51
|
DuVal MG, Gilbert MJH, Watson DE, Zerulla TC, Tierney KB, Allison WT. Growth differentiation factor 6 as a putative risk factor in neuromuscular degeneration. PLoS One 2014; 9:e89183. [PMID: 24586579 PMCID: PMC3938462 DOI: 10.1371/journal.pone.0089183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/16/2014] [Indexed: 11/25/2022] Open
Abstract
Mutation of Glass bottom boat, the Drosophila homologue of the bone morphogenetic protein or growth/differentiation factor (BMP/GDF) family of genes in vertebrates, has been shown to disrupt development of neuromuscular junctions (NMJ). Here we tested whether this same conclusion can be broadened to vertebrate BMP/GDF genes. This analysis was also extended to consider whether such genes are required for NMJ maintenance in post-larval stages, as this would argue that BMP genes are viable candidates for analysis in progressive neuromuscular disease. Zebrafish mutants harboring homozygous null mutations in the BMP-family gene gdf6a were raised to adulthood and assessed for neuromuscular deficits. Fish lacking gdf6a exhibited decreased endurance (∼50%, p = 0.005) compared to wild type, and this deficit progressively worsened with age. These fish also presented with significantly disrupted NMJ morphology (p = 0.009), and a lower abundance of spinal motor neurons (∼50%, p<0.001) compared to wild type. Noting the similarity of these symptoms to those of Amyotrophic Lateral Sclerosis (ALS) model mice and fish, we asked if mutations in gdf6a would enhance the phenotypes observed in the latter, i.e. in zebrafish over-expressing mutant Superoxide Dismutase 1 (SOD1). Amongst younger adult fish only bigenic fish harboring both the SOD1 transgene and gdf6a mutations, but not siblings with other combinations of these gene modifications, displayed significantly reduced endurance (75%, p<0.05) and strength/power (75%, p<0.05), as well as disrupted NMJ morphology (p<0.001) compared to wild type siblings. Bigenic fish also had lower survival rates compared to other genotypes. Thus conclusions regarding a role for BMP ligands in effecting NMJ can be extended to vertebrates, supporting conservation of mechanisms relevant to neuromuscular degenerative diseases. These conclusions synergize with past findings to argue for further analysis of GDF6 and other BMP genes as modifier loci, potentially affecting susceptibility to ALS and perhaps a broader suite of neurodegenerative diseases.
Collapse
Affiliation(s)
- Michèle G. DuVal
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | | | - D. Ezekiel Watson
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
- Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton AB, Canada
| | - Tanja C. Zerulla
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - Keith B. Tierney
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
- Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
- * E-mail:
| |
Collapse
|
52
|
Chassaing N, Causse A, Vigouroux A, Delahaye A, Alessandri JL, Boespflug-Tanguy O, Boute-Benejean O, Dollfus H, Duban-Bedu B, Gilbert-Dussardier B, Giuliano F, Gonzales M, Holder-Espinasse M, Isidor B, Jacquemont ML, Lacombe D, Martin-Coignard D, Mathieu-Dramard M, Odent S, Picone O, Pinson L, Quelin C, Sigaudy S, Toutain A, Thauvin-Robinet C, Kaplan J, Calvas P. Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clin Genet 2013; 86:326-34. [PMID: 24033328 DOI: 10.1111/cge.12275] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/27/2022]
Abstract
Anophthalmia and microphthalmia (AM) are the most severe malformations of the eye, corresponding respectively to reduced size or absent ocular globe. Wide genetic heterogeneity has been reported and different genes have been demonstrated to be causative of syndromic and non-syndromic forms of AM. We screened seven AM genes [GDF6 (growth differentiation factor 6), FOXE3 (forkhead box E3), OTX2 (orthodenticle protein homolog 2), PAX6 (paired box 6), RAX (retina and anterior neural fold homeobox), SOX2 (SRY sex determining region Y-box 2), and VSX2 (visual system homeobox 2 gene)] in a cohort of 150 patients with isolated or syndromic AM. The causative genetic defect was identified in 21% of the patients (32/150). Point mutations were identified by direct sequencing of these genes in 25 patients (13 in SOX2, 4 in RAX, 3 in OTX2, 2 in FOXE3, 1 in VSX2, 1 in PAX6, and 1 in GDF6). In addition eight gene deletions (five SOX2, two OTX2 and one RAX) were identified using a semi-quantitative multiplex polymerase chain reaction (PCR) [quantitative multiplex PCR amplification of short fluorescent fragments (QMPSF)]. The causative genetic defect was identified in 21% of the patients. This result contributes to our knowledge of the molecular basis of AM, and will facilitate accurate genetic counselling.
Collapse
Affiliation(s)
- N Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France; Université Paul-Sabatier Toulouse III, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Characterization of a novel missense mutation in the prodomain of GDF5, which underlies brachydactyly type C and mild Grebe type chondrodysplasia in a large Pakistani family. Hum Genet 2013; 132:1253-64. [DOI: 10.1007/s00439-013-1330-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/16/2013] [Indexed: 11/25/2022]
|
54
|
DWORSCHAK GABRIELC, DRAAKEN MARKUS, HILGER ALINA, BORN MARK, REUTTER HEIKO, LUDWIG MICHAEL. An incompletely penetrant novel MAFB (p.Ser56Phe) variant in autosomal dominant multicentric carpotarsal osteolysis syndrome. Int J Mol Med 2013; 32:174-8. [DOI: 10.3892/ijmm.2013.1373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/16/2013] [Indexed: 11/06/2022] Open
|
55
|
Markunas CA, Soldano K, Dunlap K, Cope H, Asiimwe E, Stajich J, Enterline D, Grant G, Fuchs H, Gregory SG, Ashley-Koch AE. Stratified whole genome linkage analysis of Chiari type I malformation implicates known Klippel-Feil syndrome genes as putative disease candidates. PLoS One 2013; 8:e61521. [PMID: 23620759 PMCID: PMC3631233 DOI: 10.1371/journal.pone.0061521] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/11/2013] [Indexed: 01/08/2023] Open
Abstract
Chiari Type I Malformation (CMI) is characterized by displacement of the cerebellar tonsils below the base of the skull, resulting in significant neurologic morbidity. Although multiple lines of evidence support a genetic contribution to disease, no genes have been identified. We therefore conducted the largest whole genome linkage screen to date using 367 individuals from 66 families with at least two individuals presenting with nonsyndromic CMI with or without syringomyelia. Initial findings across all 66 families showed minimal evidence for linkage due to suspected genetic heterogeneity. In order to improve power to localize susceptibility genes, stratified linkage analyses were performed using clinical criteria to differentiate families based on etiologic factors. Families were stratified on the presence or absence of clinical features associated with connective tissue disorders (CTDs) since CMI and CTDs frequently co-occur and it has been proposed that CMI patients with CTDs represent a distinct class of patients with a different underlying disease mechanism. Stratified linkage analyses resulted in a marked increase in evidence of linkage to multiple genomic regions consistent with reduced genetic heterogeneity. Of particular interest were two regions (Chr8, Max LOD = 3.04; Chr12, Max LOD = 2.09) identified within the subset of "CTD-negative" families, both of which harbor growth differentiation factors (GDF6, GDF3) implicated in the development of Klippel-Feil syndrome (KFS). Interestingly, roughly 3-5% of CMI patients are diagnosed with KFS. In order to investigate the possibility that CMI and KFS are allelic, GDF3 and GDF6 were sequenced leading to the identification of a previously known KFS missense mutation and potential regulatory variants in GDF6. This study has demonstrated the value of reducing genetic heterogeneity by clinical stratification implicating several convincing biological candidates and further supporting the hypothesis that multiple, distinct mechanisms are responsible for CMI.
Collapse
Affiliation(s)
- Christina A. Markunas
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Karen Soldano
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kaitlyn Dunlap
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Heidi Cope
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Edgar Asiimwe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jeffrey Stajich
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Enterline
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gerald Grant
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Herbert Fuchs
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Simon G. Gregory
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Allison E. Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
56
|
Asai-Coakwell M, March L, Dai XH, Duval M, Lopez I, French CR, Famulski J, De Baere E, Francis PJ, Sundaresan P, Sauvé Y, Koenekoop RK, Berry FB, Allison WT, Waskiewicz AJ, Lehmann OJ. Contribution of growth differentiation factor 6-dependent cell survival to early-onset retinal dystrophies. Hum Mol Genet 2013; 22:1432-42. [PMID: 23307924 DOI: 10.1093/hmg/dds560] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Retinal dystrophies are predominantly caused by mutations affecting the visual phototransduction system and cilia, with few genes identified that function to maintain photoreceptor survival. We reasoned that growth factors involved with early embryonic retinal development would represent excellent candidates for such diseases. Here we show that mutations in the transforming growth factor-β (TGF-β) ligand Growth Differentiation Factor 6, which specifies the dorso-ventral retinal axis, contribute to Leber congenital amaurosis. Furthermore, deficiency of gdf6 results in photoreceptor degeneration, so demonstrating a connection between Gdf6 signaling and photoreceptor survival. In addition, in both murine and zebrafish mutant models, we observe retinal apoptosis, a characteristic feature of human retinal dystrophies. Treatment of gdf6-deficient zebrafish embryos with a novel aminopropyl carbazole, P7C3, rescued the retinal apoptosis without evidence of toxicity. These findings implicate for the first time perturbed TGF-β signaling in the genesis of retinal dystrophies, support the study of related morphogenetic genes for comparable roles in retinal disease and may offer additional therapeutic opportunities for genetically heterogeneous disorders presently only treatable with gene therapy.
Collapse
Affiliation(s)
- Mika Asai-Coakwell
- Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Solomon BD, Bear KA, Kimonis V, de Klein A, Scott DA, Shaw-Smith C, Tibboel D, Reutter H, Giampietro PF. Clinical geneticists' views of VACTERL/VATER association. Am J Med Genet A 2012; 158A:3087-100. [PMID: 23165726 PMCID: PMC3507421 DOI: 10.1002/ajmg.a.35638] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 08/02/2012] [Indexed: 01/07/2023]
Abstract
VACTERL association (sometimes termed "VATER association" depending on which component features are included) is typically defined by the presence of at least three of the following congenital malformations, which tend to statistically co-occur in affected individuals: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, and Limb abnormalities. Although the clinical criteria for VACTERL association may appear to be straightforward, there is wide variability in the way clinical geneticists define the disorder and the genetic testing strategy they use when confronted with an affected patient. In order to describe this variability and determine the most commonly used definitions and testing modalities, we present the results of survey responses by 121 clinical geneticists. We discuss the results of the survey responses, provide a literature review and commentary from a group of physicians who are currently involved in clinical and laboratory-based research on VACTERL association, and offer an algorithm for genetic testing in patients with this association.
Collapse
Affiliation(s)
- Benjamin D Solomon
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Chen D, Bashur LA, Liang B, Panattoni M, Tamai K, Pardi R, Zhou G. The transcriptional co-regulator Jab1 is crucial for chondrocyte differentiation in vivo. J Cell Sci 2012. [PMID: 23203803 DOI: 10.1242/jcs.113795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The evolutionarily conserved transcriptional cofactor Jab1 plays critical roles in cell differentiation, proliferation, and apoptosis by modulating the activity of diverse factors and regulating the output of various signaling pathways. Although Jab1 can interact with the bone morphogenetic protein (BMP) downstream effector Smad5 to repress BMP signaling in vitro, the role of Jab1 in BMP-mediated skeletogenesis in vivo is still poorly understood. As a key regulator of skeletogenesis, BMP signaling regulates the critical Ihh-Pthrp feedback loop to promote chondrocyte hypertrophy. In this study, we utilized the loxP/Cre system to delineate the specific role of Jab1 in cartilage formation. Strikingly, Jab1 chondrocyte-specific knockout Jab1(flox/flox); Col2a1-Cre (cKO) mutants exhibited neonatal lethal chondrodysplasia with severe dwarfism. In the mutant embryos, all the skeletal elements developed via endochondral ossification were extremely small with severely disorganized chondrocyte columns. Jab1 cKO chondrocytes exhibited increased apoptosis, G2 phase cell cycle arrest, and increased expression of hypertrophic chondrocyte markers Col10a1 and Runx2. Jab1 can also inhibit the transcriptional activity of Runx2, a key regulator of chondrocyte hypertrophy. Notably, our study reveals that Jab1 is likely a novel inhibitor of BMP signaling in chondrocytes in vivo. In Jab1 cKO chondrocytes, there was heightened expression of BMP signaling components including Gdf10/Bmp3b and of BMP targets during chondrocyte hypertrophy such as Ihh. Furthermore, Jab1 cKO chondrocytes exhibited an enhanced response to exogenous BMP treatment. Together, our study demonstrates that Jab1 represses chondrocyte hypertrophy in vivo, likely in part by downregulating BMP signaling and Runx2 activity.
Collapse
Affiliation(s)
- Dongxing Chen
- Department of Orthopaedics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Kruse-Bend R, Rosenthal J, Quist TS, Veien ES, Fuhrmann S, Dorsky RI, Chien CB. Extraocular ectoderm triggers dorsal retinal fate during optic vesicle evagination in zebrafish. Dev Biol 2012; 371:57-65. [PMID: 22921921 DOI: 10.1016/j.ydbio.2012.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/10/2012] [Accepted: 08/09/2012] [Indexed: 01/30/2023]
Abstract
Dorsal retinal fate is established early in eye development, via expression of spatially restricted dorsal-specific transcription factors in the optic vesicle; yet the events leading to initiation of dorsal fate are not clear. We hypothesized that induction of dorsal fate would require an extraocular signal arising from a neighboring tissue to pattern the prospective dorsal retina, however no such signal has been identified. We used the zebrafish embryo to determine the source, timing, and identity of the dorsal retina-inducing signal. Extensive cell movements occur during zebrafish optic vesicle morphogenesis, however the location of prospective dorsal cells within the early optic vesicle and their spatial relationship to early dorsal markers is currently unknown. Our mRNA expression and fate mapping analyses demonstrate that the dorsolateral optic vesicle is the earliest region to express dorsal specific markers, and cells from this domain contribute to the dorsal retinal pole at 24 hpf. We show that three bmp genes marking dorsal retina at 25 hpf are also expressed extraocularly before retinal patterning begins. We identified gdf6a as a dorsal initiation signal acting from the extraocular non-neural ectoderm during optic vesicle evagination. We find that bmp2b is involved in dorsal retina initiation, acting upstream of gdf6a. Together, this work has identified the nature and source of extraocular signals required to pattern the dorsal retina.
Collapse
Affiliation(s)
- Renee Kruse-Bend
- Department of Neurobiology and Anatomy, 20 North 1900 East, Room 401 MREB, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:401-23. [PMID: 23801490 DOI: 10.1002/wdev.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vertebral column derives from somites, which are transient paired segments of mesoderm that surround the neural tube in the early embryo. Somites are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt, and fibroblast growth factor (FGF) signaling pathways. These oscillators together with signaling gradients within the presomitic mesoderm help to set somitic boundaries and rostral-caudal polarity that are essential for the precise patterning of the vertebral column. Disruption of this mechanism has been identified as the cause of severe segmentation defects of the vertebrae in humans. These segmentation defects are part of a spectrum of spinal disorders affecting the skeletal elements and musculature of the spine, resulting in curvatures such as scoliosis, kyphosis, and lordosis. While the etiology of most disorders with spinal curvatures is still unknown, genetic and developmental studies of somitogenesis and patterning of the axial skeleton and musculature are yielding insights into the causes of these diseases.
Collapse
|
61
|
Morris AC. The genetics of ocular disorders: insights from the zebrafish. ACTA ACUST UNITED AC 2012; 93:215-28. [PMID: 21932431 DOI: 10.1002/bdrc.20211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proper formation of the vertebrate eye requires a precisely coordinated sequence of morphogenetic events that integrate the developmental contributions of the skin ectoderm, neuroectoderm, and head mesenchyme. Disruptions in this process result in ocular malformations or retinal degeneration and can cause significant visual impairment. The zebrafish is an excellent vertebrate model for the study of eye development and disease due to the transparency of the embryo, its ex utero development, and its amenability to forward genetic screens. This review will present an overview of the genetic methodologies utilized in the zebrafish, a description of several zebrafish models of congenital ocular diseases, and a discussion of the utility of the zebrafish for assessing the pathogenicity of candidate disease alleles.
Collapse
Affiliation(s)
- Ann C Morris
- Department of Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
62
|
ABCB6 mutations cause ocular coloboma. Am J Hum Genet 2012; 90:40-8. [PMID: 22226084 DOI: 10.1016/j.ajhg.2011.11.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/17/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022] Open
Abstract
Ocular coloboma is a developmental defect of the eye and is due to abnormal or incomplete closure of the optic fissure. This disorder displays genetic and clinical heterogeneity. Using a positional cloning approach, we identified a mutation in the ATP-binding cassette (ABC) transporter ABCB6 in a Chinese family affected by autosomal-dominant coloboma. The Leu811Val mutation was identified in seven affected members of the family and was absent in six unaffected members from three generations. A LOD score of 3.2 at θ = 0 was calculated for the mutation identified in this family. Sequence analysis was performed on the ABCB6 exons from 116 sporadic cases of microphthalmia with coloboma (MAC), isolated coloboma, and aniridia, and an additional mutation (A57T) was identified in three patients with MAC. These two mutations were not present in the ethnically matched control populations. Immunostaining of transiently transfected, Myc-tagged ABCB6 in retinal pigment epithelial (RPE) cells showed that it localized to the endoplasmic reticulum and Golgi apparatus of RPE cells. RT-PCR of ABCB6 mRNA in human cell lines and tissue indicated that ABCB6 is expressed in the retinae and RPE cells. Using zebrafish, we show that abcb6 is expressed in the eye and CNS. Morpholino knockdown of abcb6 in zebrafish produces a phenotype characteristic of coloboma and replicates the clinical phenotype observed in our index cases. The knockdown phenotype can be corrected with coinjection of the wild-type, but not mutant, ABCB6 mRNA, suggesting that the phenotypes observed in zebrafish are due to insufficient abcb6 function. Our results demonstrate that ABCB6 mutations cause ocular coloboma.
Collapse
|
63
|
Slavotinek AM. Eye development genes and known syndromes. Mol Genet Metab 2011; 104:448-56. [PMID: 22005280 PMCID: PMC3224152 DOI: 10.1016/j.ymgme.2011.09.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 11/22/2022]
Abstract
Anophthalmia and microphthalmia (A/M) are significant eye defects because they can have profound effects on visual acuity. A/M is associated with non-ocular abnormalities in an estimated 33-95% of cases and around 25% of patients have an underlying genetic syndrome that is diagnosable. Syndrome recognition is important for targeted molecular genetic testing, prognosis and for counseling regarding recurrence risks. This review provides clinical and molecular information for several of the commonest syndromes associated with A/M: Anophthalmia-Esophageal-Genital syndrome, caused by SOX2 mutations, Anophthalmia and pituitary abnormalities caused by OTX2 mutations, Matthew-Wood syndrome caused by STRA6 mutations, oculofaciocardiodental syndrome and Lenz microphthalmia caused by BCOR mutations, Microphthalmia Linear Skin pigmentation syndrome caused by HCCS mutations, Anophthalmia, pituitary abnormalities, polysyndactyly caused by BMP4 mutations and Waardenburg anophthalmia caused by mutations in SMOC1. In addition, we briefly discuss the ocular and extraocular phenotypes associated with several other important eye developmental genes, including GDF6, VSX2, RAX, SHH, SIX6 and PAX6.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143-0748, USA.
| |
Collapse
|
64
|
Harrison CA, Al-Musawi SL, Walton KL. Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily ligands. Growth Factors 2011; 29:174-86. [PMID: 21864080 DOI: 10.3109/08977194.2011.608666] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All transforming growth factor-β (TGF-β) ligands are synthesised as precursor molecules consisting of a signal peptide, an N-terminal prodomain and a C-terminal mature domain. During synthesis, prodomains interact non-covalently with mature domains, maintaining the molecules in a conformation competent for dimerisation. Dimeric precursors are cleaved by proprotein convertases, and TGF-β ligands are secreted from the cell non-covalently associated with their prodomains. Extracellularly, prodomains localise TGF-β ligands within the vicinity of their target cells via interactions with extracellular matrix proteins, including fibrillin and perlecan. For some family members (TGF-β1, TGF-β2, TGF-β3, myostatin, GDF-11 and BMP-10), prodomains bind with high enough affinity to suppress biological activity. The subsequent mechanism of activation of these latent TGF-β ligands varies according to cell type and context, but all activating mechanisms directly target prodomains. Thus, prodomains control many aspects of TGF-β superfamily biology, and alterations in prodomain function are often associated with disease.
Collapse
Affiliation(s)
- Craig A Harrison
- Prince Henry's Institute of Medical Research, Clayton, VIC 3168, Australia.
| | | | | |
Collapse
|
65
|
Rudnisky CJ, Damji KF, Tennant MT, MacDonald IM. Re: Analysis of the Publication Volume of Canadian Ophthalmology Departments from 2005 to 2009: A Systematic Review of the Literature. Can J Ophthalmol 2011; 46:440-1; author reply 441. [DOI: 10.1016/j.jcjo.2011.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 2011; 121:233-51. [PMID: 21615335 DOI: 10.1042/cs20110086] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The TGF-β (transforming growth factor-β) system signals via protein kinase receptors and Smad mediators to regulate a plethora of biological processes, including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. In addition, alterations of specific components of the TGF-β signalling pathway may contribute to a broad range of pathologies such as cancer, cardiovascular pathology, fibrosis and congenital diseases. The knowledge about the mechanisms involved in TGF-β signal transduction has allowed a better understanding of the disease pathogenicity as well as the identification of several molecular targets with great potential in therapeutic interventions.
Collapse
|
67
|
Gestri G, Osborne RJ, Wyatt AW, Gerrelli D, Gribble S, Stewart H, Fryer A, Bunyan DJ, Prescott K, Collin JRO, Fitzgerald T, Robinson D, Carter NP, Wilson SW, Ragge NK. Reduced TFAP2A function causes variable optic fissure closure and retinal defects and sensitizes eye development to mutations in other morphogenetic regulators. Hum Genet 2011; 126:791-803. [PMID: 19685247 DOI: 10.1007/s00439-009-0730-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/31/2009] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factor encoding TFAP2A gene underlie branchio-oculo-facial syndrome (BOFS), a rare dominant disorder characterized by distinctive craniofacial, ocular, ectodermal and renal anomalies. To elucidate the range of ocular phenotypes caused by mutations in TFAP2A, we took three approaches. First, we screened a cohort of 37 highly selected individuals with severe ocular anomalies plus variable defects associated with BOFS for mutations or deletions in TFAP2A. We identified one individual with a de novo TFAP2A four amino acid deletion, a second individual with two non-synonymous variations in an alternative splice isoform TFAP2A2, and a sibling-pair with a paternally inherited whole gene deletion with variable phenotypic expression. Second, we determined that TFAP2A is expressed in the lens, neural retina, nasal process, and epithelial lining of the oral cavity and palatal shelves of human and mouse embryos--sites consistent with the phenotype observed in patients with BOFS. Third, we used zebrafish to examine how partial abrogation of the fish ortholog of TFAP2A affects the penetrance and expressivity of ocular phenotypes due to mutations in genes encoding bmp4 or tcf7l1a. In both cases, we observed synthetic, enhanced ocular phenotypes including coloboma and anophthalmia when tfap2a is knocked down in embryos with bmp4 or tcf7l1a mutations. These results reveal that mutations in TFAP2A are associated with a wide range of eye phenotypes and that hypomorphic tfap2a mutations can increase the risk of developmental defects arising from mutations at other loci.
Collapse
Affiliation(s)
- Gaia Gestri
- Department of Cell and Developmental Biology, UCL, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
It is well known that Bone morphogenetic proteins (BMPs) induce bone formation and that some BMPs, including BMP2 and BMP7, are clinically used in orthopedics. Signaling by BMPs plays an important role in a variety of cell-types in bone such as osteoblasts, chondrocytes, and osteoclasts. It is recently reported using an osteoblast-targeted deletion of BMP signaling that BMP signaling in osteoblasts physiologically induces bone resorption by enhancing osteoclastogenesis via the RANKL-OPG pathway and reduces bone mass. In this review, the physiological function of BMP signaling in bone will be focused, and the current outcomes from mouse genetic studies will be discuss.
Collapse
Affiliation(s)
- Nobuhiro Kamiya
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX, USA.
| | | |
Collapse
|
69
|
Byrnes AM, Racacho L, Nikkel SM, Xiao F, MacDonald H, Underhill TM, Bulman DE. Mutations in GDF5 presenting as semidominant brachydactyly A1. Hum Mutat 2011; 31:1155-62. [PMID: 20683927 DOI: 10.1002/humu.21338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brachydactyly A1 (BDA1) is an autosomal dominant disorder characterized by shortness of all middle phalanges of the hands and toes, shortness of the proximal phalanges of the first digit, and short stature. Missense mutations in the Indian Hedgehog gene (IHH) are known to cause BDA1, and a second locus has been mapped to chromosome 5p. In a consanguineous French Canadian kindred with BDA1, both IHH and the 5p locus were excluded. Microsatellites flanking GDF5 on chromosome 20q were found to cosegregate with the disease. Sequencing of the GDF5 coding region revealed that a mildly affected individual in the family was heterozygous, and that all of the severely affected individuals were homozygous for a novel missense c.1195C>T mutation that predicts a p.Arg399Cys substitution at a highly conserved amino acid. Functional analysis demonstrated that although the p.Arg399Cys mutant is able to stimulate chondrogenesis, it is much less effective than wild-type GDF5. This data confirms genetic heterogeneity in BDA1, demonstrates that mutations upstream of IHH can result in BDA1, and shows that BDA1 can result from semidominant mutations in GDF5.
Collapse
Affiliation(s)
- Ashley M Byrnes
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, and University of Ottawa Centre for Neuromuscular Disease, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
70
|
Abouzeid H, Boisset G, Favez T, Youssef M, Marzouk I, Shakankiry N, Bayoumi N, Descombes P, Agosti C, Munier FL, Schorderet DF. Mutations in the SPARC-related modular calcium-binding protein 1 gene, SMOC1, cause waardenburg anophthalmia syndrome. Am J Hum Genet 2011; 88:92-8. [PMID: 21194680 DOI: 10.1016/j.ajhg.2010.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 11/19/2022] Open
Abstract
Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.
Collapse
Affiliation(s)
- Hana Abouzeid
- IRO - Institute for Research in Ophthalmology, 1950 Sion, Switzerland; Jules-Gonin Eye Hospital, University of Lausanne, 1003 Lausanne
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
den Hollander AI, Biyanwila J, Kovach P, Bardakjian T, Traboulsi EI, Ragge NK, Schneider A, Malicki J. Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies. BMC Genet 2010; 11:102. [PMID: 21070663 PMCID: PMC2992036 DOI: 10.1186/1471-2156-11-102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background The size of the vertebrate eye and the retina is likely to be controlled at several stages of embryogenesis by mechanisms that affect cell cycle length as well as cell survival. A mutation in the zebrafish out of sight (out) locus results in a particularly severe reduction of eye size. The goal of this study is to characterize the outm233 mutant, and to determine whether mutations in the out gene cause microphthalmia in humans. Results In this study, we show that the severe reduction of eye size in the outm233 mutant is caused by a mutation in the zebrafish gdf6a gene. Despite the small eye size, the overall retinal architecture appears largely intact, and immunohistochemical studies confirm that all major cell types are present in outm233 retinae. Subtle cell fate and patterning changes are present predominantly in amacrine interneurons. Acridine orange and TUNEL staining reveal that the levels of apoptosis are abnormally high in outm233 mutant eyes during early neurogenesis. Mutation analysis of the GDF6 gene in 200 patients with microphthalmia revealed amino acid substitutions in four of them. In two patients additional skeletal defects were observed. Conclusions This study confirms the essential role of GDF6 in the regulation of vertebrate eye size. The reduced eye size in the zebrafish outm233 mutant is likely to be caused by a transient wave of apoptosis at the onset of neurogenesis. Amino acid substitutions in GDF6 were detected in 4 (2%) of 200 patients with microphthalmia. In two patients different skeletal defects were also observed, suggesting pleitrophic effects of GDF6 variants. Parents carrying these variants are asymptomatic, suggesting that GDF6 sequence alterations are likely to contribute to the phenotype, but are not the sole cause of the disease. Variable expressivity and penetrance suggest a complex non-Mendelian inheritance pattern where other genetic factors may influence the outcome of the phenotype.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Division of Craniofacial and Molecular Genetics, Tufts University, 136 Harrison Ave, Boston MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Wyatt AW, Osborne RJ, Stewart H, Ragge NK. Bone morphogenetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Hum Mutat 2010; 31:781-7. [PMID: 20506283 DOI: 10.1002/humu.21280] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bone morphogenetic protein (BMP) signaling regulates a range of cellular processes and plays an important role in the specification and patterning of the early embryo. However, due to the functional redundancy of BMP ligands and receptors in tissues where they are coexpressed, relatively little is known about the role of individual BMP ligands in human disease. Here we report heterozygous variations in BMP7, including a frameshift, missense, and Kozak sequence mutation, in individuals with developmental eye anomalies and a range of systemic abnormalities, including developmental delay, deafness, scoliosis, and cleft palate. We determined that BMP7 is expressed in the developing eye, brain, and ear in human embryos in a manner consistent with the phenotype seen in our mutation cases. These data establish BMP7 as an important gene in human eye development, and suggest that BMP7 should be considered during clinical evaluation of individuals with developmental eye anomalies.
Collapse
Affiliation(s)
- Alexander W Wyatt
- Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | | | | | | |
Collapse
|
73
|
Gongal PA, French CR, Waskiewicz AJ. Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma. Biochim Biophys Acta Mol Basis Dis 2010; 1812:390-401. [PMID: 20850526 DOI: 10.1016/j.bbadis.2010.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 09/08/2010] [Indexed: 01/10/2023]
Abstract
In this review, we highlight recent literature concerning the signaling mechanisms underlying the development of two neural birth defects, holoprosencephaly and coloboma. Holoprosencephaly, the most common forebrain defect, occurs when the cerebral hemispheres fail to separate and is typically associated with mispatterning of embryonic midline tissue. Coloboma results when the choroid fissure in the eye fails to close. It is clear that Sonic hedgehog (Shh) signaling regulates both forebrain and eye development, with defects in Shh, or components of the Shh signaling cascade leading to the generation of both birth defects. In addition, other intercellular signaling pathways are known factors in the incidence of holoprosencephaly and coloboma. This review will outline recent advances in our understanding of forebrain and eye embryonic pattern formation, with a focus on zebrafish studies of Shh and retinoic acid pathways. Given the clear overlap in the mechanisms that generate both diseases, we propose that holoprosencephaly and coloboma can represent mild and severe aspects of single phenotypic spectrum resulting from aberrant forebrain development. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.
Collapse
Affiliation(s)
- Patricia A Gongal
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
74
|
Erickson T, French CR, Waskiewicz AJ. Meis1 specifies positional information in the retina and tectum to organize the zebrafish visual system. Neural Dev 2010; 5:22. [PMID: 20809932 PMCID: PMC2939508 DOI: 10.1186/1749-8104-5-22] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 09/01/2010] [Indexed: 01/17/2023] Open
Abstract
Background During visual system development, multiple signalling pathways cooperate to specify axial polarity within the retina and optic tectum. This information is required for the topographic mapping of retinal ganglion cell axons on the tectum. Meis1 is a TALE-class homeodomain transcription factor known to specify anterior-posterior identity in the hindbrain, but its role in visual system patterning has not been investigated. Results meis1 is expressed in both the presumptive retina and tectum. An analysis of retinal patterning reveals that Meis1 is required to correctly specify both dorsal-ventral and nasal-temporal identity in the zebrafish retina. Meis1-knockdown results in a loss of smad1 expression and an upregulation in follistatin expression, thereby causing lower levels of Bmp signalling and a partial ventralization of the retina. Additionally, Meis1-deficient embryos exhibit ectopic Fgf signalling in the developing retina and a corresponding loss of temporal identity. Meis1 also positively regulates ephrin gene expression in the tectum. Consistent with these patterning phenotypes, a knockdown of Meis1 ultimately results in retinotectal mapping defects. Conclusions In this work we describe a novel role for Meis1 in regulating Bmp signalling and in specifying temporal identity in the retina. By patterning both the retina and tectum, Meis1 plays an important role in establishing the retinotectal map and organizing the visual system.
Collapse
Affiliation(s)
- Timothy Erickson
- Department of Biological Sciences, University of Alberta, CW405, Biological Sciences Bldg, Edmonton T6G 2E9, Canada
| | | | | |
Collapse
|
75
|
Baldridge D, Shchelochkov O, Kelley, B, Lee B. Signaling Pathways in Human Skeletal Dysplasias. Annu Rev Genomics Hum Genet 2010; 11:189-217. [DOI: 10.1146/annurev-genom-082908-150158] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dustin Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
| | - Oleg Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Department of Pediatrics, Division of Genetics, University of Iowa, Iowa City, Iowa 52242
| | - Brian Kelley,
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Howard Hughes Medical Institute, Houston, Texas 77009
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; , , ,
- Howard Hughes Medical Institute, Houston, Texas 77009
| |
Collapse
|
76
|
Reed NP, Mortlock DP. Identification of a distant cis-regulatory element controlling pharyngeal arch-specific expression of zebrafish gdf6a/radar. Dev Dyn 2010; 239:1047-60. [PMID: 20201106 DOI: 10.1002/dvdy.22251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skeletal formation is an essential and intricately regulated part of vertebrate development. Humans and mice deficient in growth and differentiation factor 6 (Gdf6) have numerous skeletal abnormalities, including joint fusions and cartilage reductions. The expression of Gdf6 is dynamic and in part regulated by distant evolutionarily conserved cis-regulatory elements. radar/gdf6a is a zebrafish ortholog of Gdf6 and has an essential role in embryonic patterning. Here, we show that radar is transcribed in the cells surrounding and between the developing cartilages of the ventral pharyngeal arches, similar to mouse Gdf6. A 312 bp evolutionarily conserved region (ECR5), 122 kilobases downstream, drives expression in a pharyngeal arch-specific manner similar to endogenous radar/gdf6a. Deletion analysis identified a 78 bp region within ECR5 that is essential for transgene activity. This work illustrates that radar is regulated in the pharyngeal arches by a distant conserved element and suggests radar has similar functions in skeletal development in fish and mammals.
Collapse
Affiliation(s)
- Nykolaus P Reed
- Department of Microbial Pathogenesis and Immune Response, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, USA
| | | |
Collapse
|
77
|
Abstract
Much evidence suggests that "developmental regulator" genes, like those encoding transcription factors and signaling molecules, are typically controlled by many modular, tissue-specific cis-regulatory elements that function during embryogenesis. These elements are often far from gene coding regions and promoters. Bone morphogenetic proteins (BMPs) drive many processes in development relating to organogenesis and differentiation. Four BMP family members, Bmp2, Bmp4, Bmp5, and Gdf6, are now known to be under the control of distant cis-regulatory elements. BMPs are thus firmly placed in the category of genes prone to this phenomenon. The analysis of distant BMP regulatory elements has provided insight into the many pleiotropic effects of BMP genes, and underscores the biological importance of non-coding genomic DNA elements.
Collapse
|
78
|
Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, Abitbol M, Fleisch VC, Corbett N, Allison WT, Drummond G, Walter MA, Underhill TM, Waskiewicz AJ, Lehmann OJ. Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 2009; 19:287-98. [PMID: 19864492 DOI: 10.1093/hmg/ddp496] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ocular mal-development results in heterogeneous and frequently visually disabling phenotypes that include coloboma and microphthalmia. Due to the contribution of bone morphogenetic proteins to such processes, the function of the paralogue Growth Differentiation Factor 3 was investigated. Multiple mis-sense variants were identified in patients with ocular and/or skeletal (Klippel-Feil) anomalies including one individual with heterozygous alterations in GDF3 and GDF6. These variants were characterized, individually and in combination, through integrated biochemical and zebrafish model organism analyses, demonstrating appreciable effects with western blot analyses, luciferase based reporter assays and antisense morpholino inhibition. Notably, inhibition of the zebrafish co-orthologue of GDF3 accurately recapitulates patient phenotypes. By demonstrating the pleiotropic effects of GDF3 mutation, these results extend the contribution of perturbed BMP signaling to human disease and potentially implicate multi-allelic inheritance of BMP variants in developmental disorders.
Collapse
Affiliation(s)
- Ming Ye
- Department of Ophthalmology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
French CR, Erickson T, French DV, Pilgrim DB, Waskiewicz AJ. Gdf6a is required for the initiation of dorsal-ventral retinal patterning and lens development. Dev Biol 2009; 333:37-47. [PMID: 19545559 DOI: 10.1016/j.ydbio.2009.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 01/27/2023]
Abstract
Dorsal-ventral patterning of the vertebrate retina is essential for accurate topographic mapping of retinal ganglion cell (RGC) axons to visual processing centers. Bone morphogenetic protein (Bmp) growth factors regulate dorsal retinal identity in vertebrate models, but the developmental timing of this signaling and the relative roles of individual Bmps remain unclear. In this study, we investigate the functions of two zebrafish Bmps, Gdf6a and Bmp4, during initiation of dorsal retinal identity, and subsequently during lens differentiation. Knockdown of zebrafish Gdf6a blocks initiation of retinal Smad phosphorylation and dorsal marker expression, while knockdown of Bmp4 produces no discernable retinal phenotype. These data, combined with analyses of embryos ectopically expressing Bmps, demonstrate that Gdf6a is necessary and sufficient for initiation of dorsal retinal identity. We note a profound expansion of ventral retinal identity in gdf6a morphants, demonstrating that dorsal BMP signaling antagonizes ventral marker expression. Finally, we demonstrate a role for Gdf6a in non-neural ocular tissues. Knockdown of Gdf6a leads to defects in lens-specific gene expression, and when combined with Bmp signaling inhibitors, disrupts lens fiber cell differentiation. Taken together, these data indicate that Gdf6a initiates dorsal retinal patterning independent of Bmp4, and regulates lens differentiation.
Collapse
Affiliation(s)
- Curtis R French
- Department of Biological Sciences, University of Alberta, CW405, Biological Sciences Bldg., Edmonton T6G 2E9, Canada
| | | | | | | | | |
Collapse
|