51
|
Gao Z, Zhang G, Yu J, Lu XL, Li JT, Zhang JM. Superovulation does not affect the endocrine activity nor increase susceptibility to carcinogenesis of uterine and mammary glands of female offspring in mice. J Assist Reprod Genet 2014; 31:1243-9. [PMID: 25106936 DOI: 10.1007/s10815-014-0295-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/07/2014] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To evaluate the dual effects of superovulation on the endocrine activity and susceptibility to carcinogenesis of uterine and mammary glands of female offspring in mice METHOD The mice were superovaluted. The relative uterine weight, ERα protein expression, and endocrine activity of female offspring (F1 generation and F2 generation) were measured. Furthermore, proliferative lesion of uterine and mammary glands of female offspring (F1 generation and F2 generation) was assessed by histopathologic examinations. RESULTS There were no significant differences in relative uterine weight, ERα protein expression, incidence of proliferative lesion in mammary glands, and incidence of atypical hyperplasia, adenocarcinoma, and squamous metaplasia in uterine among the offspring (F1 generation and F2 generation) in each group. Likewise, there were no significant intergroup differences in the serum levels of sex related hormones. CONCLUSIONS No significant alterations were found in the endocrine activity and susceptibility to carcinogenesis of uterine and mammary glands of female offspring in mice produced by superovaluted oocytes compared with those of naturally conceived offspring.
Collapse
Affiliation(s)
- Zong Gao
- Department of Neurosurgery, Affiliated hospital of Shandong Tranditional Chinese Medicine University, Jinan, China
| | | | | | | | | | | |
Collapse
|
52
|
Pongsuthirak P, Songveeratham S, Vutyavanich T. Comparison of blastocyst and Sage media for in vitro maturation of human immature oocytes. Reprod Sci 2014; 22:343-6. [PMID: 25015901 DOI: 10.1177/1933719114542027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In vitro maturation (IVM) of human oocytes is an attractive alternative to conventional assisted reproductive technology (ART) treatment, as it involves no or minimal ovarian stimulation. Currently, commercialized media specifically designed for IVM are often used. These media are expensive, have limited shelf life, and must be ordered in advance. If standard culture media can be used in place of the specialized IVM media, it would simplify management and make IVM more feasible and more widely employed in ART centers around the world, especially in developing countries where resources are scarce. This study was, therefore, conducted to test the hypothesis that blastocyst medium was as good as commercial IVM medium to support maturation and developmental competence of human immature oocytes as previously shown in the mouse system. Immature oocytes were obtained by needle aspiration from 89 pregnant women during cesarean deliveries between April 2012 and February 2013. Sibling oocytes were allocated to Sage IVM media (512 oocytes) or blastocyst medium (520 oocytes) and assessed for maturation 36 hours later. Mature oocytes were inseminated by intracytoplasmic sperm injection and cultured up to 144 hours. There was no difference in maturation rate (65.0% vs 68.7%; P = .218) or fertilization rate (66.9% vs 66.4%; P = .872) of oocytes matured in vitro in both media. There was also no difference in the formation of good-quality blastocysts (46.6% vs 45.9%; P = .889) in the 2 groups. Further study should be done to ascertain implantation and pregnancy potential of these embryos.
Collapse
Affiliation(s)
- Pallop Pongsuthirak
- Department of Obstetrics and Gynecology, Buddhachinaraj Hospital Medical School, Phitsanulok, Thailand
| | - Sorramon Songveeratham
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Teraporn Vutyavanich
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
53
|
Tarín JJ, García-Pérez MA, Cano A. Assisted reproductive technology results: Why are live-birth percentages so low? Mol Reprod Dev 2014; 81:568-83. [DOI: 10.1002/mrd.22340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/03/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Juan J. Tarín
- Department of Functional Biology and Physical Anthropology; Faculty of Biological Sciences; University of Valencia; Burjassot Valencia Spain
| | - Miguel A. García-Pérez
- Research Unit-INCLIVA; Hospital Clínico de Valencia; Burjassot Valencia Spain
- Department of Genetics; Faculty of Biological Sciences; University of Valencia; Burjassot Valencia Spain
| | - Antonio Cano
- Department of Pediatrics; Obstetrics and Gynecology; Faculty of Medicine; University of Valencia; Valencia Spain
- Service of Obstetrics and Gynecology; University Hospital Dr. Peset; Valencia Spain
| |
Collapse
|
54
|
Kuhtz J, Romero S, De Vos M, Smitz J, Haaf T, Anckaert E. Human in vitro oocyte maturation is not associated with increased imprinting error rates at LIT1, SNRPN, PEG3 and GTL2. Hum Reprod 2014; 29:1995-2005. [PMID: 24963167 DOI: 10.1093/humrep/deu155] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does in vitro maturation (IVM) of cumulus-enclosed germinal vesicle (GV) stage oocytes retrieved from small antral follicles in minimally stimulated cycles without an ovulatory hCG dose induce imprinting errors at LIT1, SNRPN, PEG3 and GTL2 in human oocytes? SUMMARY ANSWER There is no significant increase in imprinting mutations at LIT1, SNRPN, PEG3 and GTL2 after IVM of cumulus-enclosed GV oocytes from small antral follicles in minimally stimulated cycles without hCG priming. WHAT IS KNOWN ALREADY Animal models have generally demonstrated correct methylation imprint establishment for in vitro grown and matured oocytes. For human IVM, well-designed studies allowing conclusions on imprint establishment are currently not available. STUDY DESIGN, SIZE, DURATION Immature oocyte-cumulus complexes from 2 to 9 mm follicles were retrieved in polycystic ovary syndrome (PCOS) subjects in minimally stimulated cycles without hCG priming and matured in vitro. In vivo grown oocytes were retrieved after conventional ovarian stimulation for IVF/ICSI or after ovulation induction. Imprinting error rates at three maternally methylated (LIT1, SNRPN and PEG3) and one paternally methylated (GTL2) imprinted genes were compared in 71 in vitro and 38 in vivo matured oocytes. PARTICIPANTS/MATERIALS, SETTING, METHODS The limiting dilution bisulfite sequencing technique was applied, allowing increased sensitivity based on multiplex PCR for the imprinted genes and the inclusion of non-imprinted marker genes for cumulus cell DNA contamination. MAIN RESULTS AND THE ROLE OF CHANCE In vitro as well as in vivo matured oocytes showed only a few abnormal alleles, consistent with epimutations. The abnormalities were more frequent in immature than in mature oocytes for both groups, although no significant difference was reached. There was no statistically significant increase in imprinting errors in IVM oocytes. LIMITATIONS, REASONS FOR CAUTION This single cell methylation analysis was restricted to a number of well-selected imprinted genes. Genome-wide methylation analysis of single human oocytes is currently not possible. WIDER IMPLICATIONS OF THE FINDINGS IVM is a patient-friendly alternative to conventional ovarian stimulation in PCOS patients and is associated with reduced gonadotrophin costs and avoidance of OHSS. The results of this study show for the first time that optimized human IVM procedures have no significant effects on the establishment of maternal DNA methylation patterns at LIT1, SNRPN, PEG3 and GTL2. STUDY FUNDING/COMPETING INTERESTS This study was supported by research funds from Agentschap voor Innovatie door Wetenschap en Technologie (IWT-TBM 110680), Wetenschappelijk Fonds Willy Gepts (WFWG 2011) and German Research Foundation (HA 1374/12-2). There are no competing interests.
Collapse
Affiliation(s)
- J Kuhtz
- Institute of Human Genetics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - S Romero
- Follicle Biology Laboratory and Center for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - M De Vos
- Follicle Biology Laboratory and Center for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - J Smitz
- Follicle Biology Laboratory and Center for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - T Haaf
- Institute of Human Genetics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - E Anckaert
- Follicle Biology Laboratory and Center for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| |
Collapse
|
55
|
Zhang Y, Shao L, Xu Y, Cui Y, Liu J, Chian RC. Effect of anti-Mullerian hormone in culture medium on quality of mouse oocytes matured in vitro. PLoS One 2014; 9:e99393. [PMID: 24932501 PMCID: PMC4059625 DOI: 10.1371/journal.pone.0099393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/14/2014] [Indexed: 01/21/2023] Open
Abstract
Anti-mullerian hormone (AMH) is thought to reflect the growth of follicles and the ovarian function. However, the role of AMH in culture medium during in vitro maturation (IVM) on oocyte quality and subsequent development potential is unclear. The objective of this study is to investigate the effect of recombinant human AMH (rh-AMH) supplemented into IVM medium on oocyte quality. Cumulus-oocyte complexes (COCs) were obtained from ICR mice and cultured in vitro with the different concentrations (0–1,000 ng/ml) of rh-AMH. Following 16–18 h of culture, quantitative PCR and ELISA were performed to analyze GDF9 and BMP15 mRNA expression and protein production from the oocytes. Subsequently, in vitro fertilization (IVF) and early embryonic development were employed to further evaluate the quality of in vitro matured oocytes. The results showed that AMH was only expressed in cumulus cells but not in the oocytes. However, AMH most specific receptor, AMHR-II, was expressed in both oocytes and cumulus cells. The levels of GDF9 and BMP15 expression and blastocyst formation rate were significantly increased (p<0.05) when the IVM medium was supplemented with 100 ng/ml of rh-AMH. With AdH1-SiRNA/AMH for knocking down of AMH expression during IVM significantly reduced (p<0.05) the levels of GDF9 and BMP15 expression and blastocysts formation rate. These results suggest that AHM improves oocytes quality by up-regulating GDF9 and BMP15 expressions during IVM.
Collapse
Affiliation(s)
- Yihui Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Li Shao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yixin Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yigui Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- * E-mail: ;
| | - Ri-Cheng Chian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Division of Research, Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
- * E-mail: ;
| |
Collapse
|
56
|
Chang EM, Song HS, Lee DR, Lee WS, Yoon TK. In vitro maturation of human oocytes: Its role in infertility treatment and new possibilities. Clin Exp Reprod Med 2014; 41:41-6. [PMID: 25045627 PMCID: PMC4102689 DOI: 10.5653/cerm.2014.41.2.41] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 01/25/2023] Open
Abstract
IVM refers to the maturation of immature oocytes in culture after their recovery from small antral follicles at the stage prior to selection and dominance. IVM requires little or no FSH in vivo and has been proposed as an alternative to conventional IVF, since it reduces the primary adverse effects caused by controlled ovarian stimulation, including the ovarian hyperstimulation syndrome. Moreover, IVM is a promising option for cases for which no standard protocol is suitable, such as FSH resistance, contraindications for ovarian stimulatory drugs, and the need for urgent fertility preservation. Recently, IVM has been used in women with regular cycles and normal ovaries. However, the pregnancy rate following IVM is suboptimal compared with that of conventional IVF, indicating that further studies to optimize the protocol and the culture conditions are warranted.
Collapse
Affiliation(s)
- Eun Mi Chang
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Hang Seok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Tae Ki Yoon
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
57
|
In vitro maturation of oocytes is not a risk factor for adult metabolic syndrome of mouse offspring. Eur J Obstet Gynecol Reprod Biol 2014; 174:96-9. [DOI: 10.1016/j.ejogrb.2013.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/23/2013] [Accepted: 12/06/2013] [Indexed: 11/17/2022]
|
58
|
Wei ZT, Lu XL, Zhang G, Yu J, Li H, Jia GH, Li JT, Zhang JM. The long-term effects of superovulation on fertility and sexual behavior of male offspring in mice. J Assist Reprod Genet 2014; 31:555-60. [PMID: 24510149 DOI: 10.1007/s10815-014-0191-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/03/2014] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate the long-term effects of superovulation on fertility and sexual behavior of male offspring in mice. METHOD The mice were superovaluted, and the fertility of male offspring (F1 generation and F2 generation) were evaluated in terms of the percentage of plugs and pregnancies, serum testosterone concentrations, and sperm motility. Furthermore, the sexual behavior of male offspring and sex ratio (F1 generation and F2 generation) were measured. RESULTS There were no significant differences in the percentage of plug and pregnancies, serum testosterone concentrations, sperm motilities and sex ratio between the offspring in naturally conceived group and superovulation groups (both F1 generation and F2 generation). The sperm hyperactivity at 90 min after incubation of F1 generation in naturally conceived group were higher than that of F1 generation in superovulation group, but the differences did not reach statistical significance. The offspring produced by superovaluted oocytes (both F1 generation and F2 generation) did not exhibit significant alterations in sexual behavior. CONCLUSIONS No significant alterations were found in fertility and sexual behavior of male offspring in mice produced by superovaluted oocytes compared with those of naturally conceived offspring.
Collapse
Affiliation(s)
- Zeng-Tao Wei
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, China, 250000
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Betts DH, Bain NT, Madan P. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos. PLoS One 2014; 9:e86978. [PMID: 24475205 PMCID: PMC3901717 DOI: 10.1371/journal.pone.0086978] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.
Collapse
Affiliation(s)
- Dean H. Betts
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| | - Nathan T. Bain
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
60
|
Anckaert E, Sánchez F, Billooye K, Smitz J. Dynamics of imprinted DNA methylation and gene transcription for imprinting establishment in mouse oocytes in relation to culture duration variability. Biol Reprod 2013; 89:130. [PMID: 24108304 DOI: 10.1095/biolreprod.113.111641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Several studies have linked assisted reproductive technologies to aberrant imprinting. We previously showed that 12-day in vitro follicle culture supports normal imprinting establishment in mouse oocytes. The aim of the present study was to assess whether shortened in vitro follicle growth (8 days of culture compared with 12 days, as a model for human in vitro maturation) or preovulatory intrafollicular oocyte "aging" in culture (14 days of culture) leads to imprinting mutations in oocytes. Limiting-dilution bisulphite sequencing showed that shortened in vitro follicle growth (8 days) does not induce oocyte epimutations at the imprinted Snrpn and Mest genes. In contrast, extension of oocyte residence in large unluteinized follicles in vitro was associated with a low level (1 of 54 alleles) of epimutations for Mest but not for Snrpn. The latter condition may occur during controlled ovarian stimulation where the oocyte growth phase may be extended for several days. Furthermore, we studied the dynamics during follicle culture of transcript levels for genes previously shown to be essential for imprinting establishment in oocytes, including Dnmt3a, Dnmt3L, and Zfp57. Oocyte total mRNA levels during in vitro follicle culture showed the timely shutdown in transcription at the antral follicle stage, and total mRNA levels were comparable to those of in vivo grown equine chorionic gonadotropin-stimulated oocytes.
Collapse
Affiliation(s)
- Ellen Anckaert
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
61
|
Programmes and prospects for ovotechnology. Reprod Biomed Online 2013; 27:702-9. [DOI: 10.1016/j.rbmo.2013.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022]
|
62
|
Abstract
In women, ∼10% of cancers occur in those <45 years old. Chemotherapy, radiotherapy and bone marrow transplantation can cure >90% of girls and young women with diseases that require such treatments. However, these treatments can result in premature ovarian failure, depending on the follicular reserve, the age of the patient and the type and dose of drugs used. This article discusses the different fertility preservation strategies: medical therapy before chemotherapy; ovarian transposition; embryo cryopreservation; oocyte vitrification; and ovarian tissue cryopreservation. The indications, results and risks of these options are discussed. Whether medical therapy should be used to protect the gonads during chemotherapy remains a source of debate. Fertility preservation needs to be completed before chemotherapy and/or irradiation is started and might take 2-3 weeks with established techniques such as embryo or oocyte cryopreservation. Further studies are needed in patients with cancer to confirm the excellent outcomes obtained in patients without cancer or in egg donation programmes. For prepubertal girls or cases where immediate therapy is required, cryopreservation of ovarian tissue is the only available option. Finally, possible future approaches are reviewed, including in vitro maturation of nonantral follicles, the artificial ovary, oogonial stem cells and drugs to prevent follicle loss.
Collapse
Affiliation(s)
- Jacques Donnez
- Société de Recherche pour l'Infertilité, Avenue Grandchamp, 143, B-1150 Brussels, Belgium
| | | |
Collapse
|
63
|
Ortega-Hrepich C, Stoop D, Guzmán L, Van Landuyt L, Tournaye H, Smitz J, De Vos M. A “freeze-all” embryo strategy after in vitro maturation: a novel approach in women with polycystic ovary syndrome? Fertil Steril 2013; 100:1002-7. [DOI: 10.1016/j.fertnstert.2013.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/25/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022]
|
64
|
Lucas E. Epigenetic effects on the embryo as a result of periconceptional environment and assisted reproduction technology. Reprod Biomed Online 2013; 27:477-85. [PMID: 23933034 DOI: 10.1016/j.rbmo.2013.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/17/2013] [Accepted: 06/06/2013] [Indexed: 01/04/2023]
Abstract
The early embryonic environment has been shown to be remarkably influential on the developing organism, despite the relative brevity of this developmental stage. The cells of the zygote and cleavage-stage embryo hold the potential to form all cell lineages of the embryonic and extra-embryonic tissues, with gradual fate restriction occurring from the time of compaction and blastocyst formation. As such, these cells carry with them the potential to influence the phenotype of all successive cell types as the organism grows, differentiates and ages. The implication is, therefore, that sublethal adverse conditions which alter the developmental trajectory of these cells may have long-term implications for the health and development of the resulting offspring. One confirmed mechanism for the translation of environmental cues to phenotypic outcome is epigenetic modification of the genome to modulate chromatin packaging and gene expression in a cell- and lineage-specific manner. The influence of the periconceptional milieu on the epigenetic profile of the developing embryo has become a popular research focus in the quest to understand the effects of environment, nutrition and assisted reproduction technology on human development and health.
Collapse
Affiliation(s)
- Emma Lucas
- Division of Reproductive Health, Warwick Medical School, The University of Warwick, Coventry CV2 2DX, United Kingdom.
| |
Collapse
|
65
|
Dunlop CE, Telfer EE, Anderson RA. Ovarian stem cells--potential roles in infertility treatment and fertility preservation. Maturitas 2013; 76:279-83. [PMID: 23693139 DOI: 10.1016/j.maturitas.2013.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 12/22/2022]
Abstract
One of the principal beliefs in reproductive biology is that women have a finite ovarian reserve, which is fixed from the time they are born. This theory has been questioned recently by the discovery of ovarian stem cells which are purported to have the ability to form new oocytes under specific conditions post-natally. Almost a decade after their discovery, ovarian, or oogonial, stem cells (OSCs) have been isolated in mice and humans but remain the subject of much debate. Studies in mice have shown that these cells can be cultured to a mature oocyte stage in vitro, and when injected into germ-cell depleted ovary they can form follicles and have resulted in the birth of healthy offspring. There are few data from human OSCs but this finding would open the door to novel fertility preservation strategies for women with both age-related and premature ovarian insufficiency (POI). As the number of girls and young women surviving cancer increases worldwide, POI secondary to gonadotoxic treatments, such as chemotherapy, is becoming more common. The ideal fertility preservation approach would prevent delays in commencing life-saving treatment and avoid transplanting malignant cells back into a woman after treatment: OSCs may offer one route to achieving this. This review summarises our current understanding of OSCs and discusses their potential clinical application in infertility treatment and fertility preservation.
Collapse
Affiliation(s)
- Cheryl E Dunlop
- MRC Centre for Reproductive Health, University of Edinburgh, Queens Medical Research Institute, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
66
|
Telfer EE, Zelinski MB. Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril 2013; 99:1523-33. [PMID: 23635350 PMCID: PMC3929501 DOI: 10.1016/j.fertnstert.2013.03.043] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 01/21/2023]
Abstract
The removal and cryostorage of ovarian cortical biopsies is now offered as a fertility preservation option for young women. The only available option to restore fertility using this tissue is by transplantation, which may not be possible for all patients. The full potential of this tissue to restore fertility could be achieved by the development of in vitro systems that support oocyte development from the most immature stages to maturation. The techniques of in vitro growth (IVG) combined with in vitro maturation (IVM) are being developed with human tissue, but comparing different systems has been difficult because of the scarcity of tissue so nonhuman primates are being used as model systems. There are many challenges to developing a complete culture system that would support human oocyte development, and this review outlines the approaches being taken by several groups using tissue from women and nonhuman primate models to support each of the stages of oocyte development.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
67
|
Delotte J, Thibault E, Fatfouta I, Saias-Magnan J, Pibarot M, Courbière B. Préservation de la fertilité féminine en oncologie. ONCOLOGIE 2013. [DOI: 10.1007/s10269-013-2284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
68
|
Choi JK, He X. In vitro maturation of cumulus-oocyte complexes for efficient isolation of oocytes from outbred deer mice. PLoS One 2013; 8:e56158. [PMID: 23457518 PMCID: PMC3573082 DOI: 10.1371/journal.pone.0056158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The outbred (as with humans) deer mice have been a useful animal model of research on human behavior and biology including that of the reproductive system. One of the major challenges in using this species is that the yield of oocyte isolation via superovulation is dismal according to the literature to date less than ∼5 oocytes per animal can be obtained so far. OBJECTIVE The goal of this study is to improve the yield of oocyte isolation from outbred deer mice close to that of most laboratory mice by in vitro maturation (IVM) of cumulus-oocyte complexes (COCs). METHODS Oocytes were isolated by both superovulation and IVM. For the latter, COCs were obtained by follicular puncture of antral follicles in both the surface and inner cortical layers of ovaries. Immature oocytes in the COCs were then cultured in vitro under optimized conditions to obtain metaphase II (MII) oocytes. Quality of the oocytes from IVM and superovulation was tested by in vitro fertilization (IVF) and embryo development. RESULTS Less than ∼5 oocytes per animal could be isolated by superovulation only. However, we successfully obtained 20.3±2.9 oocytes per animal by IVM (16.0±2.5) and superovulation (4.3±1.3) in this study. Moreover, IVF and embryo development studies suggest that IVM oocytes have even better quality than that from superovulation The latter never developed to beyond 2-cell stage as usual while 9% of the former developed to 4-cells. SIGNIFICANCE We have successfully established the protocol for isolating oocytes from deer mice with high yield by IVM. Moreover, this is the first ever success to develop in vitro fertilized deer mice oocytes beyond the 2-cell stage in vitro. Therefore, this study is of significance to the use of deer mice for reproductive biology research.
Collapse
Affiliation(s)
- Jung Kyu Choi
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|