51
|
Oliva A, Scorzolini L, Castaldi D, Gizzi F, De Angelis M, Storto M, D'Abramo A, Aloj F, Mascellino M, Mastroianni C, Vullo V. Double-carbapenem regimen, alone or in combination with colistin, in the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae (CR-Kp). J Infect 2017; 74:103-106. [DOI: 10.1016/j.jinf.2016.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
52
|
Zhang X, Guo F, Shao H, Zheng X. Clinical translation of polymyxin-based combination therapy: Facts, challenges and future opportunities. J Infect 2016; 74:118-130. [PMID: 27998750 DOI: 10.1016/j.jinf.2016.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
The emergence and spread of multidrug resistant Gram-negative bacteria has led to a resurgence in the clinical use of polymyxin antibiotics. However, the prevalence of polymyxin resistance is on the rise at an alarming rate, motivating the idea of combination therapy to sustain the revival of these "old" antibiotics. Although ample evidence in favor of combination therapy has emerged, it seems impracticable and confusing to find a promising combination from the diverse reports or gain adequate information on the efficacy and safety profile. With a stagnating discovery pipeline of novel antimicrobials, there is a clear need to fill the knowledge gaps in translating these basic research data to beneficial clinical practice. In this review, we examined the factors and ambiguities that stand as major hurdles in bringing polymyxin combination therapy to bedside care, highlighting the importance and urgency of incorporating translational research insights into areas of difficulty. We also discussed future research priorities that are essential to gather the necessary evidence and insights for promoting the best possible use of polymyxins in combination therapy.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
53
|
Synergistic combinations of polymyxins. Int J Antimicrob Agents 2016; 48:607-613. [PMID: 27865626 DOI: 10.1016/j.ijantimicag.2016.09.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/15/2016] [Accepted: 09/15/2016] [Indexed: 01/19/2023]
Abstract
The proliferation of extensively drug-resistant Gram-negative pathogens has necessitated the therapeutic use of colistin and polymyxin B. However, treatment failures with polymyxin monotherapies and the emergence of polymyxin resistance have catalysed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and -resistant organisms. This mini-review examines recent (2011-2016) in vitro and in vivo studies that have attempted to identify synergistic polymyxin combinations against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Clinical evidence for the use of combination regimens is also discussed.
Collapse
|
54
|
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents 2016; 48:583-591. [PMID: 27524102 DOI: 10.1016/j.ijantimicag.2016.06.023] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Colistin, also referred to as polymyxin E, is an effective antibiotic against most multidrug-resistant Gram-negative bacteria and is currently used as a last-line drug for treating severe bacterial infections. Colistin resistance has increased gradually for the last few years, and knowledge of its multifaceted mechanisms is expanding. This includes the newly discovered plasmid-mediated colistin resistance gene mcr-1, which has been detected in over 20 countries within 3 months of its first report. We previously reported all of the known mechanisms of polymyxin resistance in our first review in 2014, but an update seems necessary in 2016, considering the significant recent discoveries that have been made in this domain. This review provides an update about what is already known, what is new, and some unresolved questions with respect to colistin resistance.
Collapse
Affiliation(s)
- Sophie Baron
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| | - Abiola Olumuyiwa Olaitan
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
55
|
|
56
|
Bergen PJ, Bulman ZP, Landersdorfer CB, Smith N, Lenhard JR, Bulitta JB, Nation RL, Li J, Tsuji BT. Optimizing Polymyxin Combinations Against Resistant Gram-Negative Bacteria. Infect Dis Ther 2015; 4:391-415. [PMID: 26645096 PMCID: PMC4675771 DOI: 10.1007/s40121-015-0093-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
Polymyxin combination therapy is increasingly used clinically. However, systematic investigations of such combinations are a relatively recent phenomenon. The emerging pharmacodynamic (PD) and pharmacokinetic (PK) data on CMS/colistin and polymyxin B suggest that caution is required with monotherapy. Given this situation, polymyxin combination therapy has been suggested as a possible way to increase bacterial killing and reduce the development of resistance. Considerable in vitro data have been generated in support of this view, particularly recent studies utilizing dynamic models. However, most existing animal data are of poor quality with major shortcomings in study design, while clinical data are generally limited to retrospective analysis and small, low-power, prospective studies. This article provides an overview of clinical and preclinical investigations of CMS/colistin and polymyxin B combination therapy.
Collapse
Affiliation(s)
- Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Melbourne, Australia
| | - Zackery P Bulman
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.,Centre for Medicine Use and Safety, Monash University, Melbourne, Australia
| | - Nicholas Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Justin R Lenhard
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Jürgen B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.
| |
Collapse
|
57
|
Abstract
Polymyxin B and colistin (polymyxin E) are polypeptide antibiotics that were developed in the 1940s, but fell into disfavor due to their high toxicity rates. These two antibiotics were previously regarded to be largely equivalent, due to similarities in their chemical structure and spectrum of activity. In recent years, several pertinent differences, especially in terms of potency and disposition, have been revealed between polymyxin B and colistin. These differences are mainly attributed to the fact that polymyxin B is administered parenterally in its active form, while colistin is administered parenterally as an inactive pro-drug, colistimethate. In this review, we summarize the similarities and differences between polymyxin B and colistin. We also discuss the potential clinical implications of these findings, and provide our perspectives on how polymyxins should be employed to preserve their utility in this era of multi-drug resistance.
Collapse
Affiliation(s)
- Yiying Cai
- a 1 Department of Pharmacy, Singapore General Hospital, Outram Rd 169608, Singapore.,c 3 Department of Pharmacy, National University of Singapore, 21 Lower Kent Ridge Rd 119077, Singapore
| | - Winnie Lee
- a 1 Department of Pharmacy, Singapore General Hospital, Outram Rd 169608, Singapore
| | - Andrea L Kwa
- a 1 Department of Pharmacy, Singapore General Hospital, Outram Rd 169608, Singapore.,b 2 Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Rd 169857, Singapore.,c 3 Department of Pharmacy, National University of Singapore, 21 Lower Kent Ridge Rd 119077, Singapore
| |
Collapse
|
58
|
Bassetti M, Pecori D, Sibani M, Corcione S, De Rosa FG. Epidemiology and Treatment of MDR Enterobacteriaceae. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015. [DOI: 10.1007/s40506-015-0065-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
59
|
Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother 2015; 59:2909-13. [PMID: 25691646 DOI: 10.1128/aac.04763-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/11/2015] [Indexed: 11/20/2022] Open
Abstract
Colistin is one of the antibiotics of last resort for the treatment of carbapenem-resistant Klebsiella pneumoniae infection. This study showed that capsular type K64 (50%) and ST11 (53.9%) are the prevalent capsular and sequence types in the colistin-resistant strains in Taiwan. The interruption of transcripts (38.5%) and amino acid mutation (15.4%) in mgrB are the major mechanisms contributing to colistin resistance. In addition, novel single amino acid changes in MgrB (Stop48Tyr) and PhoQ (Leu26Pro) were observed to contribute to colistin resistance.
Collapse
|
60
|
Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, van Duin D, Kaye K, Jacobs MR, Bonomo RA, Adams MD. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother 2015; 59:536-43. [PMID: 25385117 PMCID: PMC4291396 DOI: 10.1128/aac.04037-14] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/02/2014] [Indexed: 12/28/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae has resulted in a more frequent reliance on treatment using colistin. However, resistance to colistin (Col(r)) is increasingly reported from clinical settings. The genetic mechanisms that lead to Col(r) in K. pneumoniae are not fully characterized. Using a combination of genome sequencing and transcriptional profiling by RNA sequencing (RNA-Seq) analysis, distinct genetic mechanisms were found among nine Col(r) clinical isolates. Col(r) was related to mutations in three different genes in K. pneumoniae strains, with distinct impacts on gene expression. Upregulation of the pmrH operon encoding 4-amino-4-deoxy-L-arabinose (Ara4N) modification of lipid A was found in all Col(r) strains. Alteration of the mgrB gene was observed in six strains. One strain had a mutation in phoQ. Common among these seven strains was elevated expression of phoPQ and unaltered expression of pmrCAB, which is involved in phosphoethanolamine addition to lipopolysaccharide (LPS). In two strains, separate mutations were found in a previously uncharacterized histidine kinase gene that is part of a two-component regulatory system (TCRS) now designated crrAB. In these strains, expression of pmrCAB, crrAB, and an adjacent glycosyltransferase gene, but not that of phoPQ, was elevated. Complementation with the wild-type allele restored colistin susceptibility in both strains. The crrAB genes are present in most K. pneumoniae genomes, but not in Escherichia coli. Additional upregulated genes in all strains include those involved in cation transport and maintenance of membrane integrity. Because the crrAB genes are present in only some strains, Col(r) mechanisms may be dependent on the genetic background.
Collapse
Affiliation(s)
| | - Yo Suzuki
- J. Craig Venter Institute, La Jolla, California, USA
| | | | - Steven H Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Susan D Rudin
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina
| | - Keith Kaye
- Detroit Medical Center, Detroit, Michigan, USA
| | - Michael R Jacobs
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark D Adams
- J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
61
|
Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 2014; 5:643. [PMID: 25505462 PMCID: PMC4244539 DOI: 10.3389/fmicb.2014.00643] [Citation(s) in RCA: 968] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/07/2014] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université Marseille, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, CNRS-IRD-UM2, CC065, Université Montpellier 2 Montpellier, France
| | - Jean-Marc Rolain
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université Marseille, France
| |
Collapse
|
62
|
Maraki S, Papadakis IS. Evaluation of antimicrobial combinations against colistin-resistant carbapenemase (KPC)-producing Klebsiella pneumoniae. J Chemother 2014; 27:348-52. [PMID: 25248023 DOI: 10.1179/1973947814y.0000000218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- S Maraki
- Department of Bacteriology, Parasitology, Zoonoses and Geographical Medicine, University Hospital of Heraklion , Crete, Greece
| | | |
Collapse
|
63
|
Koerner-Rettberg C, Ballmann M. Colistimethate sodium for the treatment of chronic pulmonary infection in cystic fibrosis: an evidence-based review of its place in therapy. CORE EVIDENCE 2014; 9:99-112. [PMID: 25278817 PMCID: PMC4178503 DOI: 10.2147/ce.s64980] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic bacterial respiratory-tract infections are a major driving force in the pathogenesis of cystic fibrosis (CF) lung disease and promote chronic lung-function decline, destruction, and progression to respiratory failure at a premature age. Gram-negative bacteria colonizing the airways in CF are a major problem in CF therapy due to their tendency to develop a high degree of resistance to antibiotic agents over time. Pseudomonas aeruginosa is the dominating bacterial strain infecting the CF lung from early childhood on, and multiresistant strains frequently develop after years of therapy. Colistin has been used for treating pulmonary bacterial infections in CF for decades due to its very good Gram-negative activity. However, drawbacks include concerns regarding toxicity when being applied systemically, and the lack of approval for application by inhalation in the USA for many years. Other antibiotic substances for systemic use are available with good to excellent Gram-negative and anti-Pseudomonas activity, while there are only three substances approved for inhalation use in the treatment of chronic pulmonary infection with proven benefit in CF. The emergence of multiresistant strains leaving nearly no antibiotic substance as a treatment option, the limited number of antibiotics with high activity against P. aeruginosa, the concerns about increasing the risk of antibiotic resistance by continuous antibiotic therapy, the development of new drug formulations and drug-delivery devices, and, finally, the differing treatment strategies used in CF centers call for defining the place of this "old" drug, colistimethate, in today's CF therapy. This article reviews the available evidence to reflect on the place of colistimethate sodium in the therapy of chronic pulmonary infection in CF.
Collapse
Affiliation(s)
- Cordula Koerner-Rettberg
- Department of Pediatric Pneumology, University Children's Hospital of Ruhr University Bochum at St Josef-Hospital, Bochum, Germany
| | - Manfred Ballmann
- Department of Pediatric Pneumology, University Children's Hospital of Ruhr University Bochum at St Josef-Hospital, Bochum, Germany
| |
Collapse
|
64
|
Management of Intra-abdominal Infections due to Carbapenemase-Producing Organisms. Curr Infect Dis Rep 2014; 16:428. [DOI: 10.1007/s11908-014-0428-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
65
|
Choi YH. Treatment of drug resistant bacteria: new bugs, old drugs, and new therapeutic approaches. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2014. [DOI: 10.5124/jkma.2014.57.10.837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Young Hwa Choi
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|