 double mutant gonads, pre-granulosa cells are not maintained, as they prematurely differentiate as mature granulosa cells and then trans-differentiate into Sertoli-like cells. Together, our results reveal the dynamics of the specific and independent actions of SOX9 and WNT4 during gonadal differentiation: SOX9 is essential in the testis for early specification of male-supporting cells whereas WNT4 functions in the ovary to maintain female-supporting cell identity and inhibit male-specific vascular and steroidogenic cell differentiation.
Collapse
|
53
|
Jin H, Lee B, Luo Y, Choi Y, Choi EH, Jin H, Kim KB, Seo SB, Kim YH, Lee HH, Kim KP, Lee K, Bae J. FOXL2 directs DNA double-strand break repair pathways by differentially interacting with Ku. Nat Commun 2020; 11:2010. [PMID: 32332759 PMCID: PMC7181608 DOI: 10.1038/s41467-020-15748-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/22/2020] [Indexed: 12/26/2022] Open
Abstract
The balance between major DNA double-strand break (DSB) repair pathways is influenced by binding of the Ku complex, a XRCC5/6 heterodimer, to DSB ends, initiating non-homologous end joining (NHEJ) but preventing additional DSB end resection and homologous recombination (HR). However, the key molecular cue for Ku recruitment to DSB sites is unknown. Here, we report that FOXL2, a forkhead family transcriptional factor, directs DSB repair pathway choice by acetylation-dependent binding to Ku. Upon DSB induction, SIRT1 translocates to the nucleus and deacetylates FOXL2 at lysine 124, leading to liberation of XRCC5 and XRCC6 from FOXL2 and formation of the Ku complex. FOXL2 ablation enhances Ku recruitment to DSB sites, imbalances DSB repair kinetics by accelerating NHEJ and inhibiting HR, and thus leads to catastrophic genomic events. Our study unveils the SIRT1-(de)acetylated FOXL2-Ku axis that governs the balance of DSB repair pathways to maintain genome integrity.
Collapse
Affiliation(s)
- Hanyong Jin
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Boeun Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Eui-Hwan Choi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Hong Jin
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Kee-Beom Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Sang Beom Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Yong-Hak Kim
- Department of Microbiology, Catholic University of Daegu School of Medicine, Daegu, 42472, Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Keun Pil Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea.
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
54
|
Disorders of Sex Development-Novel Regulators, Impacts on Fertility, and Options for Fertility Preservation. Int J Mol Sci 2020; 21:ijms21072282. [PMID: 32224856 PMCID: PMC7178030 DOI: 10.3390/ijms21072282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Disorders (or differences) of sex development (DSD) are a heterogeneous group of congenital conditions with variations in chromosomal, gonadal, or anatomical sex. Impaired gonadal development is central to the pathogenesis of the majority of DSDs and therefore a clear understanding of gonadal development is essential to comprehend the impacts of these disorders on the individual, including impacts on future fertility. Gonadal development was traditionally considered to involve a primary 'male' pathway leading to testicular development as a result of expression of a small number of key testis-determining genes. However, it is increasingly recognized that there are several gene networks involved in the development of the bipotential gonad towards either a testicular or ovarian fate. This includes genes that act antagonistically to regulate gonadal development. This review will highlight some of the novel regulators of gonadal development and how the identification of these has enhanced understanding of gonadal development and the pathogenesis of DSD. We will also describe the impact of DSDs on fertility and options for fertility preservation in this context.
Collapse
|
55
|
Paranjpe M, Yu H, Frankenberg S, Pask AJ, Shaw G, Renfree MB. Transcriptomic Analysis of MAP3K1 and MAP3K4 in the Developing Marsupial Gonad. Sex Dev 2020; 13:195-204. [DOI: 10.1159/000505799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
|
56
|
RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. Nat Commun 2019; 10:5116. [PMID: 31712577 PMCID: PMC6848188 DOI: 10.1038/s41467-019-13060-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.
Collapse
|
57
|
Wu J, Miao C, Lv X, Zhang Y, Li Y, Wang D. Estrogen regulates forkhead transcription factor 2 to promote apoptosis of human ovarian granulosa-like tumor cells. J Steroid Biochem Mol Biol 2019; 194:105418. [PMID: 31376461 DOI: 10.1016/j.jsbmb.2019.105418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 02/03/2023]
Abstract
Granulosa cell tumors of the ovary (GCTs) are the predominant form of ovarian stromal tumors and can lead to abnormally secreted estrogen hormones. Studies have reported that forkhead transcription factor 2 (FOXL2) inhibits estrogen synthesis and its gene mutation can lead to GCTs. We unexpected found that estrogen also regulates the expression level of FOXL2. High-dose estrogen increased the expression of FOXL2 in ovarian-like granulosa (KGN) cells at both the mRNA and protein levels. However, no research has reported on the molecular regulatory mechanism and function between estrogen and FOXL2 in the development of GCTs. In this research, FOXL2 was highly expressed in KGN cells and ovarian stromal tumor tissues. Deletion of FOXL2 increased the estrogen secretion in KGN cells. In turn, high-dose estrogen increased the FOXL2 expression levels. FOXL2 was phosphorylated by GPR30 (G protein coupled receptor)-Protein kinase C (PKC) signaling pathway upon estrogen stimulation. Estrogen inhibited cell migration and proliferation, while promoting cell apoptosis. Deletion of FOXL2 inhibited the influence of estrogen on cell proliferation, migration, and apoptosis. Results suggest that estrogen via regulating FOXL2 suppresses cell proliferation and induces cell apoptosis.
Collapse
Affiliation(s)
- Jun Wu
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Chunlei Miao
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyu Lv
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yujie Zhang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yanyan Li
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Di Wang
- Plastic Surgery Institute, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
58
|
Martínez-Juárez A, Moreno-Mendoza N. Mechanisms related to sexual determination by temperature in reptiles. J Therm Biol 2019; 85:102400. [PMID: 31657741 DOI: 10.1016/j.jtherbio.2019.102400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
A number of strategies have emerged that appear to relate to the evolution of mechanisms for sexual determination in vertebrates, among which are genetic sex determination caused by sex chromosomes and environmental sex determination, where environmental factors influence the phenotype of the sex of an individual. Within the reptile group, some orders such as: Chelonia, Crocodylia, Squamata and Rhynchocephalia, manifest one of the most intriguing and exciting environmental sexual determination mechanisms that exists, comprising temperature-dependent sex determination (TSD), where the temperature of incubation that the embryo experiences during its development is fundamental to establishing the sex of the individual. This makes them an excellent model for the study of sexual determination at the molecular, cellular and physiological level, as well as in terms of their implications at an evolutionary and ecological level. There are different hypotheses concerning how this process is triggered and this review aims to describe any new contributions to particular TSD hypotheses, analyzing them from the "eco-evo-devo" perspective.
Collapse
Affiliation(s)
- Adriana Martínez-Juárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico.
| |
Collapse
|
59
|
Baetens D, Verdin H, De Baere E, Cools M. Update on the genetics of differences of sex development (DSD). Best Pract Res Clin Endocrinol Metab 2019; 33:101271. [PMID: 31005504 DOI: 10.1016/j.beem.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human gonadal development is regulated by the temporospatial expression of many different genes with critical dosage effects. Subsequent sex steroid hormone production requires several consecutive enzymatic steps and functional hormone receptors. Disruption of this complex process can result in atypical sex development and lead to conditions referred to as differences (disorders) of sex development (DSD). With the advent of massively parallel sequencing technologies, in silico protein modeling and innovative tools for the generation of animal models, new genes and pathways have been implicated in the pathogenesis of these conditions. Here, we provide an overview of the currently known DSD genes and mechanisms involved in the process of gonadal and phenotypical sex development and highlight phenotypic findings that may trigger further diagnostic investigations.
Collapse
Affiliation(s)
- Dorien Baetens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium; Division of Pediatric Endocrinology, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Martine Cools
- Division of Pediatric Endocrinology, Department of Internal Medicine and Pediatrics, Ghent University Hospital and Ghent University, Ghent, Belgium.
| |
Collapse
|
60
|
Nicol B, Grimm SA, Gruzdev A, Scott GJ, Ray MK, Yao HHC. Genome-wide identification of FOXL2 binding and characterization of FOXL2 feminizing action in the fetal gonads. Hum Mol Genet 2019; 27:4273-4287. [PMID: 30212841 DOI: 10.1093/hmg/ddy312] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022] Open
Abstract
The identity of the gonads is determined by which fate, ovarian granulosa cell or testicular Sertoli cell, the bipotential somatic cell precursors choose to follow. In most vertebrates, the conserved transcription factor FOXL2 contributes to the fate of granulosa cells. To understand FOXL2 functions during gonad differentiation, we performed genome-wide analysis of FOXL2 chromatin occupancy in fetal ovaries and established a genetic mouse model that forces Foxl2 expression in the fetal testis. When FOXL2 was ectopically expressed in the somatic cell precursors in the fetal testis, FOXL2 was sufficient to repress Sertoli cell differentiation, ultimately resulting in partial testis-to-ovary sex-reversal. Combining genome-wide analysis of FOXL2 binding in the fetal ovary with transcriptomic analyses of our Foxl2 gain-of-function and previously published Foxl2 loss-of-function models, we identified potential pathways responsible for the feminizing action of FOXL2. Finally, comparison of FOXL2 genome-wide occupancy in the fetal ovary with testis-determining factor SOX9 genome-wide occupancy in the fetal testis revealed extensive overlaps, implying that antagonistic signals between FOXL2 and SOX9 occur at the chromatin level.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Artiom Gruzdev
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Greg J Scott
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Manas K Ray
- Knockout Mouse Core Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
61
|
Hummitzsch K, Hatzirodos N, Irving-Rodgers HF, Hartanti MD, Perry VEA, Anderson RA, Rodgers RJ. Morphometric analyses and gene expression related to germ cells, gonadal ridge epithelial-like cells and granulosa cells during development of the bovine fetal ovary. PLoS One 2019; 14:e0214130. [PMID: 30901367 PMCID: PMC6430378 DOI: 10.1371/journal.pone.0214130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells on the surface of the mesonephros give rise to replicating Gonadal Ridge Epithelial-Like (GREL) cells, the first somatic cells of the gonadal ridge. Later germ cells associate with the GREL cells in the ovigerous cords, and the GREL cells subsequently give rise to the granulosa cells in follicles. To examine these events further, 27 bovine fetal ovaries of different gestational ages were collected and prepared for immunohistochemical localisation of collagen type I and Ki67 to identify regions of the ovary and cell proliferation, respectively. The non-stromal cortical areas (collagen-negative) containing GREL cells and germ cells and later in development, the follicles with oocytes and granulosa cells, were analysed morphometrically. Another set of ovaries (n = 17) were collected and the expression of genes associated with germ cell lineages and GREL/granulosa cells were quantitated by RT-PCR. The total volume of non-stromal areas in the cortex increased significantly and progressively with ovarian development, plateauing at the time the surface epithelium developed. However, the proportion of non-stromal areas in the cortex declined significantly and progressively throughout gestation, largely due to a cessation in growth of the non-stroma cells and the continued growth of stroma. The proliferation index in the non-stromal area was very high initially and then declined substantially at the time follicles formed. Thereafter, it remained low. The numerical density of the non-stromal cells was relatively constant throughout ovarian development. The expression levels of a number of genes across gestation either increased (AMH, FSHR, ESR1, INHBA), declined (CYP19A1, ESR2, ALDH1A1, DSG2, OCT4, LGR5) or showed no particular pattern (CCND2, CTNNB1, DAZL, FOXL2, GATA4, IGFBP3, KRT19, NR5A1, RARRES1, VASA, WNT2B). Many of the genes whose expression changed across gestation, were positively or negatively correlated with each other. The relationships between these genes may reflect their roles in the important events such as the transition of ovigerous cords to follicles, oogonia to oocytes or GREL cells to granulosa cells.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F. Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Monica D. Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Viv E. A. Perry
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
62
|
Abstract
The bipotential nature of cell types in the early developing gonad and the process of sex determination leading to either testis or ovary differentiation makes this an interesting system in which to study transcriptional regulation of gene expression and cell fate decisions. SOX9 is a transcription factor with multiple roles during development, including being a key player in mediating testis differentiation and therefore subsequent male development. Loss of Sox9 expression in both humans and mice results in XY female development, whereas its inappropriate activation in XX embryonic gonads can give male development. Multiple cases of Disorders of Sex Development in human patients or sex reversal in mice and other vertebrates can be explained by mutations affecting upstream regulators of Sox9 expression, such as the product of the Y chromosome gene Sry that triggers testis differentiation. Other cases are due to mutations in the Sox9 gene itself, including its own regulatory region. Indeed, rearrangements in and around the Sox9 genomic locus indicate the presence of multiple critical enhancers and the complex nature of its regulation. Here we summarize what is known about the role of Sox9 and its regulation during gonad development, including recently discovered critical enhancers. We also discuss higher order chromatin organization and how this might be involved. We end with some interesting future directions that have the potential to further enrich our understanding on the complex, multi-layered regulation controlling Sox9 expression in the gonads.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
63
|
Böhne A, Weber AAT, Rajkov J, Rechsteiner M, Riss A, Egger B, Salzburger W. Repeated Evolution Versus Common Ancestry: Sex Chromosome Evolution in the Haplochromine Cichlid Pseudocrenilabrus philander. Genome Biol Evol 2019; 11:439-458. [PMID: 30649313 PMCID: PMC6375353 DOI: 10.1093/gbe/evz003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Why sex chromosomes turn over and remain undifferentiated in some taxa, whereas they degenerate in others, is still an area of ongoing research. The recurrent occurrence of homologous and homomorphic sex chromosomes in distantly related taxa suggests their independent evolution or continued recombination since their first emergence. Fishes display a great diversity of sex-determining systems. Here, we focus on sex chromosome evolution in haplochromines, the most species-rich lineage of cichlid fishes. We investigate sex-specific signatures in the Pseudocrenilabrus philander species complex, which belongs to a haplochromine genus found in many river systems and ichthyogeographic regions in northern, eastern, central, and southern Africa. Using whole-genome sequencing and population genetic, phylogenetic, and read-coverage analyses, we show that one population of P. philander has an XX-XY sex-determining system on LG7 with a large region of suppressed recombination. However, in a second bottlenecked population, we did not find any sign of a sex chromosome. Interestingly, LG7 also carries an XX-XY system in the phylogenetically more derived Lake Malawi haplochromine cichlids. Although the genomic regions determining sex are the same in Lake Malawi cichlids and P. philander, we did not find evidence for shared ancestry, suggesting that LG7 evolved as sex chromosome at least twice in haplochromine cichlids. Hence, our work provides further evidence for the labile nature of sex determination in fishes and supports the hypothesis that the same genomic regions can repeatedly and rapidly be recruited as sex chromosomes in more distantly related lineages.
Collapse
Affiliation(s)
- Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Alexandra Anh-Thu Weber
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Museums Victoria, Melbourne, Victoria, Australia
| | - Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Michael Rechsteiner
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Andrin Riss
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Program Man Society Environment, University of Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
64
|
Tang B, Zhang Y, Zhang W, Zhu Y, Yuan S. Deletion of FOXL2 by CRISPR promotes cell cycle G0/G1 restriction in KGN cells. Int J Mol Med 2019; 43:567-574. [PMID: 30365048 DOI: 10.3892/ijmm.2018.3956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Forkhead box L2 (FOXL2), a member of the forkhead family of transcription factors, is important in eyelid and ovary differentiation. Although the function of FOXL2 in organogenesis has been investigated, the detailed mechanisms by which FOXL2 mediates cellular process remain to be fully elucidated. Few FOXL2‑knockout cell lines have been reported, which has limited molecular mechanism investigations. CRISPR is a novel gene editing technique that has been widely used in human genetic diseases. In the present study, FOXL2 was disrupted using clustered regularly interspaced short palindromic repeats (CRISPR), and screening of a stable knockout cell line was performed in human ovarian granulosa KGN cells. Three sites (F404, F425 and F446) around the ATG start codon on the FOXL2 DNA sequence were constructed in a guide RNA lentivirus. Targeting F425 was most efficient, and western blot analysis and DNA sequencing of the resulting cells suggested that both FOXL2 alleles were fully disrupted. In addition, flow cytometry results indicated that the knockout of FOXL2 restricted cell cycle progression at the G0/G1 phase. In addition, the expression levels of cell cycle mediators cyclin D1 and cyclin‑dependent kinase 4 were reduced. These results confirmed that FOXL2 disruption in KGN cells is associated with the cell cycle attenuation.
Collapse
Affiliation(s)
- Bin Tang
- Department of International Medicine, China Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yujie Zhang
- Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology, Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 461042, P.R. China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology, Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 461042, P.R. China
| | - Yuqing Zhu
- Department of International Medicine, China Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shaopeng Yuan
- Beijing Ruijian Technology Co., Ltd., Beijing 100086, P.R. China
| |
Collapse
|
65
|
Liu Y, Qi B, Xie J, Wu X, Ling Y, Cao X, Kong F, Xin J, Jiang X, Wu Q, Wang W, Li Q, Zhang S, Wu F, Zhang D, Wang R, Zhang X, Li W. Filtered reproductive long non-coding RNAs by genome-wide analyses of goat ovary at different estrus periods. BMC Genomics 2018; 19:866. [PMID: 30509164 PMCID: PMC6278114 DOI: 10.1186/s12864-018-5268-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background The goat is an important farm animal. Reproduction is an important process of goat farming. The ovary is the most important reproductive organ for goats. In recent years, an increasing number of long non-coding RNAs (lncRNAs) have been implicated in the regulation of mammal reproduction. However, there are few studies on the function of lncRNAs in reproduction, particularly lncRNAs in the ovary. Results The sequencing of goat ovaries generated 1,122,014,112 clean reads, and 4926 lncRNAs and 1454 TUCPs (transcripts of uncertain coding potential) were identified for further analysis by using the coding potential analysis software, CNCI, CPC and Pfam-sca. There were 115 /22 differential lncRNAs /TUCPs transcripts between the ovaries of the luteal phase and the follicular phase. We predicted the related genes of lncRNA /TUCP based on co-expression and co-localization methods. In total, 2584 /904 genes were predicted by co-expression, and 326/73 genes were predicted by co-localization. The functions of these genes were further analyzed with GO and KEGG analysis. The results showed that lncRNAs /TUCPs, which are highly expressed in goat ovaries in the luteal phase, are mainly associated with the synthesis of progesterone, and we filtered the lncRNAs /TUCPs, such as XR_001918177.1 and TUCP_001362, which may regulate the synthesis of progesterone; lncRNAs /TUCPs, which are highly expressed in goat ovaries in the follicular phase, are mainly associated with oogenesis and the maturation of oocytes, and we filtered the lncRNAs /TUCPs that may regulate the oogenesis and maturation of oocyte, such as XR_001917388.1 and TUCP_000849. Conclusion The present study provided the genome expression profile of lncRNAs /TUCPs in goat ovaries at different estrus periods and filtered the potential lncRNAs /TUCPs associated with goat reproduction. These results are helpful to further study the molecular mechanisms of goat reproduction. Electronic supplementary material The online version of this article (10.1186/s12864-018-5268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Bing Qi
- School of Life Sciences, Taishan Medical University, Taian, 271016, Shandong, China
| | - Juan Xie
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaoqing Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xinyan Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No.4899 Juye Street, Jingyue District, Changchun, 130112, China
| | - Feng Kong
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Jing Xin
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xin Jiang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Qiaoqin Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Wenying Wang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Qingmei Li
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Shengnan Zhang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Fengrui Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Di Zhang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Rong Wang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaorong Zhang
- School of Life Sciences, Taishan Medical University, Taian, 271016, Shandong, China
| | - Wenyong Li
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China.
| |
Collapse
|
66
|
Sarropoulou E, Sundaram AYM, Kaitetzidou E, Kotoulas G, Gilfillan GD, Papandroulakis N, Mylonas CC, Magoulas A. Full genome survey and dynamics of gene expression in the greater amberjack Seriola dumerili. Gigascience 2018; 6:1-13. [PMID: 29126158 PMCID: PMC5751066 DOI: 10.1093/gigascience/gix108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/02/2017] [Indexed: 02/05/2023] Open
Abstract
Background Teleosts of the genus Seriola, commonly known as amberjacks, are of high commercial value in international markets due to their flesh quality and worldwide distribution. The Seriola species of interest to Mediterranean aquaculture is the greater amberjack (Seriola dumerili). This species holds great potential for the aquaculture industry, but in captivity, reproduction has proved to be challenging, and observed growth dysfunction hinders their domestication. Insights into molecular mechanisms may contribute to a better understanding of traits like growth and sex, but investigations to unravel the molecular background of amberjacks have begun only recently. Findings Illumina HiSeq sequencing generated a high-coverage greater amberjack genome sequence comprising 45 909 scaffolds. Comparative mapping to the Japanese yellowtail (Seriola quinqueriadiata) and to the model species medaka (Oryzias latipes) allowed the generation of in silico groups. Additional gonad transcriptome sequencing identified sex-biased transcripts, including known sex-determining and differentiation genes. Investigation of the muscle transcriptome of slow-growing individuals showed that transcripts involved in oxygen and gas transport were differentially expressed compared with fast/normal-growing individuals. On the other hand, transcripts involved in muscle functions were found to be enriched in fast/normal-growing individuals. Conclusion The present study provides the first insights into the molecular background of male and female amberjacks and of fast- and slow-growing fish. Therefore, valuable molecular resources have been generated in the form of a first draft genome and a reference transcriptome. Sex-biased genes, which may also have roles in sex determination or differentiation, and genes that may be responsible for slow growth are suggested.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Arvind Y M Sundaram
- Norwegian High Throughput Sequencing Centre, Department of Medical Genetics, Oslo University Hospital (Ullevål), Kirkeveien 166 0450, Oslo, Norway
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Gregor D Gilfillan
- Norwegian High Throughput Sequencing Centre, Department of Medical Genetics, Oslo University Hospital (Ullevål), Kirkeveien 166 0450, Oslo, Norway
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| |
Collapse
|
67
|
Rotgers E, Jørgensen A, Yao HHC. At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad. Endocr Rev 2018; 39:739-759. [PMID: 29771299 PMCID: PMC6173476 DOI: 10.1210/er.2018-00010] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
The reproductive endocrine systems are vastly different between males and females. This sexual dimorphism of the endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. Most gonadal somatic cells arise from the adrenogonadal primordium. After separation of the adrenal and gonadal primordia, the gonadal somatic cells initiate sex-specific differentiation during gonadal sex determination with the specification of the supporting cell lineages: Sertoli cells in the testis vs granulosa cells in the ovary. The supporting cell lineages then facilitate the differentiation of the steroidogenic cell lineages, Leydig cells in the testis and theca cells in the ovary. Proper differentiation of these cell types defines the somatic cell environment that is essential for germ cell development, hormone production, and establishment of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modeled using genetically modified mouse models. In this review, we focus on the fate decision processes from the initial stage of formation of the adrenogonadal primordium in the embryo to the maintenance of the somatic cell identities in the gonads when they become fully differentiated in adulthood.
Collapse
Affiliation(s)
- Emmi Rotgers
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, Denmark
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
68
|
Gay S, Bugeon J, Bouchareb A, Henry L, Delahaye C, Legeai F, Montfort J, Le Cam A, Siegel A, Bobe J, Thermes V. MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genet 2018; 14:e1007593. [PMID: 30199527 PMCID: PMC6147661 DOI: 10.1371/journal.pgen.1007593] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/20/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Female gamete production relies on coordinated molecular and cellular processes that occur in the ovary throughout oogenesis. In fish, as in other vertebrates, these processes have been extensively studied both in terms of endocrine/paracrine regulation and protein expression and activity. The role of small non-coding RNAs in the regulation of animal reproduction remains however largely unknown and poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in male and female gonads in several vertebrate species. We studied its expression in the medaka ovary and generated a mutant line (using CRISPR/Cas9 genome editing) to determine its importance for reproductive success with special interest for egg production. Our results show that miR-202-5p is the most abundant mature form of the miRNA and that it is expressed in granulosa cells and in the unfertilized egg. The knock out (KO) of mir-202 gene resulted in a strong phenotype both in terms of number and quality of eggs produced. Mutant females exhibited either no egg production or produced a dramatically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. We quantified the size distribution of the oocytes in the ovary of KO females and performed a large-scale transcriptomic analysis approach to identified dysregulated molecular pathways. Together, cellular and molecular analyses indicate that the lack of miR-202 impairs the early steps of oogenesis/folliculogenesis and decreases the number of large (i.e. vitellogenic) follicles, ultimately leading to dramatically reduced female fecundity. This study sheds new light on the regulatory mechanisms that control the early steps of follicular development, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction. The role of small non-coding RNAs in the regulation of animal reproduction remains poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in gonads in vertebrate. We studied its expression in the medaka ovary and knocked out the mir-202 gene to study its importance for reproductive success. We showed that the lack of miR-202 results in the sterility of both females and males. In particular, it led to a drastic reduction of both the number and the quality of eggs produced by females. Mutant females exhibited either no egg production or produced a drastically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. Quantitative histological and molecular analyses indicated that mir-202 KO impairs oocyte development and is also associated with the dysregulation of many genes that are critical for reproduction. This study sheds new light on the regulatory mechanisms that control oogenesis, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction.
Collapse
Affiliation(s)
| | | | | | | | - Clara Delahaye
- LPGP, INRA, Rennes, France
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Fabrice Legeai
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
- IGEPP, INRA BP35327, Le Rheu, France
| | | | | | - Anne Siegel
- Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
| | | | | |
Collapse
|
69
|
Piprek RP, Damulewicz M, Kloc M, Kubiak JZ. Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads. Differentiation 2018. [PMID: 29518581 DOI: 10.1016/j.diff.2018.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Development of the gonads is a complex process, which starts with a period of undifferentiated, bipotential gonads. During this period the expression of sex-determining genes is initiated. Sex determination is a process triggering differentiation of the gonads into the testis or ovary. Sex determination period is followed by sexual differentiation, i.e. appearance of the first testis- and ovary-specific features. In Xenopus laevis W-linked DM-domain gene (DM-W) had been described as a master determinant of the gonadal female sex. However, the data on the expression and function of other genes participating in gonad development in X. laevis, and in anurans, in general, are very limited. We applied microarray technique to analyze the expression pattern of a subset of X. laevis genes previously identified to be involved in gonad development in several vertebrate species. We also analyzed the localization and the expression level of proteins encoded by these genes in developing X. laevis gonads. These analyses pointed to the set of genes differentially expressed in developing testes and ovaries. Gata4, Sox9, Dmrt1, Amh, Fgf9, Ptgds, Pdgf, Fshr, and Cyp17a1 expression was upregulated in developing testes, while DM-W, Fst, Foxl2, and Cyp19a1 were upregulated in developing ovaries. We discuss the possible roles of these genes in development of X. laevis gonads.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Milena Damulewicz
- Department of Cell Biology and Imagining, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jacek Z Kubiak
- Univ Rennes, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, Faculty of Medicine, F-35000 Rennes, France; Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| |
Collapse
|
70
|
Kobayashi T, Chiba A, Sato T, Myosho T, Yamamoto J, Okamura T, Onishi Y, Sakaizumi M, Hamaguchi S, Iguchi T, Horie Y. Estrogen alters gonadal soma-derived factor (Gsdf)/Foxl2 expression levels in the testes associated with testis-ova differentiation in adult medaka, Oryzias latipes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:209-218. [PMID: 28866280 DOI: 10.1016/j.aquatox.2017.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Testis-ova differentiation in sexually mature male medaka (Oryzias latipes) is easily induced by estrogenic chemicals, indicating that spermatogonia persist in sexual bipotentiality, even in mature testes in medaka. By contrast, the effects of estrogen on testicular somatic cells associated with testis-ova differentiation in medaka remain unclear. In this study, we focused on the dynamics of sex-related genes (Gsdf, Dmrt1, and Foxl2) expressed in Sertoli cells in the mature testes of adult medaka during estrogen-induced testis-ova differentiation. When mature male medaka were exposed to estradiol benzoate (EB; 800ng/L), testis-ova first appeared after EB treatment for 14days (observed as the first oocytes of the leptotene-zygotene stage). However, the testis remained structurally unchanged, even after EB treatment for 28days. Although Foxl2 is a female-specific sex gene, EB treatment for 7days induced Foxl2/FOXL2 expression in all Sertoli cell-enclosed spermatogonia before testis-ova first appeared; however, Foxl2 was not detected in somatic cells in control testes. Conversely, Sertoli-cell-specific Gsdf mRNA expression levels significantly decreased after EB treatment for 14days, and no changes were observed in DMRT1 localization following EB treatment, whereas Dmrt1 mRNA levels increased significantly. Furthermore, after EB exposure, FOXl2 and DMRT1 were co-localized in Sertoli cells during testis-ova differentiation, although FOXL2 localization was undetectable in Sertoli-cell-enclosed apoptotic testis-ova, whereas DMRT1 remained localized in Sertoli cells. These results indicated for the first time that based on the expression of female-specific sex genes, feminization of Sertoli cells precedes testis-ova differentiation induced by estrogen in mature testes in medaka; however, complete feminization of Sertoli cells was not induced in this study. Additionally, it is suggested strongly that Foxl2 and Gsdf expression constitute potential molecular markers for evaluating the effects of estrogenic chemicals on testicular somatic cells associated with estrogen-induced testis-ova differentiation in mature male medaka.
Collapse
Affiliation(s)
- Tohru Kobayashi
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Ayaka Chiba
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Tadashi Sato
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Tetsuro Okamura
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Mitsuru Sakaizumi
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Satoshi Hamaguchi
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institute of Natural Sciences, Okazaki, Aichi 444-8787, Japan.
| | - Yoshifumi Horie
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan; National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| |
Collapse
|
71
|
Li Y, Zhang L, Hu Y, Chen M, Han F, Qin Y, Chen M, Cui X, Duo S, Tang F, Gao F. β-Catenin directs the transformation of testis Sertoli cells to ovarian granulosa-like cells by inducing Foxl2 expression. J Biol Chem 2017; 292:17577-17586. [PMID: 28900034 DOI: 10.1074/jbc.m117.811349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Sertoli and granulosa cells are two major types of somatic cells in male and female gonads, respectively. Previous studies have shown that Sertoli and granulosa cells are derived from common progenitor cells and that differentiation of these two cell types is regulated by sex differentiation genes. The signaling pathway including the adhesion and transcription factor Ctnnb1 (cadherin-associated protein, β1, also known as β-catenin) regulates differentiation of granulosa cells in the absence of the transcription factor Sry, and overactivation of β-catenin in the presence of Sry leads to granulosa prior to sex determination. Surprisingly, our previous study found that β-catenin overactivation in Sertoli cells after sex determination can also cause disruption of the testicular cord and aberrant testis development. However, the underlying molecular mechanism was unclear. In this study, we found that constitutive activation of Ctnnb1 in Sertoli cells led to ectopic expression of the granulosa cell-specific marker FOXL2 in testes. Co-staining experiments revealed that FOXL2-positive cells were derived from Sertoli cells, and Sertoli cells were transformed into granulosa-like cells after Ctnnb1 overactivation. Further studies demonstrated that CTNNB1 induced Foxl2 expression by directly binding to transcription factor Tcf/Lef-binding sites in the FOXL2 promoter region. We also found that direct overexpression of Foxl2 decreased the expression of Sertoli cell-specific genes in primary Sertoli cells. Taken together, these results demonstrate that repression of β-catenin (CTNNB1) signaling is required for lineage maintenance of Sertoli cells. Our study provides a new mechanism for Sertoli cell lineage maintenance during gonad development.
Collapse
Affiliation(s)
- Yaqiong Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Lianjun Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Yuqiong Hu
- the Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Min Chen
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Feng Han
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Yan Qin
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Min Chen
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,the University of Chinese Academy of Sciences, Beijing 101408, and
| | - Xiuhong Cui
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Shuguang Duo
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Fuchou Tang
- the Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Gao
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, .,the University of Chinese Academy of Sciences, Beijing 101408, and
| |
Collapse
|
72
|
Ghosh S, Klein RS. Sex Drives Dimorphic Immune Responses to Viral Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:1782-1790. [PMID: 28223406 DOI: 10.4049/jimmunol.1601166] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
New attention to sexual dimorphism in normal mammalian physiology and disease has uncovered a previously unappreciated breadth of mechanisms by which females and males differentially exhibit quantitative phenotypes. Thus, in addition to the established modifying effects of hormones, which prenatally and postpubertally pattern cells and tissues in a sexually dimorphic fashion, sex differences are caused by extragonadal and dosage effects of genes encoded on sex chromosomes. Sex differences in immune responses, especially during autoimmunity, have been studied predominantly within the context of sex hormone effects. More recently, immune response genes have been localized to sex chromosomes themselves or found to be regulated by sex chromosome genes. Thus, understanding how sex impacts immunity requires the elucidation of complex interactions among sex hormones, sex chromosomes, and immune response genes. In this Brief Review, we discuss current knowledge and new insights into these intricate relationships in the context of viral infections.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
73
|
Lipskind S, Lindsey JS, Gerami-Naini B, Eaton JL, O'Connell D, Kiezun A, Ho JWK, Ng N, Parasar P, Ng M, Nickerson M, Demirci U, Maas R, Anchan RM. An Embryonic and Induced Pluripotent Stem Cell Model for Ovarian Granulosa Cell Development and Steroidogenesis. Reprod Sci 2017; 25:712-726. [PMID: 28854867 DOI: 10.1177/1933719117725814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Embryoid bodies (EBs) can serve as a system for evaluating pluripotency, cellular differentiation, and tissue morphogenesis. In this study, we use EBs derived from mouse embryonic stem cells (mESCs) and human amniocyte-derived induced pluripotent stem cells (hAdiPSCs) as a model for ovarian granulosa cell (GC) development and steroidogenic cell commitment. We demonstrated that spontaneously differentiated murine EBs (mEBs) and human EBs (hEBs) displayed ovarian GC markers, such as aromatase (CYP19A1), FOXL2, AMHR2, FSHR, and GJA1. Comparative microarray analysis identified both shared and unique gene expression between mEBs and the maturing mouse ovary. Gene sets related to gonadogenesis, lipid metabolism, and ovarian development were significantly overrepresented in EBs. Of the 29 genes, 15 that were differentially regulated in steroidogenic mEBs displayed temporal expression changes between embryonic, postnatal, and mature ovarian tissues by polymerase chain reaction. Importantly, both mEBs and hEBs were capable of gonadotropin-responsive estradiol (E2) synthesis in vitro (217-759 pg/mL). Live fluorescence-activated cell sorting-sorted AMHR2+ granulosa-like cells from mEBs continued to produce E2 after purification (15.3 pg/mL) and secreted significantly more E2 than AMHR2- cells (8.6 pg/mL, P < .05). We conclude that spontaneously differentiated EBs of both mESC and hAdiPSC origin can serve as a biologically relevant model for ovarian GC differentiation and steroidogenic cell commitment. These cells should be further investigated for therapeutic uses, such as stem cell-based hormone replacement therapy and in vitro maturation of oocytes.
Collapse
Affiliation(s)
- Shane Lipskind
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer S Lindsey
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Behzad Gerami-Naini
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer L Eaton
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel O'Connell
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Adam Kiezun
- 3 Computational Methods Development, Cancer Genome Analysis, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua W K Ho
- 4 Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas Ng
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Parveen Parasar
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle Ng
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Nickerson
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Utkan Demirci
- 5 Canary Center at Stanford for Early Cancer Detection, Stanford School of Medicine, Palo Alto, CA, USA
| | - Richard Maas
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,6 Affiliated Faculty, Harvard Stem Cell Institute, Cambridge, MA, USA. Gerami-Naini is now with the Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston MA, USA. Eaton is now with the Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA. O'Connell is now with the Intellia Therapeutics, Inc, Cambridge, MA, USA. Kiezun is now with the Amazon.com , Boston, MA, USA
| | - Raymond M Anchan
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,6 Affiliated Faculty, Harvard Stem Cell Institute, Cambridge, MA, USA. Gerami-Naini is now with the Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston MA, USA. Eaton is now with the Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA. O'Connell is now with the Intellia Therapeutics, Inc, Cambridge, MA, USA. Kiezun is now with the Amazon.com , Boston, MA, USA
| |
Collapse
|
74
|
Yenuganti VR, Vanselow J. Oleic acid induces down-regulation of the granulosa cell identity marker FOXL2, and up-regulation of the Sertoli cell marker SOX9 in bovine granulosa cells. Reprod Biol Endocrinol 2017; 15:57. [PMID: 28747195 PMCID: PMC5530537 DOI: 10.1186/s12958-017-0276-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
During negative energy balance, the concentration of different fatty acids, especially of oleic acid (OA) increases in the follicular fluid of cattle. Previously, we showed that OA induced morphological, physiological and molecular changes in cultured bovine granulosa cells. In our present study we analyzed effects of OA on the expression of markers for granulosa and Sertoli cell identity, FOXL2 and SOX9, respectively, in addition to effects on the FOXL2 regulated genes ESR2, FST, PTGS2 and PPARG. The results showed that OA down-regulated FOXL2, ESR2, FST and PPARG but up-regulated PTGS2 and SOX9. From these data we conclude that OA can compromise granulosa cell functionality and may initiate trans-differentiation processes in bovine granulosa cells. This novel mechanism may be causally involved in postpartum fertility problems of lactating dairy cows.
Collapse
Affiliation(s)
- Vengala Rao Yenuganti
- 0000 0000 9049 5051grid.418188.cInstitute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Jens Vanselow
- 0000 0000 9049 5051grid.418188.cInstitute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
75
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
76
|
Yang YJ, Wang Y, Li Z, Zhou L, Gui JF. Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish. Genetics 2017; 205:1551-1572. [PMID: 28193729 PMCID: PMC5378113 DOI: 10.1534/genetics.116.199133] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
Foxl2 is essential for mammalian ovary maintenance. Although sexually dimorphic expression of foxl2 was observed in many teleosts, its role and regulative mechanism in fish remained largely unclear. In this study, we first identified two transcript variants of foxl2a and its homologous gene foxl2b in zebrafish, and revealed their specific expression in follicular layer cells in a sequential and divergent fashion during ovary differentiation, maturation, and maintenance. Then, homozygous foxl2a mutants (foxl2a-/-) and foxl2b mutants (foxl2b-/-) were constructed and detailed comparisons, such as sex ratio, gonadal histological structure, transcriptome profiling, and dynamic expression of gonadal development-related genes, were carried out. Initial ovarian differentiation and oocyte development occur normally both in foxl2a-/- and foxl2b-/- mutants, but foxl2a and foxl2b disruptions result in premature ovarian failure and partial sex reversal, respectively, in adult females. In foxl2a-/- female mutants, sox9a-amh/cyp19a1a signaling was upregulated at 150 days postfertilization (dpf) and subsequently oocyte apoptosis was triggered after 180 dpf. In contrast, dmrt1 expression was greater at 105 dpf and increased several 100-fold in foxl2b-/- mutated ovaries at 270 dpf, along with other testis-related genes. Finally, homozygous foxl2a-/-/foxl2b-/- double mutants were constructed in which complete sex reversal occurs early and testis-differentiation genes robustly increase at 60 dpf. Given mutual compensation between foxl2a and foxl2b in foxl2b-/- and foxl2a-/- mutants, we proposed a model in which foxl2a and foxl2b cooperate to regulate zebrafish ovary development and maintenance, with foxl2b potentially having a dominant role in preventing the ovary from differentiating as testis, as compared to foxl2a.
Collapse
Affiliation(s)
- Yan-Jing Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
77
|
Maatouk DM, Natarajan A, Shibata Y, Song L, Crawford GE, Ohler U, Capel B. Genome-wide identification of regulatory elements in Sertoli cells. Development 2017; 144:720-730. [PMID: 28087634 DOI: 10.1242/dev.142554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/30/2016] [Indexed: 01/22/2023]
Abstract
A current goal of molecular biology is to identify transcriptional networks that regulate cell differentiation. However, identifying functional gene regulatory elements has been challenging in the context of developing tissues where material is limited and cell types are mixed. To identify regulatory sites during sex determination, we subjected Sertoli cells from mouse fetal testes to DNaseI-seq and ChIP-seq for H3K27ac. DNaseI-seq identified putative regulatory sites around genes enriched in Sertoli and pregranulosa cells; however, active enhancers marked by H3K27ac were enriched proximal to only Sertoli-enriched genes. Sequence analysis identified putative binding sites of known and novel transcription factors likely controlling Sertoli cell differentiation. As a validation of this approach, we identified a novel Sertoli cell enhancer upstream of Wt1, and used it to drive expression of a transgenic reporter in Sertoli cells. This work furthers our understanding of the complex genetic network that underlies sex determination and identifies regions that potentially harbor non-coding mutations underlying disorders of sexual development.
Collapse
Affiliation(s)
- Danielle M Maatouk
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.,Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA
| | - Anirudh Natarajan
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Yoichiro Shibata
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Uwe Ohler
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA.,Max Delbruck Center for Molecular Medicine, Berlin 13125, Germany
| | - Blanche Capel
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
78
|
Transcriptome analysis of the potential roles of FOXL2 in chicken pre-hierarchical and pre-ovulatory granulosa cells. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 21:56-66. [PMID: 28076754 DOI: 10.1016/j.cbd.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 11/20/2022]
Abstract
Forkheadbox L2 (FOXL2) is a transcription factor involved in mammalian ovarian development, especially in granulosa cell differentiation. However, this factor's function in mature chicken ovary is unclear. To explore the function of FOXL2 in chicken granulosa cells, we performed RNA-seq to compare the transcriptomes of pre-hierarchical (phGCs) and pre-ovulatory granulosa cells (poGCs) by FOXL2 overexpression. We observed that focal adhesion might be one of the key pathways activated during the differentiation of granulosa cells, and FOXL2 might be involved in follicle selection by regulating the expression of cytokines and the concentration of cyclic adenosine monophosphate (cAMP). Interestingly, we observed that FOXL2 played different roles in phGCs and poGCs, which might contribute to homeostasis in the chicken follicle by inducing differentiation of granulosa cells in pre-hierarchal follicles and preventing premature ovulation in pre-ovulatory follicles. Taken together, the results of our study establish a framework for understanding the potential functions of FOXL2 in the chicken granulosa cell.
Collapse
|
79
|
Gonen N, Quinn A, O’Neill HC, Koopman P, Lovell-Badge R. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone. PLoS Genet 2017; 13:e1006520. [PMID: 28045957 PMCID: PMC5207396 DOI: 10.1371/journal.pgen.1006520] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/02/2016] [Indexed: 01/18/2023] Open
Abstract
During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES), which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Francis Crick Institute, Midland Road, London, United Kingdom
| | - Alexander Quinn
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Helen C. O’Neill
- The Francis Crick Institute, Midland Road, London, United Kingdom
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
80
|
Celik O, Aygun BK, Celik N, Aydin S, Haberal ET, Sahin L, Yavuz Y, Celik S. Great migration: epigenetic reprogramming and germ cell-oocyte metamorphosis determine individual ovarian reserve. Horm Mol Biol Clin Investig 2016; 25:45-63. [PMID: 26677904 DOI: 10.1515/hmbci-2015-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/30/2015] [Indexed: 11/15/2022]
Abstract
Emigration is defined as a synchronized movement of germ cells between the yolk sack and genital ridges. The miraculous migration of germ cells resembles the remigration of salmon traveling from one habitat to other. This migration of germ cells is indispensible for the development of new generations. It is not, however, clear why germ cells differentiate during migration but not at the place of origin. In order to escape harmful somatic signals which might disturb the proper establishment of germ cells forced germ cell migration may be necessary. Another reason may be to benefit from the opportunities of new habitats. Therefore, emigration may have powerful effects on the population dynamics of the immigrant germ cells. While some of these cells do reach their target, some others die or reach to wrong targets. Only germ cell precursors with genetically, and structurally powerful can reach their target. Likewise, epigenetic reprogramming in both migratory and post-migratory germ cells is essential for the establishment of totipotency. During this journey some germ cells may sacrifice themselves for the goodness of the others. The number and quality of germ cells reaching the genital ridge may vary depending on the problems encountered during migration. If the aim in germ cell specification is to provide an optimal ovarian reserve for the continuity of the generation, then this cascade of events cannot be only accomplished at the same level for every one but also are manifested by several outcomes. This is significant evidence supporting the possibility of unique individual ovarian reserve.
Collapse
|
81
|
Fang X, Gao Y, Li Q. SMAD3 Activation: A Converging Point of Dysregulated TGF-Beta Superfamily Signaling and Genetic Aberrations in Granulosa Cell Tumor Development? Biol Reprod 2016; 95:105. [PMID: 27683263 PMCID: PMC5178148 DOI: 10.1095/biolreprod.116.143412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/10/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022] Open
Abstract
Ovarian granulosa cell tumors (GCTs) are rare gynecologic tumors in women. Due to the rarity and limited research efforts invested, the etiology of GCTs remains poorly defined. A landmark study has discovered the mutation of forkhead box L2 (FOXL2) as a genetic hallmark of adult GCTs in the human. However, our understanding of the role of cell signaling in GCT development is far from complete. Increasing lines of evidence highlight the importance of TGF-beta (TGFB) superfamily signaling in the pathogenesis of GCTs. This review draws on findings using genetically modified mouse models and human patient specimens and cell lines to reveal SMAD3 activation as a potentially key converging point of dysregulated TGFB superfamily signaling and genetic aberrations in GCT development. It is anticipated that deciphering the role of TGFB superfamily signaling cascades in ovarian tumorigenesis will help develop new therapeutic approaches for GCTs by targeting core signaling elements essential for tumor initiation, growth, and progression.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
82
|
Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals. Sex Dev 2016; 10:167-184. [PMID: 27649556 DOI: 10.1159/000448667] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
In mammals, sex determination is a process through which the gonad is committed to differentiate into a testis or an ovary. This process relies on a delicate balance between genetic pathways that promote one fate and inhibit the other. Once the gonad is committed to the female pathway, ovarian differentiation begins and, depending on the species, is completed during gestation or shortly after birth. During this step, granulosa cell precursors, steroidogenic cells, and primordial germ cells start to express female-specific markers in a sex-dimorphic manner. The germ cells then arrest at prophase I of meiosis and, together with somatic cells, assemble into functional structures. This organization gives the ovary its definitive morphology and functionality during folliculogenesis. Until now, 2 main genetic cascades have been shown to be involved in female sex differentiation. The first is driven by FOXL2, a transcription factor that also plays a crucial role in folliculogenesis and ovarian fate maintenance in adults. The other operates through the WNT/CTNNB1 canonical pathway and is regulated primarily by R-spondin1. Here, we discuss the roles of FOXL2 and RSPO1/WNT/ CTNNB1 during ovarian development and homeostasis in different models, such as humans, goats, and rodents.
Collapse
Affiliation(s)
- Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | | | |
Collapse
|
83
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
84
|
Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bobe J, Postlethwait JH, Pailhoux E, Schartl M, Herpin A, Guiguen Y. Foxl2 and Its Relatives Are Evolutionary Conserved Players in Gonadal Sex Differentiation. Sex Dev 2016; 10:111-29. [PMID: 27441599 DOI: 10.1159/000447611] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Foxl2 is a member of the large family of Forkhead Box (Fox) domain transcription factors. It emerged during the last 15 years as a key player in ovarian differentiation and oogenesis in vertebrates and especially mammals. This review focuses on Foxl2 genes in light of recent findings on their evolution, expression, and implication in sex differentiation in animals in general. Homologs of Foxl2 and its paralog Foxl3 are found in all metazoans, but their gene evolution is complex, with multiple gains and losses following successive whole genome duplication events in vertebrates. This review aims to decipher the evolutionary forces that drove Foxl2/3 gene specialization through sub- and neo-functionalization during evolution. Expression data in metazoans suggests that Foxl2/3 progressively acquired a role in both somatic and germ cell gonad differentiation and that a certain degree of sub-functionalization occurred after its duplication in vertebrates. This generated a scenario where Foxl2 is predominantly expressed in ovarian somatic cells and Foxl3 in male germ cells. To support this hypothesis, we provide original results showing that in the pea aphid (insects) foxl2/3 is predominantly expressed in sexual females and showing that in bovine ovaries FOXL2 is specifically expressed in granulosa cells. Overall, current results suggest that Foxl2 and Foxl3 are evolutionarily conserved players involved in somatic and germinal differentiation of gonadal sex.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Xu Y, Li X, Wang H, Xie P, Yan X, Bai Y, Zhang T. Hypermethylation of CDH13, DKK3 and FOXL2 promoters and the expression of EZH2 in ovary granulosa cell tumors. Mol Med Rep 2016; 14:2739-45. [DOI: 10.3892/mmr.2016.5521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
|
86
|
Sánchez L, Chaouiya C. Primary sex determination of placental mammals: a modelling study uncovers dynamical developmental constraints in the formation of Sertoli and granulosa cells. BMC SYSTEMS BIOLOGY 2016; 10:37. [PMID: 27229461 PMCID: PMC4880855 DOI: 10.1186/s12918-016-0282-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/12/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules. RESULTS Relying on a comprehensive revision of the literature, we define a logical model that integrates the current knowledge of the regulatory network controlling this developmental process. Our analysis indicates the necessity for some genes to operate at distinct functional thresholds and for specific developmental conditions to ensure the reproducibility of the sexual pathways followed by bi-potential gonads developing into either testes or ovaries. Our model thus allows studying the dynamics of wild type and mutant XX and XY gonads. Furthermore, the model analysis reveals that the gonad sexual fate results from the operation of two sub-networks associated respectively with an initiation and a maintenance phases. At the core of the process is the resolution of two connected feedback loops: the mutual inhibition of Sox9 and ß-catenin at the initiation phase, which in turn affects the mutual inhibition between Dmrt1 and Foxl2, at the maintenance phase. Three developmental signals related to the temporal activity of those sub-networks are required: a signal that determines Sry activation, marking the beginning of the initiation phase, and two further signals that define the transition from the initiation to the maintenance phases, by inhibiting the Wnt4 signalling pathway on the one hand, and by activating Foxl2 on the other hand. CONCLUSIONS Our model reproduces a wide range of experimental data reported for the development of wild type and mutant gonads. It also provides a formal support to crucial aspects of the gonad sexual development and predicts gonadal phenotypes for mutations not tested yet.
Collapse
Affiliation(s)
- Lucas Sánchez
- Dpto. Biología Celular y Molecular, Centro de Investigaciones Biológicas (C. S. I. C.), c/Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| | - Claudine Chaouiya
- Instituto Gulbenkian de Ciência - IGC, Rua da Quinta Grande, 6, P-2780-156, Oeiras, Portugal
| |
Collapse
|
87
|
Chen Y, Xia Y, Shao C, Han L, Chen X, Yu M, Sha Z. Discovery and identification of candidate sex-related genes based on transcriptome sequencing of Russian sturgeon (Acipenser gueldenstaedtii) gonads. Physiol Genomics 2016; 48:464-76. [PMID: 27199458 DOI: 10.1152/physiolgenomics.00113.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/22/2016] [Indexed: 11/22/2022] Open
Abstract
As the Russian sturgeon (Acipenser gueldenstaedtii) is an important food and is the main source of caviar, it is necessary to discover the genes associated with its sex differentiation. However, the complicated life and maturity cycles of the Russian sturgeon restrict the accurate identification of sex in early development. To generate a first look at specific sex-related genes, we sequenced the transcriptome of gonads in different development stages (1, 2, and 5 yr old stages) with next-generation RNA sequencing. We generated >60 million raw reads, and the filtered reads were assembled into 263,341 contigs, which produced 38,505 unigenes. Genes involved in signal transduction mechanisms were the most abundant, suggesting that development of sturgeon gonads is under control of signal transduction mechanisms. Differentially expressed gene analysis suggests that more genes for protein synthesis, cytochrome c oxidase subunits, and ribosomal proteins were expressed in female gonads than in male. Meanwhile, male gonads expressed more transposable element transposase, reverse transcriptase, and transposase-related genes than female. In total, 342, 782, and 7,845 genes were detected in intersex, male, and female transcriptomes, respectively. The female gonad expressed more genes than the male gonad, and more genes were involved in female gonadal development. Genes (sox9, foxl2) are differentially expressed in different sexes and may be important sex-related genes in Russian sturgeon. Sox9 genes are responsible for the development of male gonads and foxl2 for female gonads.
Collapse
Affiliation(s)
- Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Aoshanwei Town, Jimo, Qingdao, China; and
| | - Yongtao Xia
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Changwei Shao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lei Han
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Xuejie Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Aoshanwei Town, Jimo, Qingdao, China; and
| | - Mengjun Yu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Aoshanwei Town, Jimo, Qingdao, China; and
| | - Zhenxia Sha
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Aoshanwei Town, Jimo, Qingdao, China; and
| |
Collapse
|
88
|
Gustin SE, Hogg K, Stringer JM, Rastetter RH, Pelosi E, Miles DC, Sinclair AH, Wilhelm D, Western PS. WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Dev Biol 2016; 412:250-60. [DOI: 10.1016/j.ydbio.2016.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/06/2023]
|
89
|
Abstract
Current knowledge on gonadal development and sex determination is the product of many decades of research involving a variety of scientific methods from different biological disciplines such as histology, genetics, biochemistry, and molecular biology. The earliest embryological investigations, followed by the invention of microscopy and staining methods, were based on histological examinations. The most robust development of histological staining techniques occurred in the second half of the nineteenth century and resulted in structural descriptions of gonadogenesis. These first studies on gonadal development were conducted on domesticated animals; however, currently the mouse is the most extensively studied species. The next key point in the study of gonadogenesis was the advancement of methods allowing for the in vitro culture of fetal gonads. For instance, this led to the description of the origin of cell lines forming the gonads. Protein detection using antibodies and immunolabeling methods and the use of reporter genes were also invaluable for developmental studies, enabling the visualization of the formation of gonadal structure. Recently, genetic and molecular biology techniques, especially gene expression analysis, have revolutionized studies on gonadogenesis and have provided insight into the molecular mechanisms that govern this process. The successive invention of new methods is reflected in the progress of research on gonadal development.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
90
|
Yu M, Liu W, Wang J, Qin J, Wang Y, Wang Y. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20234-20244. [PMID: 26304810 DOI: 10.1007/s11356-015-5245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with a relatively higher exposure, the present study provided preliminary molecular insights into the sexual disorder induced by antiestrogens and compounds that interrupted estrogen signaling by other modes of action.
Collapse
Affiliation(s)
- Mingxi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China.
| | - Junwen Qin
- Department of Developmental and Regenerative Biology, Key Laboratory for Regenerative Medicine (MOE), Jinan University, No. 601 West Huangpu Road, 510632, Guangzhou, Guangdong, China
| | - Yongan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China
| | - Yu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, Liaoning, China
| |
Collapse
|
91
|
Wang DD, Zhang GR, Wei KJ, Ji W, Gardner JPA, Yang RB, Chen KC. Molecular identification and expression of the Foxl2 gene during gonadal sex differentiation in northern snakehead Channa argus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1419-1433. [PMID: 26159319 DOI: 10.1007/s10695-015-0096-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Channa argus is one of the most commercially important fish species in China. Studies show that males of C. argus grow faster than females at the same age. In order to explore the sex differentiation mechanism of C. argus, we isolated the full length of the sex-related gene Foxl2 cDNA and analysed its expression patterns during gonadal sex differentiation. Alignment of known Foxl2 amino acid sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. Quantitative RT-PCR revealed that Foxl2 is predominantly expressed in brain, pituitary, gill and ovary, with its highest level in ovary but low levels in testis and other tissues, reflecting a potential role for Foxl2 in the brain-pituitary-gonad axis in C. argus. Our ontogenetic stage data showed that C. argus Foxl2 expression was significantly upregulated from 1 to 11 days posthatching (dph) and that the initiation of expression preceded the first anatomical ovarian differentiation (27 dph), suggesting that Foxl2 might play a potential role in early gonadal sex differentiation in C. argus. In addition, the Foxl2 protein was primarily located in granulosa cells surrounding the oocytes of mature C. argus, implying that Foxl2 may have a basic function in granulosa cell differentiation and the maintenance of oocytes.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Jonathan P A Gardner
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Rui-Bin Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Kun-Ci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, People's Republic of China
| |
Collapse
|
92
|
Kaneko H, Ijiri S, Kobayashi T, Izumi H, Kuramochi Y, Wang DS, Mizuno S, Nagahama Y. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol Cell Endocrinol 2015; 415:87-99. [PMID: 26265450 DOI: 10.1016/j.mce.2015.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
Abstract
The Nile tilapia, Oreochromis niloticus, is a gonochoristic teleost fish with an XX/XY genetic system and is an excellent model for gonadal sex differentiation. In the present study, we screened novel genes that were expressed predominantly in either XY or XX undifferentiated gonads during the critical period for differentiation of gonads into ovaries or testes using microarray screening. We focused on one of the isolated 12 candidate genes, #9475, which was an ortholog of gsdf (gonadal soma-derived factor), a member of the transforming growth factor-beta superfamily. #9475/gsdf showed sexual dimorphism in expression in XY gonads before any other testis differentiation-related genes identified in this species thus far. We also overexpressed the #9475/gsdf gene in XX tilapia, and XX tilapia bearing the #9475/gsdf gene showed normal testis development, which suggests that #9475/gsdf plays an important role in male determination and/or differentiation in tilapia.
Collapse
Affiliation(s)
- Hiroyo Kaneko
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
| | - Shigeho Ijiri
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan; Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Tohru Kobayashi
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Hikari Izumi
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Yuki Kuramochi
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - De-Shou Wang
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
| | - Shouta Mizuno
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan; South Ehime Fisheries Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
93
|
Understanding sex determination in the mouse: genetics, epigenetics and the story of mutual antagonisms. J Genet 2015; 94:585-90. [DOI: 10.1007/s12041-015-0565-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
94
|
Suzuki H, Kanai-Azuma M, Kanai Y. From Sex Determination to Initial Folliculogenesis in Mammalian Ovaries: Morphogenetic Waves along the Anteroposterior and Dorsoventral Axes. Sex Dev 2015; 9:190-204. [DOI: 10.1159/000440689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
|
95
|
Bashamboo A, McElreavey K. Human sex-determination and disorders of sex-development (DSD). Semin Cell Dev Biol 2015; 45:77-83. [DOI: 10.1016/j.semcdb.2015.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 11/28/2022]
|
96
|
Koebele SV, Bimonte-Nelson HA. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it? Horm Behav 2015; 74:86-104. [PMID: 26122297 PMCID: PMC4829405 DOI: 10.1016/j.yhbeh.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 01/04/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A "brain profile," or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static--it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a "Goldilocks" phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to cyclicity, will elucidate ways to extend sensitivity and efficacy into post-menopause.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA.
| |
Collapse
|
97
|
Foxl2 of the Hong Kong catfish (Clarias fuscus): cDNA cloning, tissue distribution and changes in gene expression towards methyltestosterone, estradiol and letrozole exposure of the fries during gonadal differentiation. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0296-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
98
|
Marongiu M, Marcia L, Pelosi E, Lovicu M, Deiana M, Zhang Y, Puddu A, Loi A, Uda M, Forabosco A, Schlessinger D, Crisponi L. FOXL2 modulates cartilage, skeletal development and IGF1-dependent growth in mice. BMC DEVELOPMENTAL BIOLOGY 2015; 15:27. [PMID: 26134413 PMCID: PMC4489133 DOI: 10.1186/s12861-015-0072-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/05/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Haploinsufficiency of the FOXL2 transcription factor in humans causes Blepharophimosis/Ptosis/Epicanthus Inversus syndrome (BPES), characterized by eyelid anomalies and premature ovarian failure. Mice lacking Foxl2 recapitulate human eyelid/forehead defects and undergo female gonadal dysgenesis. We report here that mice lacking Foxl2 also show defects in postnatal growth and embryonic bone and cartilage formation. METHODS Foxl2 (-/-) male mice at different stages of development have been characterized and compared to wild type. Body length and weight were measured and growth curves were created. Skeletons were stained with alcian blue and/or alizarin red. Bone and cartilage formation was analyzed by Von Kossa staining and immunofluorescence using anti-FOXL2 and anti-SOX9 antibodies followed by confocal microscopy. Genes differentially expressed in skull vaults were evaluated by microarray analysis. Analysis of the GH/IGF1 pathway was done evaluating the expression of several hypothalamic-pituitary-bone axis markers by RT-qPCR. RESULTS Compared to wild-type, Foxl2 null mice are smaller and show skeletal abnormalities and defects in cartilage and bone mineralization, with down-regulation of the GH/IGF1 axis. Consistent with these effects, we find FOXL2 expressed in embryos at 9.5 dpc in neural tube epithelium, in head mesenchyme near the neural tube, and within the first branchial arch; then, starting at 12.5 dpc, expressed in cartilaginous tissue; and at PO and P7, in hypothalamus. CONCLUSIONS Our results support FOXL2 as a master transcription factor in a spectrum of developmental processes, including growth, cartilage and bone formation. Its action overlaps that of SOX9, though they are antagonistic in female vs male gonadal sex determination but conjoint in cartilage and skeletal development.
Collapse
Affiliation(s)
- Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, SS 554 km 4500, Monserrato, 09042, Italy.
| | - Loredana Marcia
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, SS 554 km 4500, Monserrato, 09042, Italy. .,Università degli Studi di Sassari, Sassari, Italy.
| | | | - Mario Lovicu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, SS 554 km 4500, Monserrato, 09042, Italy.
| | - Manila Deiana
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, SS 554 km 4500, Monserrato, 09042, Italy.
| | - Yonqing Zhang
- Laboratory of Genetics, NIA-IRP, NIH, Baltimore, MD, USA.
| | - Alessandro Puddu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, SS 554 km 4500, Monserrato, 09042, Italy. .,Università degli Studi di Cagliari, Cagliari, Italy.
| | - Angela Loi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, SS 554 km 4500, Monserrato, 09042, Italy.
| | - Manuela Uda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, SS 554 km 4500, Monserrato, 09042, Italy.
| | - Antonino Forabosco
- Cante di Montevecchio Association, Genomic Research Center, Fano, Italy.
| | | | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, SS 554 km 4500, Monserrato, 09042, Italy.
| |
Collapse
|
99
|
Nishimura T, Sato T, Yamamoto Y, Watakabe I, Ohkawa Y, Suyama M, Kobayashi S, Tanaka M. foxl3 is a germ cell–intrinsic factor involved in sperm-egg fate decision in medaka. Science 2015; 349:328-31. [DOI: 10.1126/science.aaa2657] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/04/2015] [Indexed: 12/17/2022]
Abstract
Sex determination is an essential step in the commitment of a germ cell to a sperm or egg. However, the intrinsic factors that determine the sexual fate of vertebrate germ cells are unknown. Here, we show that foxl3, which is expressed in germ cells but not somatic cells in the gonad, is involved in sperm-egg fate decision in medaka fish. Adult XX medaka with disrupted foxl3 developed functional sperm in the expanded germinal epithelium of a histologically functional ovary. In chimeric medaka, mutant germ cells initiated spermatogenesis in female wild-type gonad. These results indicate that a germ cell–intrinsic cue for the sperm-egg fate decision is present in medaka and that spermatogenesis can proceed in a female gonadal environment.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Fukuoka 812-8582, Japan
| | - Yasuhiro Yamamoto
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Ikuko Watakabe
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Fukuoka 812-8582, Japan
| | - Satoru Kobayashi
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
100
|
Daigle M, Roumaud P, Martin LJ. Expressions of Sox9, Sox5, and Sox13 transcription factors in mice testis during postnatal development. Mol Cell Biochem 2015; 407:209-21. [PMID: 26045173 DOI: 10.1007/s11010-015-2470-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
SRY-related box (Sox) transcription factors are conserved among vertebrate species. These proteins regulate multiple processes including sex determination and testis differentiation of the male embryo. Although members of the Sox family have been identified in pre- and postnatal Sertoli cells, they have never been characterized in adult Leydig cells. The objectives of this research were to identify expressions of Sox9, Sox5, and Sox13 in mice Leydig cell cultures and to establish their expression profiles in postnatal mice testes at different developmental stages. Methods used include Western blots and qPCR of stimulated MA-10 cell cultures and whole mice testes. Sox9, Sox5, and Sox13 proteins were detected in MA-10 cells as well as whole mouse testis. Although Sox9, Sox5, and Sox13 mRNA levels from whole mice testes tended to increase according to postnatal development, these results were not significant. Sox members were also detected in whole mice testis by Western Blot. However, Sox9, Sox5, and Sox13 protein expressions remained relatively constant during postnatal development from postnatal (P) day 60 to P365. Being newly characterized in the mouse testis, Sox13 was mainly localized by immunofluorescence within the nuclei of cells from seminiferous tubules, possibly spermatocytes and Sertoli cells. In addition, Sox9, Sox5, and Sox13 proteins were characterized in the nuclei of MA-10 Leydig cell cultures. Their expressions and transcriptional activities remained unaffected by activators of the cAMP/PKA pathway. Thus, Sox9, Sox5, and Sox13 transcription factors are expressed in postnatal testis and may regulate multiple functions such as steroidogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Mikella Daigle
- Department of Biology, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | | | | |
Collapse
|