51
|
Aliidiomarina shirensis as Possible Source of the Integron- and Plasmid-Mediated Fosfomycin Resistance Gene fosC2. Antimicrob Agents Chemother 2022; 66:e0222721. [PMID: 35041510 DOI: 10.1128/aac.02227-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In-silico analysis and cloning experiments identified a fosC2-like fosfomycin resistance gene in the chromosome of Aliidiomarina shirensis, with our data suggesting that this bacterium might be added to the list of species identified as reservoirs of fos-like genes that were subsequently acquired by other Gram-negative species. Indeed, the fosC2 gene was identified as acquired in Providencia huaxinensis and Aeromonas hydrophila isolates, with this gene being located in class 1 integron structures in the latter cases. Biochemical characterization and site-directed mutagenesis showed a higher catalytic efficiency for the intrinsic FosC2AS (from A. shirensis) than for the acquired FosC2 (from P. huaxinensis) enzyme due to a single substitution in the amino acid sequence (Gly43Glu). Notably, this study constitutes the first identification of the likely natural reservoir of a complete gene cassette (including its attC site).
Collapse
|
52
|
Kunz Coyne AJ, El Ghali A, Holger D, Rebold N, Rybak MJ. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect Dis Ther 2022; 11:661-682. [PMID: 35150435 PMCID: PMC8960490 DOI: 10.1007/s40121-022-00591-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates are frequent causes of serious nosocomial infections that may compromise the selection of antimicrobial therapy. The goal of this review is to summarize recent epidemiologic, microbiologic, and clinical data pertinent to the therapeutic management of patients with infections caused by MDR/XDR-P. aeruginosa. Historically, conventional antipseudomonal β-lactam antibiotics have been used for the empiric treatment of MDR/XDR-P. aeruginosa. Owing to the remarkable capacity of P. aeruginosa to confer resistance via multiple mechanisms, these traditional therapies are often rendered ineffective. To increase the likelihood of administering empiric antipseudomonal therapy with in vitro activity, a second agent from a different antibiotic class is often administered concomitantly with a traditional antipseudomonal β-lactam. However, combination therapy may pose an increased risk of antibiotic toxicity and secondary infection, notably, Clostridioides difficile. Multiple novel agents that demonstrate in vitro activity against MDR-P. aeruginosa (e.g., β-lactam/β-lactamase inhibitor combinations and cefiderocol) have been recently granted US Food and Drug Administration (FDA) approval and are promising additions to the antipseudomonal armamentarium. Even so, comparative clinical data pertaining to these novel agents is sparse, and concerns surrounding the scarcity of antibiotics active against refractory MDR/XDR-P. aeruginosa necessitates continued assessment of alternative therapies. This is particularly important in patients with cystic fibrosis (CF) who may be chronically colonized and suffer from recurrent infections and disease exacerbations due in part to limited efficacious antipseudomonal agents. Bacteriophages represent a promising candidate for combatting recurrent and refractory infections with their ability to target specific host bacteria and circumvent traditional mechanisms of antibiotic resistance seen in MDR/XDR-P. aeruginosa. Future goals for the management of these infections include increased comparator clinical data of novel agents to determine in what scenario certain agents may be preferred over others. Until then, appropriate treatment of these infections requires a thorough evaluation of patient- and infection-specific factors to guide empiric and definitive therapeutic decisions.
Collapse
Affiliation(s)
- Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Amer El Ghali
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Nicholas Rebold
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
53
|
Sid Ahmed MA, Khan FA, Hadi HA, Skariah S, Sultan AA, Salam A, Al Khal AL, Söderquist B, Ibrahim EB, Omrani AS, Jass J. Association of blaVIM-2, blaPDC-35, blaOXA-10, blaOXA-488 and blaVEB-9 β-Lactamase Genes with Resistance to Ceftazidime–Avibactam and Ceftolozane–Tazobactam in Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:antibiotics11020130. [PMID: 35203733 PMCID: PMC8868128 DOI: 10.3390/antibiotics11020130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Ceftazidime–avibactam and ceftolozane–tazobactam are approved for the treatment of complicated Gram-negative bacterial infections including multidrug-resistant (MDR) Pseudomonas aeruginosa. Resistance to both agents has been reported, but the underlying mechanisms have not been fully explored. This study aimed to correlate β-lactamases with phenotypic resistance to ceftazidime–avibactam and/or ceftolozane–tazobactam in MDR-P. aeruginosa from Qatar. A total of 525 MDR-P. aeruginosa isolates were collected from clinical specimens between 2014 and 2017. Identification and antimicrobial susceptibility were performed by the BD PhoenixTM system and gradient MIC test strips. Of the 75 sequenced MDR isolates, 35 (47%) were considered as having difficult-to-treat resistance, and 42 were resistant to ceftazidime–avibactam (37, 49.3%), and/or ceftolozane–tazobactam (40, 53.3%). They belonged to 12 sequence types, with ST235 being predominant (38%). Most isolates (97.6%) carried one or more β-lactamase genes, with blaOXA-488 (19%) and blaVEB-9 (45.2%) being predominant. A strong association was detected between class B β-lactamase genes and both ceftazidime–avibactam and ceftolozane–tazobactam resistance, while class A genes were associated with ceftolozane–tazobactam resistance. Co-resistance to ceftazidime–avibactam and ceftolozane–tazobactam correlated with the presence of blaVEB-9, blaPDC-35, blaVIM-2, blaOXA-10 and blaOXA-488. MDR-P. aeruginosa isolates resistant to both combination drugs were associated with class B β-lactamases (blaVIM-2) and class D β-lactamases (blaOXA-10), while ceftolozane–tazobactam resistance was associated with class A (blaVEB-9), class C (blaVPDC-35), and class D β-lactamases (blaOXA-488).
Collapse
Affiliation(s)
- Mazen A. Sid Ahmed
- Department of Laboratory Medicine and Pathology, Microbiology Division, Hamad Medical Corporation, Doha 3050, Qatar or (M.A.S.A.); (E.B.I.)
- The Life Science Centre—Biology, School of Science and Technology, Orebro University, 701 82 Örebro, Sweden;
| | - Faisal Ahmad Khan
- The Life Science Centre—Biology, School of Science and Technology, Orebro University, 701 82 Örebro, Sweden;
| | - Hamad Abdel Hadi
- Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar; (H.A.H.); (A.L.A.K.); (A.S.O.)
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha 2713, Qatar; (S.S.); (A.A.S.)
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha 2713, Qatar; (S.S.); (A.A.S.)
| | - Abdul Salam
- Department of Epidemiology and Biostatistics, King Fahad Specialist Hospital, Dammam 31444, Saudi Arabia;
| | - Abdul Latif Al Khal
- Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar; (H.A.H.); (A.L.A.K.); (A.S.O.)
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Orebro University, 701 82 Örebro, Sweden;
| | - Emad Bashir Ibrahim
- Department of Laboratory Medicine and Pathology, Microbiology Division, Hamad Medical Corporation, Doha 3050, Qatar or (M.A.S.A.); (E.B.I.)
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha 2713, Qatar; (S.S.); (A.A.S.)
| | - Ali S. Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha 3050, Qatar; (H.A.H.); (A.L.A.K.); (A.S.O.)
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha 3050, Qatar
| | - Jana Jass
- The Life Science Centre—Biology, School of Science and Technology, Orebro University, 701 82 Örebro, Sweden;
- Correspondence:
| |
Collapse
|
54
|
Sun Y, Han R, Ding L, Yang Y, Guo Y, Wu S, Hu F, Yin D. First Report of bla OXA-677 with Enhanced Meropenem-Hydrolyzing Ability in Pseudomonas aeruginosa in China. Infect Drug Resist 2022; 14:5725-5733. [PMID: 35002263 PMCID: PMC8725689 DOI: 10.2147/idr.s340662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose OXA-10-type class D β-lactamases have shown their evolutionary potential of enhancing carbapenem resistance. This study aimed to elucidate the role of OXA-10 variants in clinical isolated multidrug resistant (MDR) Pseudomonas aeruginosa and characterize the first appearance of OXA-677 in China. Methods Six blaOXA-10-like-positive strains were screened by PCR from 41 P. aeruginosa strains, which were resistant to both carbapenems and ceftazidime-avibactam, collected across China in 2018. The minimum inhibitory concentrations (MIC) were determined with the broth microdilution method. The resistance-associated genes and genetic environment were investigated by whole-genome sequencing (WGS). The function and mechanism of OXA-677 β-lactamase were identified by molecular cloning and protein structure modeling. Results All the blaOXA-10-like-positive Pseudomonas aeruginosa were MDR strains. They also had outer membrane porin defects and produced β-lactam resistance gene blaPER-1, fluoroquinolone-resistant gene crpP, aminoglycoside-resistance gene aph(3ʹ)-IIb, aph(6)-Id, aacA and aadA, fosfomycin-resistance gene fosA, sulfamethoxazole-resistance gene sul1, and chloramphenicol-resistance gene catB7. All blaOXA-10 variants were located in a Tn1403-related transposon, containing aacA4-12-blaOXA-677-aadA1, aacA4-12-blaOXA-101-aadA5, and blaOXA-246-aacA3-aadA13 gene cassette arrays, respectively. Notably, the blaOXA-677 producer showed a high MIC level of meropenem (MIC>64 mg/L). Compared to blaOXA-10, blaOXA-677 was found a G-to-T transversion at position 350, leading to a phenylalanine-for-valine substitution in position 117, which is closer to leucine155 in the omega loop of the active site. MIC of meropenem for E. coli DH5α with the recombinant plasmid pHSG398 carrying blaOXA-677 was elevated by 8 times. Conclusion We speculate that the OXA-10-like enzymes and the decrease of membrane permeability confer carbapenem resistance, and the V117 substitution in OXA-677 might lead to a higher resistance level of meropenem.
Collapse
Affiliation(s)
- Yue Sun
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| |
Collapse
|
55
|
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic Resistance in Pseudomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:117-143. [DOI: 10.1007/978-3-031-08491-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
56
|
Selection of AmpC β-lactamase variants and metallo-β-lactamases leading to ceftolozane/tazobactam and ceftazidime/avibactam-resistance during treatment of MDR/XDR Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2021; 66:e0206721. [PMID: 34930034 DOI: 10.1128/aac.02067-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections caused by ceftolozane/tazobactam and ceftazidime/avibactam-resistant P. aeruginosa infections are an emerging concern. We aimed to analyze the underlying ceftolozane/tazobactam and ceftazidime/avibactam resistance mechanisms in all MDR/XDR P. aeruginosa isolates recovered during one year (2020) from patients with a documented P. aeruginosa infection. Fifteen isolates showing ceftolozane/tazobactam and ceftazidime/avibactam resistance were evaluated. Clinical conditions, previous positive cultures and β-lactams received in the previous month were reviewed for each patient. MICs were determined by broth microdilution. MLSTs and resistance mechanisms were determined using short- and long-read WGS. The impact of PDCs on β-lactam resistance was demonstrated by cloning into an ampC-deficient PAO1 derivative (PAOΔC) and construction of 3D models. Genetic support of acquired β-lactamases was determined in silico from high-quality hybrid assemblies. In most cases, the isolates were recovered after treatment with ceftolozane/tazobactam or ceftazidime/avibactam. Seven isolates from different STs owed their β-lactam resistance to chromosomal mutations and all displayed specific substitutions in PDC: Phe121Leu and Gly222Ser, Pro154Leu, Ala201Thr, Gly214Arg, ΔGly203-Glu219 and Glu219Lys. In the other eight isolates, the ST175 clone was overrepresented (6 isolates) and associated with IMP-28 and IMP-13, whereas two ST1284 isolates produced VIM-2. The cloned PDCs conferred enhanced cephalosporin resistance. 3D PDC models revealed rearrangements affecting residues involved in cephalosporin hydrolysis. Carbapenemases were chromosomal (VIM-2) or plasmid-borne (IMP-28, IMP-13), and associated with class-1 integrons located in Tn402-like transposition modules. Our findings highlight that cephalosporin/ß-lactamase inhibitors are potential selectors of MDR/XDR P. aeruginosa strains producing PDC variants or metallo-ß-lactamases. Judicious use of these agents is encouraged.
Collapse
|
57
|
Gill CM, Aktaþ E, Alfouzan W, Bourassa L, Brink A, Burnham CAD, Canton R, Carmeli Y, Falcone M, Kiffer C, Marchese A, Martinez O, Pournaras S, Satlin M, Seifert H, Thabit AK, Thomson KS, Villegas MV, Nicolau DP. The ERACE-PA Global Surveillance Program: Ceftolozane/tazobactam and Ceftazidime/avibactam in vitro Activity against a Global Collection of Carbapenem-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2021; 40:2533-2541. [PMID: 34291323 PMCID: PMC8590662 DOI: 10.1007/s10096-021-04308-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
The cephalosporin-β-lactamase-inhibitor-combinations, ceftolozane/tazobactam and ceftazidime/avibactam, have revolutionized treatment of carbapenem-resistant Pseudomonas aeruginosa (CR-PA). A contemporary assessment of their in vitro potency against a global CR-PA collection and an assessment of carbapenemase diversity are warranted. Isolates determined as CR-PA by the submitting site were collected from 2019-2021 (17 centers in 12 countries) during the ERACE-PA Global Surveillance Program. Broth microdilution MICs were assessed per CLSI standards for ceftolozane/tazobactam, ceftazidime/avibactam, ceftazidime, and cefepime. Phenotypic carbapenemase testing was conducted (modified carbapenem inactivation method (mCIM)). mCIM positive isolates underwent genotypic carbapenemase testing using the CarbaR, the CarbaR NxG, or whole genome sequencing. The MIC50/90 was reported as well as percent susceptible (CLSI and EUCAST interpretation). Of the 807 isolates, 265 (33%) tested carbapenemase-positive phenotypically. Of these, 228 (86%) were genotypically positive for a carbapenemase with the most common being VIM followed by GES. In the entire cohort of CR-PA, ceftolozane/tazobactam and ceftazidime/avibactam had MIC50/90 values of 2/ > 64 and 4/64 mg/L, respectively. Ceftazidime/avibactam was the most active agent with 72% susceptibility per CLSI compared with 63% for ceftolozane/tazobactam. For comparison, 46% of CR-PA were susceptible to ceftazidime and cefepime. Against carbapenemase-negative isolates, 88 and 91% of isolates were susceptible to ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Ceftolozane/tazobactam and ceftazidime/avibactam remained highly active against carbapenem-resistant P. aeruginosa, particularly in the absence of carbapenemases. The contemporary ERACE-PA Global Program cohort with 33% carbapenemase positivity including diverse enzymology will be useful to assess therapeutic options in these clinically challenging organisms with limited therapies.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research & Development Hartford Hospital, 80 Seymour Street, Hartford, CT, 06102, USA
| | - Elif Aktaþ
- Clinical Microbiology Laboratory, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Wadha Alfouzan
- Laboratory Medicine- Farwania Hospital, Ministry of Health, Kuwait, Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Adrian Brink
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, National Health Laboratory Services, University of Cape Town, Cape Town , South Africa
| | | | - Rafael Canton
- Servicio de Microbiologia. Hospital Ramón Y Cajal-IRYCIS, Madrid, Spain
| | - Yehuda Carmeli
- National Institute for Infection Control and Antibiotic Resistance, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Marco Falcone
- Infectious Diseases Division, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlos Kiffer
- Internal Medicine Department and LEMC-Alerta Lab, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, and Clinical Microbiology Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Octavio Martinez
- Department of Pathology and Microbiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Spyros Pournaras
- Laboratory of Clinical Microbiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Satlin
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935, Köln, Germany
| | - Abrar K Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Maria Virginia Villegas
- Grupo de Resistencia Antimicrobiana Y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá, Colombia
| | - David P Nicolau
- Center for Anti-Infective Research & Development Hartford Hospital, 80 Seymour Street, Hartford, CT, 06102, USA.
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA.
| |
Collapse
|
58
|
Geographic Patterns of Carbapenem-resistant Pseudomonas aeruginosa in the Asia-Pacific Region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2015-2019. Antimicrob Agents Chemother 2021; 66:e0200021. [PMID: 34807753 DOI: 10.1128/aac.02000-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a common pathogen that is associated with multidrug-resistant (MDR) and carbapenem-resistant (CR) phenotypes; therefore, we investigated its resistance patterns and mechanisms by using data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program in the Asia-Pacific region during 2015-2019. MICs were determined using the broth microdilution method. Genes encoding major extended-spectrum β-lactamases and carbapenemases were investigated by multiplex PCR assays. Susceptibility was interpreted using the Clinical and Laboratory Standards Institute (CLSI) breakpoints. A total of 6,349 P. aeruginosa isolates were collected in the ATLAS program between 2015 and 2019 from 14 countries. According to the CLSI definitions, the numbers (and rates) of CR and MDR P. aeruginosa were 1,198 (18.9%) and 1,303 (20.5%), respectively. For 747 of the CR P. aeruginosa strains that were available for gene screening, 253 β-lactamases genes were detected in 245 (32.8%) isolates. The most common gene was blaVIM (29.0, 71/245), followed by blaNDM (24.9%, 61/245) and blaVEB (20.8%, 51/245). The resistance patterns and associated genes varied significantly between the countries in the Asia-Pacific region. India had the highest rates of carbapenem resistance (29.3%, 154/525) and gene detection (17.7%, 93/525). Compared to those harboring either class A or B β-lactamase genes, the CR P. aeruginosa without detected β-lactamase genes had lower MICs for most of the antimicrobial agents, including ceftazidime/avibactam and ceftolozane/tazobactam. In conclusion, MDR and CR P. aeruginosa infections pose a major threat, particularly those with detected carbapenemase genes. Continuous surveillance is important for improving antimicrobial stewardship and antibiotic prescriptions.
Collapse
|
59
|
Meschiari M, Orlando G, Kaleci S, Bianco V, Sarti M, Venturelli C, Mussini C. Combined Resistance to Ceftolozane-Tazobactam and Ceftazidime-Avibactam in Extensively Drug-Resistant (XDR) and Multidrug-Resistant (MDR) Pseudomonas aeruginosa: Resistance Predictors and Impact on Clinical Outcomes Besides Implications for Antimicrobial Stewardship Programs. Antibiotics (Basel) 2021; 10:antibiotics10101224. [PMID: 34680805 PMCID: PMC8532599 DOI: 10.3390/antibiotics10101224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
A retrospective case-control study was conducted at Modena University Hospital from December 2017 to January 2019 to identify risk factors and predictors of MDR/XDR Pseudomonas aeruginosa (PA) isolation with resistance to ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T), and of mortality among patients infected/colonized. Among 111 PA isolates from clinical/surveillance samples, 60 (54.1%) were susceptible to both drugs (S-CZA-C/T), while 27 (24.3%) were resistant to both (R-CZA-C/T). Compared to patients colonized/infected with S-CZA-C/T, those with R-C/T + CZA PA had a statistically significantly higher Charlson comorbidity score, greater rate of previous PA colonization, longer time before PA isolation, more frequent presence of CVC, higher exposure to C/T and cephalosporins, longer hospital stay, and higher overall and attributable mortality. In the multivariable analysis, age, prior PA colonization, longer time from admission to PA isolation, diagnosis of urinary tract infection, and exposure to carbapenems were associated with the isolation of a R-C/T + CZA PA strain, while PA-related BSI, a comorbidity score > 7, and ICU stay were significantly associated with attributable mortality. C/T and CZA are important therapeutic resources for hard-to-treat PA-related infections, thus specific antimicrobial stewardship interventions should be prompted in order to avoid the development of this combined resistance, which would jeopardize the chance to treat these infections.
Collapse
Affiliation(s)
- Marianna Meschiari
- Infectious Disease Clinic, Policlinico University Hospital, 41122 Modena, Italy; (M.M.); (C.M.)
| | - Gabriella Orlando
- Infectious Disease Clinic, Policlinico University Hospital, 41122 Modena, Italy; (M.M.); (C.M.)
- Correspondence: ; Tel.: +39-059-422-5287
| | - Shaniko Kaleci
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41122 Modena, Italy;
| | - Vincenzo Bianco
- Infectious Disease Clinic, Cotugno Hospital, 80131 Naples, Italy;
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, 41122 Modena, Italy; (M.S.); (C.V.)
| | - Claudia Venturelli
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, 41122 Modena, Italy; (M.S.); (C.V.)
| | - Cristina Mussini
- Infectious Disease Clinic, Policlinico University Hospital, 41122 Modena, Italy; (M.M.); (C.M.)
| |
Collapse
|
60
|
Xia GL, Jiang RL. Efficacy and safety of polymyxin B in carbapenem-resistant gram-negative organisms infections. BMC Infect Dis 2021; 21:1034. [PMID: 34607561 PMCID: PMC8488323 DOI: 10.1186/s12879-021-06719-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate how to use polymyxin B rationally in order to produce the best efficacy and safety in patients with carbapenem-resistant gram-negative organisms (CRO) infection. Methods The clinical characteristics and microbiological results of 181 patients caused by CRO infection treated with polymyxin B in the First Affiliated Hospital from July 2018 to May 2020 were retrospectively analyzed. The bacterial clearance rate, clinical efficacy, adverse drug reactions and 28 days mortality were evaluated. Results The overall effective rate of 181 patients was 49.72%, the total bacterial clearance rate was 42.0%, and the 28 day all-cause mortality rate was 59.1%. The effective rate and bacterial clearance rate in the group of less than 24 h from the isolation of CRO to the use of polymyxin B were significantly higher than those in the group of more than 24 h. Logistics multivariate regression analysis showed that the predictive factors for effective treatment of CRO with polymyxin B were APACHEII score, duration of polymyxin B treatment, combination of polymyxin B and other antibiotics, and bacterial clearance. 17 cases (9.36%) of acute kidney injury were considered as polymyxin B nephrotoxicity and 4 cases (23.5%) recovered after polymyxin B withdrawal. After 14 days of polymyxin B use, 3 cases of polymyxin B resistance appeared, and there were 2 cases of polymyxin B resistance in the daily dose 1.5 mg/kg/day group. Conclusion For CRO infection, the treatment of polymyxin B should be early, combined, optimal dose and duration of treatment, which can achieve better clinical efficacy and microbial reactions, and reduce the adverse reactions and drug resistance.
Collapse
Affiliation(s)
- G L Xia
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - R L Jiang
- Department of Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), NO. 54 Youdian Road, Hangzhou, 310006, China.
| |
Collapse
|
61
|
Poirel L, Sadek M, Nordmann P. Contribution of PER-Type and NDM-Type β-Lactamases to Cefiderocol Resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2021; 65:e0087721. [PMID: 34252309 PMCID: PMC8448131 DOI: 10.1128/aac.00877-21] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Cefiderocol (FDC) is a recently developed siderophore cephalosporin showing excellent antibacterial activity against Gram-negative bacteria, including Acinetobacter baumannii. By investigating a series of A. baumannii clinical isolates with elevated MICs of FDC, we showed that PER-like β-lactamases and, to a lesser extent, NDM-like β-lactamases, significantly contributed to reduced susceptibility to that antibiotic. Interestingly, we showed that combination of FDC with avibactam exhibited excellent activity against all multidrug-resistant isolates coproducing OXA-23 and PER-type β-lactamases.
Collapse
Affiliation(s)
- Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME), University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME), University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University Hospital Centre, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
62
|
Evaluation of SuperCAZ/AVI® Medium for Screening Ceftazidime-avibactam Resistant Gram-negative Isolates. Diagn Microbiol Infect Dis 2021; 101:115475. [PMID: 34419742 DOI: 10.1016/j.diagmicrobio.2021.115475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
The industrial version of SuperCAZ/AVI® medium developed for screening CAZ/AVI resistant Gram-negative isolates has been evaluated here using a collection of 87 well-characterized clinical isolates of worldwide origin. In addition, testing was performed by spiking stools with a series of resistant and susceptible isolates. In those conditions, the SuperCAZ/AVI® medium exhibited a sensitivity and specificity of 100 %, down to the lower limit of detection of 101 to 102 CFU/ml. The SuperCAZ/AVI® medium is a sensitive and specific screening medium for detection of CZA-resistant bacteria regardless of their resistance mechanisms.
Collapse
|
63
|
In Vivo Evolution of GES β-Lactamases Driven by Ceftazidime/Avibactam Treatment of Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother 2021; 65:e0098621. [PMID: 34125593 DOI: 10.1128/aac.00986-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underlying an in vivo switch in the resistance phenotype of P. aeruginosa after ceftazidime-avibactam treatment was investigated. The initial isolate (a blood culture) was resistant to meropenem but remained susceptible to antipseudomonal cephalosporins and combinations with β-lactamase inhibitors. One week after ceftazidime-avibactam therapy, a subsequent isolate (a rectal swab) recovered from the same patient showed the opposite phenotype. Whole-genome sequence analysis revealed a single SNP difference between both (ST235) isolates, leading to a P162S change in blaGES-5, creating blaGES-15. Thus, blaGES-1, blaGES-5, and blaGES-15 were cloned and expressed in the wild-type strain PAO1. Susceptibility profiles confirmed the P162S substitution reverted the carbapenemase phenotype determined by the G170S change of GES-5 back into the ESBL phenotype of GES-1.
Collapse
|
64
|
Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist 2021; 3:dlab092. [PMID: 34286272 PMCID: PMC8284625 DOI: 10.1093/jacamr/dlab092] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Gram-negative pathogens are a major cause of resistance to expanded-spectrum β-lactam antibiotics. Since their discovery in the early 1980s, they have spread worldwide and an are now endemic in Enterobacterales isolated from both hospital-associated and community-acquired infections. As a result, they are a global public health concern. In the past, TEM- and SHV-type ESBLs were the predominant families of ESBLs. Today CTX-M-type enzymes are the most commonly found ESBL type with the CTX-M-15 variant dominating worldwide, followed in prevalence by CTX-M-14, and CTX-M-27 is emerging in certain parts of the world. The genes encoding ESBLs are often found on plasmids and harboured within transposons or insertion sequences, which has enabled their spread. In addition, the population of ESBL-producing Escherichia coli is dominated globally by a highly virulent and successful clone belonging to ST131. Today, there are many diagnostic tools available to the clinical microbiology laboratory and include both phenotypic and genotypic tests to detect β-lactamases. Unfortunately, when ESBLs are not identified in a timely manner, appropriate antimicrobial therapy is frequently delayed, resulting in poor clinical outcomes. Several analyses of clinical trials have shown mixed results with regards to whether a carbapenem must be used to treat serious infections caused by ESBLs or whether some of the older β-lactam-β-lactamase combinations such as piperacillin/tazobactam are appropriate. Some of the newer combinations such as ceftazidime/avibactam have demonstrated efficacy in patients. ESBL-producing Gram-negative pathogens will continue to be major contributor to antimicrobial resistance worldwide. It is essential that we remain vigilant about identifying them both in patient isolates and through surveillance studies.
Collapse
|
65
|
Gill CM, Abdelraouf K, Nicolau DP. In vivo activity of WCK 4282 (high-dose cefepime/tazobactam) against serine β-lactamase-producing Enterobacterales and Pseudomonas aeruginosa in the neutropenic murine thigh infection model. J Antimicrob Chemother 2021; 76:993-1000. [PMID: 33438033 DOI: 10.1093/jac/dkaa551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/08/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES WCK 4282, high-dose cefepime/tazobactam, possesses potent in vitro activity against Gram-negative organisms including ESBL- and cephalosporinase-harbouring strains. The purpose of this evaluation was to investigate the in vivo activity of human-simulated exposures of WCK 4282 against serine-β-lactamase-harbouring Enterobacterales and Pseudomonas aeruginosa. METHODS Nineteen clinical isolates were evaluated (ESBL/cephalosporinase producers, n = 8 Escherichia coli, n = 4 P. aeruginosa; KPC producers, n = 3 Klebsiella pneumoniae, n = 1 Klebsiella aerogenes; OXA-48/181 producers, n = 2 K. pneumoniae, n = 1 E. coli). WCK 4282 MICs ranged from 4 to 32 mg/L compared with 16 to >128 mg/L for cefepime. Thigh-infected neutropenic mice received cefepime, WCK 4282 or sham control over 24 h prior to harvest. Cefepime and tazobactam dosing regimens produced plasma profiles of fAUC, fT>MIC and fCmax similar to human exposure after WCK 4282 2/2 g every 8 h (1.5 h infusion). RESULTS Bacterial burdens (log10 cfu/thigh) were 5.81 ± 0.36 at 0 h and 9.29 ± 0.88 at 24 h in untreated controls. WCK 4282 produced potent activity against ESBL/cephalosporinase-producing strains with WCK 4282 MIC ≤16 mg/L; mean changes in log10 cfu/thigh from 0 h were -1.70 ± 0.77 and +1.86 ± 2.03 log10 cfu/thigh for WCK 4282 and cefepime human-simulated regimens, respectively. WCK 4282 produced variable activity against serine-carbapenemase-harbouring isolates. For the KPC-harbouring strains, WCK 4282 produced bacteriostasis with a mean -0.1 ± 0.61 log10 cfu/thigh. Against OXA-48/181-harbouring isolates, WCK 4282 produced a range of change in bacterial burden of -1.23 ± 0.33 to +1.04 ± 0.7 log10 cfu/thigh. CONCLUSIONS Human-simulated exposures of WCK 4282 produced in vivo efficacy against ESBL/cephalosporinase-producing, piperacillin/tazobactam- and ceftolozane/tazobactam-non-susceptible Enterobacterales and P. aeruginosa. These findings support further development of this combination as a carbapenem-sparing agent.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
66
|
Lob SH, DePestel DD, DeRyke CA, Kazmierczak KM, Young K, Motyl MR, Sahm DF. Ceftolozane/Tazobactam and Imipenem/Relebactam Cross-Susceptibility Among Clinical Isolates of Pseudomonas aeruginosa From Patients With Respiratory Tract Infections in ICU and Non-ICU Wards-SMART United States 2017-2019. Open Forum Infect Dis 2021; 8:ofab320. [PMID: 34307727 PMCID: PMC8297703 DOI: 10.1093/ofid/ofab320] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Carbapenem-nonsusceptible and multidrug-resistant (MDR) P. aeruginosa, which are more common in patients with lower respiratory tract infections (LRTIs) and in patients in intensive care units (ICUs), pose difficult treatment challenges and may require new therapeutic options. Two β-lactam/β-lactamase inhibitor combinations, ceftolozane/tazobactam (C/T) and imipenem/relebactam (IMI/REL), are approved for treatment of hospital-acquired/ventilator-associated bacterial pneumonia. METHODS The Clinical and Laboratory Standards Institute-defined broth microdilution methodology was used to determine minimum inhibitory concentrations (MICs) against P. aeruginosa isolates collected from patients with LRTIs in ICUs (n = 720) and non-ICU wards (n = 914) at 26 US hospitals in 2017-2019 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) surveillance program. RESULTS Susceptibility to commonly used β-lactams including carbapenems was 5-9 percentage points lower and MDR rates 7 percentage points higher among isolates from patients in ICUs than those in non-ICU wards (P < .05). C/T and IMI/REL maintained activity against 94.0% and 90.8% of ICU isolates, respectively, while susceptibility to all comparators except amikacin (96.0%) was 63%-76%. C/T and IMI/REL inhibited 83.1% and 68.1% of meropenem-nonsusceptible (n = 207) and 71.4% and 65.7% of MDR ICU isolates (n = 140), respectively. Among all ICU isolates, only 2.5% were nonsusceptible to both C/T and IMI/REL, while 6.7% were susceptible to C/T but not to IMI/REL and 3.5% were susceptible to IMI/REL but not to C/T. CONCLUSIONS These data suggest that susceptibility to both C/T and IMI/REL should be considered for testing at hospitals, as both agents could provide important new options for treating patients with LRTIs, especially in ICUs where collected isolates show substantially reduced susceptibility to commonly used β-lactams.
Collapse
|
67
|
Arca-Suárez J, Lasarte-Monterrubio C, Rodiño-Janeiro BK, Cabot G, Vázquez-Ucha JC, Rodríguez-Iglesias M, Galán-Sánchez F, Beceiro A, González-Bello C, Oliver A, Bou G. Molecular mechanisms driving the in vivo development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR Pseudomonas aeruginosa infections. J Antimicrob Chemother 2021; 76:91-100. [PMID: 33083833 DOI: 10.1093/jac/dkaa396] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of Pseudomonas aeruginosa infections is concerning. OBJECTIVES Characterization of the mechanisms leading to the development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR P. aeruginosa infections. METHODS Four paired ceftolozane/tazobactam- and ceftazidime/avibactam-susceptible/resistant isolates were evaluated. MICs were determined by broth microdilution. STs, resistance mechanisms and genetic context of β-lactamases were determined by genotypic methods, including WGS. The OXA-10 variants were cloned in PAO1 to assess their impact on resistance. Models for the OXA-10 derivatives were constructed to evaluate the structural impact of the amino acid changes. RESULTS The same XDR ST253 P. aeruginosa clone was detected in all four cases evaluated. All initial isolates showed OprD deficiency, produced an OXA-10 enzyme and were susceptible to ceftazidime, ceftolozane/tazobactam, ceftazidime/avibactam and colistin. During treatment, the isolates developed resistance to all cephalosporins. Comparative genomic analysis revealed that the evolved resistant isolates had acquired mutations in the OXA-10 enzyme: OXA-14 (Gly157Asp), OXA-794 (Trp154Cys), OXA-795 (ΔPhe153-Trp154) and OXA-824 (Asn143Lys). PAO1 transformants producing the evolved OXA-10 derivatives showed enhanced ceftolozane/tazobactam and ceftazidime/avibactam resistance but decreased meropenem MICs in a PAO1 background. Imipenem/relebactam retained activity against all strains. Homology models revealed important changes in regions adjacent to the active site of the OXA-10 enzyme. The blaOXA-10 gene was plasmid borne and acquired due to transposition of Tn6746 in the pHUPM plasmid scaffold. CONCLUSIONS Modification of OXA-10 is a mechanism involved in the in vivo acquisition of resistance to cephalosporin/β-lactamase inhibitor combinations in P. aeruginosa.
Collapse
Affiliation(s)
- Jorge Arca-Suárez
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Cristina Lasarte-Monterrubio
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Bruno-Kotska Rodiño-Janeiro
- Prof. Martin Polz Laboratory, University of Vienna, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Vienna, Austria
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Palma de Mallorca, Spain
| | - Juan Carlos Vázquez-Ucha
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Manuel Rodríguez-Iglesias
- Servicio de Microbiología and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar; Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Fátima Galán-Sánchez
- Servicio de Microbiología and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar; Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdiSBA), Palma de Mallorca, Spain
| | - Germán Bou
- Servicio de Microbiología-Instituto de Investigación Biomédica (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| |
Collapse
|
68
|
Galani I, Papoutsaki V, Karantani I, Karaiskos I, Galani L, Adamou P, Deliolanis I, Kodonaki A, Papadogeorgaki E, Markopoulou M, Maraki S, Damala M, Prifti E, Vagiakou E, Petinaki E, Fountoulis K, Tsiplakou S, Kirikou H, Souli M, Antoniadou A, Giamarellou H. In vitro activity of ceftolozane/tazobactam alone and in combination with amikacin against MDR/XDR Pseudomonas aeruginosa isolates from Greece. J Antimicrob Chemother 2021; 75:2164-2172. [PMID: 32449909 DOI: 10.1093/jac/dkaa160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/11/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES We evaluated the in vitro activity of ceftolozane/tazobactam and comparator agents against MDR non-MBL Pseudomonas aeruginosa isolates collected from nine Greek hospitals and we assessed the potential synergistic interaction between ceftolozane/tazobactam and amikacin. METHODS A total of 160 non-MBL P. aeruginosa isolates collected in 2016 were tested for susceptibility to ceftolozane/tazobactam and seven comparator agents including ceftazidime/avibactam. Time-kill assays were performed for synergy testing using ceftolozane/tazobactam 60 or 7.5 mg/L, corresponding to the peak and trough concentrations of a 1.5 g q8h dose, respectively, in combination with 69 mg/L amikacin, corresponding to the free peak plasma concentration. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent. RESULTS Overall, ceftolozane/tazobactam inhibited 64.4% of the P. aeruginosa strains at ≤4 mg/L. Colistin was the most active agent (MIC50/90, 0.5/2 mg/L; 96.3% susceptible) followed by ceftazidime/avibactam (MIC50/90, 4/16 mg/L; 80.6% susceptible). GES-type enzymes were predominantly responsible for ceftolozane/tazobactam resistance; 81.6% of the non-producers were susceptible. MICs for the P. aeruginosa isolates selected for synergy testing were 2-32 mg/L ceftolozane/tazobactam and 2-128 mg/L amikacin. The combination of ceftolozane/tazobactam with amikacin was synergistic against 85.0% of all the isolates tested and against 75.0% of the GES producers. No antagonistic interactions were observed. CONCLUSIONS Ceftolozane/tazobactam demonstrated good in vitro activity against MDR/XDR P. aeruginosa clinical isolates, including strains with co-resistance to other antipseudomonal drugs. In combination with amikacin, a synergistic interaction at 24 h was observed against 85.0% of P. aeruginosa strains tested, including isolates with ceftolozane/tazobactam MICs of 32 mg/L or GES producers.
Collapse
Affiliation(s)
- Irene Galani
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece.,University General Hospital 'ATTIKON', Chaidari, Athens, Greece
| | | | - Irene Karantani
- Infectious Diseases Laboratory, Hygeia General Hospital, Athens, Greece
| | - Ilias Karaiskos
- 1st Internal Medicine & Infectious Diseases Clinic, Hygeia General Hospital, Athens, Greece
| | - Lamprini Galani
- 1st Internal Medicine & Infectious Diseases Clinic, Hygeia General Hospital, Athens, Greece
| | - Panagiota Adamou
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antigoni Kodonaki
- Department of Microbiology, 'Laikon' General Hospital, Athens, Greece
| | | | | | - Sofia Maraki
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Maria Damala
- Microbiology Department, 'Alexandra' General Hospital of Athens, Athens, Greece
| | - Eleni Prifti
- Microbiology Department, 'Alexandra' General Hospital of Athens, Athens, Greece
| | - Eleni Vagiakou
- Microbiology Laboratory, General Hospital of Athens 'G. Gennimatas', Athens, Greece
| | - Efthimia Petinaki
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| | - Kimon Fountoulis
- Microbiology Department, Evangelismos General Hospital, Athens, Greece
| | | | - Helen Kirikou
- Microbiology Department, Agia Sofia Children's Hospital, Athens, Greece
| | - Maria Souli
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniadou
- Infectious Diseases Laboratory, 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Giamarellou
- 1st Internal Medicine & Infectious Diseases Clinic, Hygeia General Hospital, Athens, Greece
| |
Collapse
|
69
|
The prevalence and functional characteristics of CrpP-like in Pseudomonas aeruginosa isolates from China. Eur J Clin Microbiol Infect Dis 2021; 40:2651-2656. [PMID: 34097170 DOI: 10.1007/s10096-021-04287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Modifying enzyme-CrpP and its variants reduced the MICs of fluoroquinolones in Pseudomonas aeruginosa. This study investigated the dissemination and functional characteristics of CrpP-like in P. aeruginosa from China. The positive rate of crpP-like genes in 228 P. aeruginosa was 25.4% (58/228), and 6 new crpP-like genes were determined. Transformation experiments showed that CrpP-like had a low effect on CIP and LEV susceptibility. The genetic of crpP-positive was diverse. Furthermore, the mean expression level of crpP was no statistical difference between fluoroquinolone-susceptible and -resistant group (P > 0.05). CrpP-like may not play a significant role in fluoroquinolone resistance in P. aeruginosa.
Collapse
|
70
|
Aerosolized plus intravenous colistin vs intravenous colistin alone for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria: A retrospective cohort study. Int J Infect Dis 2021; 108:406-412. [PMID: 34111542 DOI: 10.1016/j.ijid.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To compare the effectiveness and safety of aerosolized (AER) plus intravenous (IV) colistin with IV colistin alone in patients with nosocomial pneumonia (NP) due to multidrug-resistant (MDR) Gram-negative bacteria. METHODS This was a retrospective cohort study of adults with NP who received IV colistin alone or in combination with AER colistin. The primary endpoint was clinical cure at end of therapy. Secondary endpoints included microbiological eradication, in-hospital mortality and nephrotoxicity. RESULTS In total, 135 patients were included in this study: 65 patients received AER plus IV colistin and 70 patients received IV colistin alone. Baseline characteristics were similar between the two groups. Clinical cure was achieved in 42 (65%) patients who received AER plus IV colistin and 26 (37%) patients who received IV colistin alone (P = 0.01). Among a total of 88 patients who were microbiologically evaluable, 27 (42%) patients who received AER plus IV colistin and 12 (17%) patients who received IV colistin alone attained favourable microbiological outcomes (P = 0.022). In-hospital mortality (43% vs 59%, P = 0.072) was higher in patients who received IV colistin alone, but the difference was not significant. Renal injury occurred in 31% of patients who received AER plus IV colistin and in 41% of patients who received IV colistin alone (P = 0.198). CONCLUSION AER colistin can be considered as salvage therapy as an adjunct to IV administration for the treatment of patients with NP due to MDR Gram-negative pathogens.
Collapse
|
71
|
Cantón R, Loza E, Arcay RM, Cercenado E, Castillo FJ, Cisterna R, Gálvez-Benítez L, González Romo F, Hernández-Cabezas A, Rodríguez-Lozano J, Suárez-Barrenechea AI, Tubau F, Díaz-Regañón J, López-Mendoza D. Antimicrobial activity of ceftolozane-tazobactam against Enterobacterales and Pseudomonas aeruginosa recovered during the Study for Monitoring Antimicrobial Resistance Trends (SMART) program in Spain (2016-2018). REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2021; 34:228-237. [PMID: 33645948 PMCID: PMC8179940 DOI: 10.37201/req/019.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/17/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To analyse the susceptibility to ceftolozane-tazobactam and comparators in Enterobacterales and Pseudomonas aeruginosa isolates recovered from intraabdominal (IAI), urinary (UTI), respiratory (RTI) and bloodstream infection (BSI) in the SMART (Study for Monitoring Antimicrobial Resistance Trends) study. METHODS The susceptibility of 5,351 isolates collected in 11 Spanish hospitals (2016-2018) were analysed (EUCAST-2020 criteria) by broth microdilution and were phenotypically studied for the presence of extended-spectrum beta-lactamases (ESBL). Ceftolozane-tazobactam and/or carbapenem resistant isolates were genetically characterized for ESBL and carbapenemases. RESULTS Escherichia coli was the most frequent pathogen (49.3% IAI, 54.9% UTI, 16.7% RTI and 50% BSI), followed by Klebsiella pneumoniae (11.9%, 19.1%, 13.1% and 15.4%, respectively). P. aeruginosa was isolated in 9.3%, 5.6%, 32% and 9%, respectively. The frequency of isolates with ESBLs (2016-2017) was: 30.5% K. pneumoniae, 8.6% E. coli, 2.3% Klebsiella oxytoca and 0.7% Proteus mirabilis. Ceftolozane-tazobactam was very active against non-ESBL-(99.3% susceptible) and ESBL-(95.2%) producing E. coli being less active against K. pneumoniae (98% and 43.1%, respectively) isolates. CTX-M-15 was the most prevalent ESBL in E. coli (27.5%) and K. pneumoniae (51.9%) frequently associated with OXA-48-like carbapenemase. Overall, 93% of P. aeruginosa isolates were susceptible to ceftolozane-tazobactam, preserving this activity (>75%) in isolates resistant to other beta-lactams except in those resistant to meropenen or ceftazidime-avibactam. GES-5, PER-1, VIM-1/2 were the most prevalent enzymes in isolates resistant to ceftolozane-tazobactam. CONCLUSIONS Ceftolozane-tazobactam showed high activity rates against isolates recovered in the SMART study although it was affected in K. pneumoniae and P. aeruginosa isolates with ESBL and/or carbapenemases.
Collapse
Affiliation(s)
- R Cantón
- Rafael Cantón, Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Madrid. Carretera de Colmenar Km 9,1. 28034-Madrid. Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Langendonk RF, Neill DR, Fothergill JL. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front Cell Infect Microbiol 2021; 11:665759. [PMID: 33937104 PMCID: PMC8085337 DOI: 10.3389/fcimb.2021.665759] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
P. aeruginosa is classified as a priority one pathogen by the World Health Organisation, and new drugs are urgently needed, due to the emergence of multidrug-resistant (MDR) strains. Antimicrobial-resistant nosocomial pathogens such as P. aeruginosa pose unwavering and increasing threats. Antimicrobial stewardship has been a challenge during the COVID-19 pandemic, with a majority of those hospitalized with SARS-CoV2 infection given antibiotics as a safeguard against secondary bacterial infection. This increased usage, along with increased handling of sanitizers and disinfectants globally, may further accelerate the development and spread of cross-resistance to antibiotics. In addition, P. aeruginosa is the primary causative agent of morbidity and mortality in people with the life-shortening genetic disease cystic fibrosis (CF). Prolonged periods of selective pressure, associated with extended antibiotic treatment and the actions of host immune effectors, results in widespread adaptive and acquired resistance in P. aeruginosa found colonizing the lungs of people with CF. This review discusses the arsenal of resistance mechanisms utilized by P. aeruginosa, how these operate under high-stress environments such as the CF lung and how their interconnectedness can result in resistance to multiple antibiotic classes. Intrinsic, adaptive and acquired resistance mechanisms will be described, with a focus on how each layer of resistance can serve as a building block, contributing to multi-tiered resistance to antimicrobial activity. Recent progress in the development of anti-resistance adjuvant therapies, targeting one or more of these building blocks, should lead to novel strategies for combatting multidrug resistant P. aeruginosa. Anti-resistance adjuvant therapy holds great promise, not least because resistance against such therapeutics is predicted to be rare. The non-bactericidal nature of anti-resistance adjuvants reduce the selective pressures that drive resistance. Anti-resistance adjuvant therapy may also be advantageous in facilitating efficacious use of traditional antimicrobials, through enhanced penetration of the antibiotic into the bacterial cell. Promising anti-resistance adjuvant therapeutics and targets will be described, and key remaining challenges highlighted. As antimicrobial stewardship becomes more challenging in an era of emerging and re-emerging infectious diseases and global conflict, innovation in antibiotic adjuvant therapy can play an important role in extending the shelf-life of our existing antimicrobial therapeutic agents.
Collapse
Affiliation(s)
- R. Frèdi Langendonk
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
73
|
Iqbal Z, Zhai L, Gao Y, Tang D, Ma X, Ji J, Sun J, Ji J, Liu Y, Jiang R, Mu Y, He L, Yang H, Yang Z. β-Lactamase inhibition profile of new amidine-substituted diazabicyclooctanes. Beilstein J Org Chem 2021; 17:711-718. [PMID: 33777246 PMCID: PMC7961884 DOI: 10.3762/bjoc.17.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 12/05/2022] Open
Abstract
The diazabicyclooctane (DBO) scaffold is the backbone of non-β-lactam-based second generation β-lactamase inhibitors. As part of our efforts, we have synthesized a series of DBO derivatives A1–23 containing amidine substituents at the C2 position of the bicyclic ring. These compounds, alone and in combination with meropenem, were tested against ten bacterial strains for their antibacterial activity in vitro. All compounds did not show antibacterial activity when tested alone (MIC >64 mg/L), however, they exhibited a moderate inhibition activity in the presence of meropenem by lowering its MIC values. The compound A12 proved most potent among the other counterparts against all bacterial species with MIC from <0.125 mg/L to 2 mg/L, and is comparable to avibactam against both E. coli strains with a MIC value of <0.125 mg/L.
Collapse
Affiliation(s)
- Zafar Iqbal
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Lijuan Zhai
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Yuanyu Gao
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Dong Tang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Xueqin Ma
- College of Pharmacy, Ningxia Medical University, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, P.R. China
| | - Jinbo Ji
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Jian Sun
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Jingwen Ji
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Yuanbai Liu
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Rui Jiang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Yangxiu Mu
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Lili He
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Haikang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| | - Zhixiang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, P.R. China
| |
Collapse
|
74
|
Ishii A, Shigemura K, Kitagawa K, Harada M, Kan Y, Hayashi F, Osawa K, Kuntaman K, Shirakawa T, Fujisawa M. Cross-Resistance and the Mechanisms of Cephalosporin-Resistant Bacteria in Urinary Tract Infections Isolated in Indonesia. Curr Microbiol 2021; 78:1771-1777. [PMID: 33713209 DOI: 10.1007/s00284-021-02415-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
Urinary tract infection (UTI) by antibiotic-resistant strains has become increasingly problematic, with trends that differ from country to country. This study examined cross-resistance and the mechanisms of cephalosporin resistance in UTI-causative bacteria isolated in Indonesia. Antibiotic susceptibility tests based on Clinical Laboratory Standards Institute (CLSI) standards were done for UTI-causative strains (n = 50) isolated from patients in Indonesia in 2015-2016 and showed resistance against the third-generation cephalosporin. Mechanistic studies were carried out to confirm the presence of extended-spectrum β-lactamase (ESBL) genes, carbapenemase-related genes, the fosA3 gene related to fosfomycin resistance, and mutations of quinolone-resistance-related genes. Isolated UTI-causative bacteria included Escherichia coli (64.0%), Pseudomonas aeruginosa (16.0%), Klebsiella pneumoniae (10.0%), and others (10.0%). These strains showed 96.0% susceptibility to amikacin, 76.0% to fosfomycin, 90.0% to imipenem, 28.0% to levofloxacin, 92.0% to meropenem, and 74.0% to tazobactam/piperacillin. ESBL was produced by 68.0% of these strains. Mechanistic studies found no strains with carbapenemase genes but 6.0% of strains had the fosA3 gene. Seventy-two % of the strains had mutations in the gyrA gene and 74.0% in the parC gene. Most E. coli strains (87.5%) had Ser-83 → Leu and Asp-87 → Asn in gyrA and 93.8% of E. coli had Ser-80 → Ile in parC. There were significant correlations among mutations in gyrA and parC, and fosA3 gene detection (P < 0.05), respectively. To our knowledge, this is the first mechanistic study of antibiotic-cross-resistant UTI-causative bacteria in Indonesia. Further studies with a longer period of observation are necessary, especially for changes in carbapenem resistance without carbapenemase-related genes.
Collapse
Affiliation(s)
- Aya Ishii
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan. .,Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan. .,Department of Infection Control, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Koichi Kitagawa
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Mizuki Harada
- Central Laboratory Department, Local Independent Administrative Agency, Rinkuu General Medical Center, Osaka, Japan
| | - Yuki Kan
- Department of Medical Technology, School of Medicine Faculty of Health Sciences, Kobe University, Kobe, Japan
| | - Fuka Hayashi
- Department of Medical Technology, School of Medicine Faculty of Health Sciences, Kobe University, Kobe, Japan
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, Kobe, Japan
| | - K Kuntaman
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Toshiro Shirakawa
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
75
|
Karlowsky JA, Lob SH, Young K, Motyl MR, Sahm DF. Activity of ceftolozane/tazobactam against Gram-negative isolates from patients with lower respiratory tract infections - SMART United States 2018-2019. BMC Microbiol 2021; 21:74. [PMID: 33676406 PMCID: PMC7936229 DOI: 10.1186/s12866-021-02135-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ceftolozane/tazobactam (C/T) is approved in 70 countries, including the United States, for the treatment of patients with hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible Gram-negative pathogens. C/T is of particular importance as an agent for the treatment of multidrug-resistant (MDR) Pseudomonas aeruginosa infections. The current study summarizes 2018-2019 data from the United States on lower respiratory tract isolates of Gram-negative bacilli from the SMART global surveillance program. The CLSI reference broth microdilution method was used to determine in vitro susceptibility of C/T and comparators against isolates of P. aeruginosa and Enterobacterales. RESULTS C/T inhibited 96.0% of P. aeruginosa (n = 1237) at its susceptible MIC breakpoint (≤4 μg/ml), including > 85% of meropenem-nonsusceptible and piperacillin/tazobactam (P/T)-nonsusceptible isolates and 76.2% of MDR isolates. Comparator agents demonstrated lower activity than C/T against P. aeruginosa: meropenem (74.8% susceptible), cefepime (79.2%), ceftazidime (78.5%), P/T (74.4%), and levofloxacin (63.1%). C/T was equally active against ICU (96.0% susceptible) and non-ICU (96.7%) isolates of P. aeruginosa. C/T inhibited 91.8% of Enterobacterales (n = 1938) at its susceptible MIC breakpoint (≤2 μg/ml); 89.5% of isolates were susceptible to cefepime and 88.0% susceptible to P/T. 67.1 and 86.5% of extended-spectrum β-lactamase (ESBL) screen-positive isolates of Klebsiella pneumoniae (n = 85) and Escherichia coli (n = 74) and 49.6% of MDR Enterobacterales were susceptible to C/T. C/T was equally active against ICU (91.3% susceptible) and non-ICU (92.6%) Enterobacterales isolates. CONCLUSION Data from the current study support the use of C/T as an important treatment option for lower respiratory tract infections including those caused by MDR P. aeruginosa.
Collapse
Affiliation(s)
- James A Karlowsky
- IHMA, 2122 Palmer Drive, Schaumburg, IL, 60173, USA
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Sibylle H Lob
- IHMA, 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| | | | | | | |
Collapse
|
76
|
Abstract
Pseudomonas aeruginosa infection is one of the most difficult health care-associated infections to treat due to the ability of the organism to acquire a multitude of resistance mechanisms and express the multidrug resistance phenotype. Ceftolozane/tazobactam (C/T), a novel β-lactam/β-lactamase inhibitor combination, addresses an unmet medical need in patients with these multidrug-resistant P. aeruginosa infections. This study established the in vitro activity of ceftolozane/tazobactam (C/T) and its genotypic resistance mechanisms by whole-genome sequencing (WGS) in 195 carbapenem-nonsusceptible Pseudomonas aeruginosa (CNSPA) clinical isolates recovered from Singapore between 2009 and 2020. C/T susceptibility rates were low, at 37.9%. Cross-resistance to ceftazidime/avibactam was observed, although susceptibility to the agent was slightly higher, at 41.0%. Whole-genome sequencing revealed that C/T resistance was largely mediated by the presence of horizontally acquired β-lactamases, especially metallo-β-lactamases. These were primarily disseminated in well-recognized high-risk clones belonging to sequence types (ST) 235, 308, and 179. C/T resistance was also observed in several non-carbapenemase-producing isolates, in which resistance was likely mediated by β-lactamases and, to a smaller extent, mutations in AmpC-related genes. There was no obvious mechanism of resistance observed in five isolates. The high C/T resistance highlights the limited utility of the agent as an empirical agent in our setting. Knowledge of local molecular epidemiology is crucial in determining the potential of therapy with novel agents. IMPORTANCEPseudomonas aeruginosa infection is one of the most difficult health care-associated infections to treat due to the ability of the organism to acquire a multitude of resistance mechanisms and express the multidrug resistance phenotype. Ceftolozane/tazobactam (C/T), a novel β-lactam/β-lactamase inhibitor combination, addresses an unmet medical need in patients with these multidrug-resistant P. aeruginosa infections. Our findings demonstrate geographical variation in C/T susceptibility owing to the distinct local molecular epidemiology. This study adds on to the growing knowledge of C/T resistance, particularly mutational resistance, and will aid in the design of future β-lactams and β-lactamase inhibitors. WGS proved to be a useful tool to understand the P. aeruginosa resistome and its contribution to emerging resistance in novel antimicrobial agents.
Collapse
|
77
|
Mechanisms of Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa: Results of the GERPA Multicenter Study. Antimicrob Agents Chemother 2021; 65:AAC.01117-20. [PMID: 33199392 DOI: 10.1128/aac.01117-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Resistance mechanisms of Pseudomonas aeruginosa to ceftolozane/tazobactam (C/T) were assessed on a collection of 420 nonredundant strains nonsusceptible to ceftazidime (MIC > 8 μg/ml) and/or imipenem (>4 μg/ml), collected by 36 French hospital laboratories over a one-month period (the GERPA study). Rates of C/T resistance (MIC > 4/4 μg/ml) were equal to 10% in this population (42/420 strains), and 23.2% (26/112) among the isolates resistant to both ceftazidime and imipenem. A first group of 21 strains (50%) was found to harbor various extended-spectrum β-lactamases (1 OXA-14; 2 OXA-19; 1 OXA-35; 1 GES-9; and 3 PER-1), carbapenemases (2 GES-5; 1 IMP-8; and 8 VIM-2), or both (1 VIM-2/OXA-35 and 1 VIM-4/SHV-2a). All the strains of this group belonged to widely distributed epidemic clones (ST111, ST175, CC235, ST244, ST348, and ST654), and were highly resistant to almost all the antibiotics tested except colistin. A second group was composed of 16 (38%) isolates moderately resistant to C/T (MICs from 8/4 to 16/4 μg/ml), of which 7 were related to international clones (ST111, ST253, CC274, ST352, and ST386). As demonstrated by targeted mass spectrometry, cloxacillin-based inhibition tests, and gene bla PDC deletion experiments, this resistance phenotype was correlated with an extremely high production of cephalosporinase PDC. In part accounting for this strong PDC upregulation, genomic analyses revealed the presence of mutations in the regulator AmpR (D135N/G in 6 strains) and enzymes of the peptidoglycan recycling pathway, such as AmpD, PBP4, and Mpl (9 strains). Finally, all of the 5 (12%) remaining C/T-resistant strains (group 3) appeared to encode PDC variants with mutations known to improve the hydrolytic activity of the β-lactamase toward ceftazidime and C/T (F147L, ΔL223-Y226, E247K, and N373I). Collectively, our results highlight the importance of both intrinsic and transferable mechanisms in C/T-resistant P. aeruginosa Which mutational events lead some clinical strains to massively produce the natural cephalosporinase PDC remains incompletely understood.
Collapse
|
78
|
Gill CM, Kresken M, Seifert H, Nicolau DP. Evaluation of a Phenotypic Algorithm to Direct Carbapenemase Testing in Pseudomonas aeruginosa: Validation in a Multicenter German Cohort. Microb Drug Resist 2021; 27:1243-1248. [PMID: 33417826 DOI: 10.1089/mdr.2020.0476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa remains a prominent nosocomial pathogen. Detection of carbapenemase-producing P. aeruginosa is vital to dictate antimicrobial therapy and infection control measures. A pragmatic, minimum inhibitory concentration-based algorithm using imipenem AND meropenem-resistant plus ceftazidime-, cefepime-, and piperacillin/tazobactam-nonsusceptible criterion was derived to guide carbapenemase testing in P. aeruginosa. This study was an assessment of the algorithm's test performance in a cohort of 985 nonduplicate P. aeruginosa isolates collected from 20 German medical laboratories. Susceptibility data were assessed in the algorithm using both Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) interpretations. Sensitivity and specificity were calculated to evaluate algorithm test performance. The original algorithm criteria resulted in high specificity (95-97%) using both CLSI and EUCAST criteria; however, it failed to capture five carbapenemase-harboring isolates testing piperacillin/tazobactam susceptibility (CLSI/EUCAST). Two carbapenemase-producing isolates were also meropenem susceptible per EUCAST. A modified algorithm utilizing imipenem OR meropenem-resistant plus ceftazidime and cefepime nonsusceptible, improved the sensitivity of the criteria without significantly compromising specificity (CLSI sensitivity/specificity: 96%/94% and EUCAST sensitivity/specificity: 96%/95%). Application of the modified algorithm criteria resulted in high sensitivity and specificity using both CLSI and EUCAST interpretations in a large cohort of clinical P. aeruginosa. Utilization of this algorithm can improve the efficiency of carbapenemase testing in the clinical laboratory.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Michael Kresken
- Antiinfectives Intelligence GmbH, Rheinbach, Germany
- Rheinische Fachhochschule Köln GmbH, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
79
|
Evaluation of the Xpert Carba-R NxG Assay for Detection of Carbapenemase Genes in a Global Challenge Set of Pseudomonas aeruginosa Isolates. J Clin Microbiol 2020; 58:JCM.01098-20. [PMID: 33115845 DOI: 10.1128/jcm.01098-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022] Open
Abstract
The growing prevalence and diversity of carbapenemase producers among carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates warrants an expansion of detection capabilities. The purpose of this study was to evaluate the performance of the commercially available Xpert Carba-R (Carba-R) and the research-use-only Xpert Carba-R NxG (Carba-R NxG) in a global collection of P. aeruginosa The challenge set included 123 P. aeruginosa clinical isolates from 12 countries. Isolates were previously categorized via PCR or whole-genome sequencing. Carbapenemase classes tested include VIM, IMP, NDM, SPM, KPC, and GES. Non-carbapenemase (non-CP)-harboring isolates were also tested (negative control). Isolates were tested using the Carba-R NxG and the Carba-R tests per the manufacturer's instructions. Carba-R NxG testing was completed by Cepheid (Sunnyvale, CA), blinded to genotype. Both assays gave negative results for all non-CP isolates and positive results for all VIM, NDM, and KPC isolates. An improvement in IMP detection among isolates was observed (100% detection by Carba-R NxG versus 58% by Carba-R). All SPM and GES isolates, targets not present in commercially available Carba-R, were positive by Carba-R NxG. Two isolates harbored both VIM and GES, while a third isolate contained VIM and NDM. The Carba-R NxG identified both targets in all 3 isolates, while the Carba-R was negative for both GES-containing isolates. Overall, the Carba-R NxG successfully categorized 100% of isolates tested compared with 68% for its predecessor. The Carba-R NxG will expand the detection spectrum of the current Carba-R assay to include SPM, GES, and expanded IMP variants, increasing the global utility of the test.
Collapse
|
80
|
Tan S, Gao J, Li Q, Guo T, Dong X, Bai X, Yang J, Hao S, He F. Synergistic effect of chlorogenic acid and levofloxacin against Klebsiella pneumonia infection in vitro and in vivo. Sci Rep 2020; 10:20013. [PMID: 33203903 PMCID: PMC7672055 DOI: 10.1038/s41598-020-76895-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The study aimed to investigate the antibacterial effect and potential mechanisms of chlorogenic acid (CA) in Klebsiella pneumonia (KPN) induced infection in vitro and in vivo. 62 KPN strains were collected from the First People's Hospital of Yunnan Province. CA and CA combined Levofloxacin (LFX) were detected for KPN biofilm (BF) formation in vitro. The lung infection mice model were established by KPN. The effect of CA (500 mg/kg), LFX (50 mg/kg) and CA combined LFX (250 mg/kg + 25 mg/kg) were evaluated through the survival of mice, the changes of inflammation factors of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6 in serum, the histopathological analysis of lung and the protein expression of NLRP3 signaling pathway in vivo. A total of 62 KPNs were isolated and identified, of which 13 (21%) strains were BF positive. 8 (13%) strains were extended spectrum β-lactamase strains (ESBLs), and 20 (32%) strains are ESBLs biofilm positive. In vitro study, CA and LFX showed a synergistic effect on KPN biofilm formation. In vivo mice experiment, CA, especially CA + LFX treated group significantly decreased the serum levels of TNF-α, IL-1β and IL-6, improved the survival ratio and lung pathology changes, and also reduced the protein expression of ASC, caspase 1 p20, IL-1β and phosphor NF-κB p65. CA could effectively alleviate lung infection of KPN infected mice, and the antibacterial effection is strengthened by combined with LFX. The study provide a theroy basis for making rational and scientific antibacterial therapy strategy in clinic.
Collapse
Affiliation(s)
- Shirui Tan
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, People's Republic of China
| | - Jing Gao
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Qingrong Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, People's Republic of China
| | - Xiangshu Dong
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili, 678600, People's Republic of China
| | - Jinghui Yang
- Department of Paediatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, People's Republic of China.
- Yunnan Clinical Medical Center for Hematological Diseases, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Kunming, 650032, People's Republic of China.
| | - Shumei Hao
- School of Life Sciences, Yunnan Normal University, No.1, Yuhua Area, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China.
| | - Feifei He
- School of Agriculture, Chenggong Campus, Yunnan University, South Section, East Outer Ring Road, Chenggong District, Kunming, 650500, People's Republic of China.
| |
Collapse
|
81
|
Sid Ahmed MA, Khan FA, Sultan AA, Söderquist B, Ibrahim EB, Jass J, Omrani AS. β-lactamase-mediated resistance in MDR-Pseudomonas aeruginosa from Qatar. Antimicrob Resist Infect Control 2020; 9:170. [PMID: 33131487 PMCID: PMC7603671 DOI: 10.1186/s13756-020-00838-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/22/2020] [Indexed: 02/04/2023] Open
Abstract
Background The distribution of β-lactam resistance genes in P. aeruginosa is often closely related to the distribution of certain high-risk international clones. We used whole-genome sequencing (WGS) to identify the predominant sequence types (ST) and β-lactamase genes in clinical isolates of multidrug-resistant (MDR)-P. aeruginosa from Qatar Methods Microbiological identification and susceptibility tests were performed by automated BD Phoenix™ system and manual Liofilchem MIC Test Strips. Results Among 75 MDR-P. aeruginosa isolates; the largest proportions of susceptibility were to ceftazidime-avibactam (n = 36, 48%), followed by ceftolozane-tazobactam (30, 40%), ceftazidime (n = 21, 28%) and aztreonam (n = 16, 21.3%). All isolates possessed Class C and/or Class D β-lactamases (n = 72, 96% each), while metallo-β-lactamases were detected in 20 (26.7%) isolates. Eight (40%) metallo-β-lactamase producers were susceptible to aztreonam and did not produce any concomitant extended-spectrum β-lactamases. High risk ST235 (n = 16, 21.3%), ST357 (n = 8, 10.7%), ST389 and ST1284 (6, 8% each) were most frequent. Nearly all ST235 isolates (15/16; 93.8%) were resistant to all tested β-lactams. Conclusion MDR-P. aeruginosa isolates from Qatar are highly resistant to antipseudomonal β-lactams. High-risk STs are predominant in Qatar and their associated MDR phenotypes are a cause for considerable concern.
Collapse
Affiliation(s)
- Mazen A Sid Ahmed
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,The Life Science Centre - Biology, School of Science and Technology, Orebro University, Orebro, Sweden.
| | - Faisal Ahmad Khan
- The Life Science Centre - Biology, School of Science and Technology, Orebro University, Orebro, Sweden
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Orebro University, Orebro, Sweden
| | - Emad Bashir Ibrahim
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Jana Jass
- The Life Science Centre - Biology, School of Science and Technology, Orebro University, Orebro, Sweden
| | - Ali S Omrani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar.,Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
82
|
Hernández-García M, García-Castillo M, García-Fernández S, Melo-Cristino J, Pinto MF, Gonçalves E, Alves V, Vieira AR, Ramalheira E, Sancho L, Diogo J, Ferreira R, Silva T, Chaves C, Bou G, Cercenado E, Delgado-Valverde M, Oliver A, Pitart C, Rodríguez-Lozano J, Tormo N, Romano J, Pássaro L, Paixão L, López-Mendoza D, Díaz-Regañón J, Cantón R, Melo-Cristino J, Pinto MF, Marcelo C, Peres H, Lourenço I, Peres I, Marques J, Chantre O, Pina T, Gonçalves E, Toscano C, Alves V, Ribeiro M, Costa E, Vieira AR, Ferreira S, Diaz R, Ramalheira E, Schäfer S, Tancredo L, Sancho L, Rodrigues A, Diogo J, Ferreira R, Ramos H, Silva T, Silva D, Chaves C, Queiroz C, Nabiev A, Pássaro L, Paixao L, Romano J, Moura C. Distinct epidemiology and resistance mechanisms affecting ceftolozane/tazobactam in Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal depicted by WGS. J Antimicrob Chemother 2020; 76:370-379. [DOI: 10.1093/jac/dkaa430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Objectives
To analyse the epidemiology, the resistome and the virulome of ceftolozane/tazobactam-susceptible or -resistant Pseudomonas aeruginosa clinical isolates recovered from surveillance studies in Portugal (STEP, 2017–18) and Spain (SUPERIOR, 2016–17).
Methods
P. aeruginosa isolates were recovered from intra-abdominal, urinary tract and lower respiratory tract infections in ICU patients admitted to 11 Portuguese and 8 Spanish hospitals. MICs were determined (ISO-standard broth microdilution, EUCAST 2020 breakpoints). A subset of 28 ceftolozane/tazobactam-resistant P. aeruginosa isolates were analysed and compared with 28 ceftolozane/tazobactam-susceptible P. aeruginosa strains by WGS.
Results
Clonal complex (CC) 235 (27%) and CC175 (18%) were the most frequent, followed by CC244 (13%), CC348 (9%), CC253 (5%) and CC309 (5%). Inter-hospital clonal dissemination was observed, limited to a geographical region (CC235, CC244, CC348 and CC253 in Portugal and CC175 and CC309 in Spain). Carbapenemases were detected in 25 isolates (45%): GES-13 (13/25); VIM type (10/25) [VIM-2 (4/10), VIM-20 (3/10), VIM-1 (2/10) and VIM-36 (1/10)]; and KPC-3 (2/25). GES-13-CC235 (13/15) and VIM type-CC175 (5/10) associations were observed. Interestingly, KPC-3 and VIM-36 producers showed ceftolozane/tazobactam-susceptible phenotypes. However, ceftolozane/tazobactam resistance was significantly associated with GES-13 and VIM-type carbapenemase production. Six non-carbapenemase producers also displayed ceftolozane/tazobactam resistance, three of them showing known ceftolozane/tazobactam resistance-associated mutations in the PBP3 gene, ftsI (R504C and F533L). Overall, an extensive virulome was identified in all P. aeruginosa isolates, particularly in carbapenemase-producing strains.
Conclusions
GES-13-CC235 and VIM type-CC175 were the most frequent MDR/XDR P. aeruginosa clones causing infections in Portuguese and Spanish ICU patients, respectively. Ceftolozane/tazobactam resistance was mainly due to carbapenemase production, although mutations in PBP-encoding genes may additionally be involved.
Collapse
Affiliation(s)
| | - María García-Castillo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | - José Melo-Cristino
- Serviço de Microbiologia Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Margarida F Pinto
- Laboratório de Microbiologia, Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Central, Lisboa, Portugal
| | - Elsa Gonçalves
- Laboratório de Microbiologia Clínica Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Valquíria Alves
- Laboratório de Microbiologia, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
| | - Ana Raquel Vieira
- Serviço de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Elmano Ramalheira
- Serviço Patologia Clínica, Hospital Infante Dom Pedro, Aveiro, Portugal
| | - Luísa Sancho
- Serviço de Patologia Clínica, Hospital Prof. Dr. Fernando da Fonseca, Amadora, Portugal
| | - José Diogo
- Serviço de Microbiologia, Hospital Garcia de Orta, Almada, Portugal
| | - Rui Ferreira
- Serviço de Patologia Clínica–Microbiologia–CHUA–Unidade de Portimão, Portimão, Portugal
| | - Tânia Silva
- Serviço de Microbiologia do Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Catarina Chaves
- Serviço de Microbiologia, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Germán Bou
- Servicio de Microbiología, Hospital Universitario A Coruña, A Coruña, Spain
| | - Emilia Cercenado
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mercedes Delgado-Valverde
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Cristina Pitart
- Servicio de Microbiología, Hospital Clínic i Provincial, Barcelona, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Nuria Tormo
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | | | | | | | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Hernández-García M, García-Fernández S, García-Castillo M, Bou G, Cercenado E, Delgado-Valverde M, Mulet X, Pitart C, Rodríguez-Lozano J, Tormo N, López-Mendoza D, Díaz-Regañón J, Cantón R. WGS characterization of MDR Enterobacterales with different ceftolozane/tazobactam susceptibility profiles during the SUPERIOR surveillance study in Spain. JAC Antimicrob Resist 2020; 2:dlaa084. [PMID: 34223039 PMCID: PMC8210196 DOI: 10.1093/jacamr/dlaa084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives To analyse by WGS the ceftolozane/tazobactam (C/T) resistance mechanisms in Escherichia coli and Klebsiella spp. isolates recovered from complicated intra-abdominal and urinary tract infections in patients from Spanish ICUs (SUPERIOR surveillance study, 2016-17). Methods The clonal relatedness, the resistome and the virulome of 45 E. coli and 43 Klebsiella spp. isolates with different C/T susceptibility profiles were characterized. Results In E. coli, two (C/T susceptible) carbapenemase producers (VIM-2-CC23, OXA-48-ST38) were detected. The most relevant clone was ST131-B2-O25:H4-H30 (17/45), particularly the CTX-M-15-ST131-H30-Rx sublineage (15/17). ST131 strains were mainly C/T susceptible (15/17) and showed an extensive virulome. In non-ST131 strains (28/45), CTX-M enzymes [CTX-M-14 (8/24); CTX-M-15 (6/24); CTX-M-1 (3/24); CTX-M-32 (2/24)] were found in different clones. C/T resistance was detected in non-clonal E. coli isolates (13%, 6/45) with ESBL (4/6) and non-ESBL (2/6) genotypes. Among Klebsiella spp., Klebsiella pneumoniae (42/43) and Klebsiella michiganensis (1/43) species were identified; 42% (18/43) were carbapenemase producers and 58% showed a C/T resistance phenotype (25/43). OXA-48-ST11 (12/18), OXA-48-ST392 (2/18), OXA-48-ST15 (2/18), NDM-1-ST101 (1/18) and OXA-48+VIM-2-ST15 (1/18) isolates were found, all C/T resistant. Correlation between carbapenemase detection and resistance to C/T was demonstrated (P < 0.001). In non-carbapenemase-producing K. pneumoniae (25/43), C/T resistance (28%, 7/25) was detected in ESBL (3/7) and AmpC (2/7) producers. Overall, an extensive virulome was found and was correlated with carbapenemase carriage (P < 0.001) and C/T resistance (P < 0.05), particularly in OXA-48-ST11 strains (P < 0.05). Conclusions Prediction of antimicrobial susceptibility profiles using WGS is challenging. Carbapenemase-encoding genes are associated with C/T resistance in K. pneumoniae, but other resistance mechanisms might be additionally involved.
Collapse
Affiliation(s)
| | | | | | - Germán Bou
- Servicio de Microbiología, Hospital Universitario A Coruña, A Coruña, Spain
| | - Emilia Cercenado
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mercedes Delgado-Valverde
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Xavier Mulet
- Servicio de Microbiología, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Cristina Pitart
- Laboratorio de Microbiología. Hospital Clínic i Provincial, Barcelona, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Nuria Tormo
- Servicio de Microbiología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | - Rafael Cantón
- Servicio de Microbiología, Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | | |
Collapse
|
84
|
Adler A, Katz DE, Marchaim D. The Continuing Plague of Extended-Spectrum β-Lactamase Producing Enterbacterales Infections: An Update. Infect Dis Clin North Am 2020; 34:677-708. [PMID: 33011052 DOI: 10.1016/j.idc.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is a common iatrogenic complication of modern life and medical care. One of the most demonstrative examples is the exponential increase in the incidence of extended-spectrum β-lactamases (ESBLs) production among Enterobacteriaceae, that is, the most common human pathogens outside of the hospital setting. Infections resulting from ESBL-producing bacteria are associated with devastating outcomes, now affecting even previously healthy individuals. This poses an enormous burden and threat to public health. This article aims to narrate the evolving epidemiology of ESBL infections and highlights current challenges in terms of management and prevention of these common infections.
Collapse
Affiliation(s)
- Amos Adler
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, Tel-Aviv 6423906 Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David E Katz
- Division of Internal Medicine, Shaare Zedek Medical Center, 12 Shmuel Bait Street, Jerusalem 9103102, Israel
| | - Dror Marchaim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel.
| |
Collapse
|
85
|
Papp-Wallace KM, Mack AR, Taracila MA, Bonomo RA. Resistance to Novel β-Lactam-β-Lactamase Inhibitor Combinations: The "Price of Progress". Infect Dis Clin North Am 2020; 34:773-819. [PMID: 33011051 DOI: 10.1016/j.idc.2020.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significant advances were made in antibiotic development during the past 5 years. Novel agents were added to the arsenal that target critical priority pathogens, including multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacterales. Of these, 4 novel β-lactam-β-lactamase inhibitor combinations (ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam) reached clinical approval in the United States. With these additions comes a significant responsibility to reduce the possibility of emergence of resistance. Reports in the rise of resistance toward ceftolozane-tazobactam and ceftazidime-avibactam are alarming. Clinicians and scientists must make every attempt to reverse or halt these setbacks.
Collapse
Affiliation(s)
- Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA.
| | - Andrew R Mack
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Magdalena A Taracila
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA.
| |
Collapse
|
86
|
Aires-de-Sousa M, Fournier C, Lopes E, de Lencastre H, Nordmann P, Poirel L. High Colonization Rate and Heterogeneity of ESBL- and Carbapenemase-Producing Enterobacteriaceae Isolated from Gull Feces in Lisbon, Portugal. Microorganisms 2020; 8:microorganisms8101487. [PMID: 32998209 PMCID: PMC7601013 DOI: 10.3390/microorganisms8101487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/27/2022] Open
Abstract
In order to evaluate whether seagulls living on the Lisbon coastline, Portugal, might be colonized and consequently represent potential spreaders of multidrug-resistant bacteria, a total of 88 gull fecal samples were screened for detection of extended-spectrum β-lactamase (ESBL)- or carbapenemase-producing Enterobacteriaceae for methicillin-resistant Staphylococcus aureus (MRSA) and for vancomycin-resistant Enterococci (VRE). A large proportion of samples yielded carbapenemase- or ESBL-producing Enterobacteriaceae (16% and 55%, respectively), while only two MRSA and two VRE were detected. Mating-out assays followed by PCR and whole-plasmid sequencing allowed to identify carbapenemase and ESBL encoding genes. Among 24 carbapenemase-producing isolates, there were mainly Klebsiella pneumoniae (50%) and Escherichia coli (33%). OXA-181 was the most common carbapenemase identified (54%), followed by OXA-48 (25%) and KPC-2 (17%). Ten different ESBLs were found among 62 ESBL-producing isolates, mainly being CTX-M-type enzymes (87%). Co-occurrence in single samples of multiple ESBL- and carbapenemase producers belonging to different bacterial species was observed in some cases. Seagulls constitute an important source for spreading multidrug-resistant bacteria in the environment and their gut microbiota a formidable microenvironment for transfer of resistance genes within bacterial species.
Collapse
Affiliation(s)
- Marta Aires-de-Sousa
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.A.-d.-S.); (C.F.); (P.N.)
- Escola Superior de Saúde da Cruz Vermelha Portuguesa, 1300 Lisbon, Portugal
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780 Oeiras, Portugal; (E.L.); (H.d.L.)
| | - Claudine Fournier
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.A.-d.-S.); (C.F.); (P.N.)
| | - Elizeth Lopes
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780 Oeiras, Portugal; (E.L.); (H.d.L.)
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780 Oeiras, Portugal; (E.L.); (H.d.L.)
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.A.-d.-S.); (C.F.); (P.N.)
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), CH-1700 Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.A.-d.-S.); (C.F.); (P.N.)
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), CH-1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
87
|
Idowu T, Ammeter D, Brizuela M, Jackson G, Alam S, Schweizer F. Overcoming β-Lactam resistance in Pseudomonas aeruginosa using non-canonical tobramycin-based antibiotic adjuvants. Bioorg Med Chem Lett 2020; 30:127575. [PMID: 32980511 DOI: 10.1016/j.bmcl.2020.127575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
β-Lactam antibiotics have for long been a mainstay in antimicrobial chemotherapy. However, due to its ubiquitous usage, bacteria have evolved multiple concerted pathways to evade its actions, underscoring the complexity of resistance to this class of drug. Current strategies to mitigate this problem are geared towards developing inhibitors that can shield the β-lactam core from enzymatic hydrolysis. In reality, a combination of factors including porin loss, overexpressed efflux pumps, expression of β-lactamases, reduced outer membrane permeability, and target modifications are characteristics of phenotypes that are microbiologically resistant to β-lactam antibiotics, especially Pseudomonas aeruginosa. Herein, we describe a strategy that may simultaneously address multiple mechanisms of resistance to β-lactams. A triple combination with β-lactam/β-lactamase inhibitors offers better microbiological response against carbapenem-resistant P. aeruginosa than the current standard of care. The observed interactions are also unaffected by efflux pumps. We conclude that a multicomponent combination therapy may be the way forward in addressing the myriads of emerging therapy failure associated with β-lactam resistance.
Collapse
Affiliation(s)
- Temilolu Idowu
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Derek Ammeter
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Marc Brizuela
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Gregory Jackson
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shadman Alam
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 1R9, Canada.
| |
Collapse
|
88
|
Sid Ahmed MA, Abdel Hadi H, Hassan AAI, Abu Jarir S, Al-Maslamani MA, Eltai NO, Dousa KM, Hujer AM, Sultan AA, Soderquist B, Bonomo RA, Ibrahim EB, Jass J, Omrani AS. Evaluation of in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against MDR Pseudomonas aeruginosa isolates from Qatar. J Antimicrob Chemother 2020; 74:3497-3504. [PMID: 31504587 DOI: 10.1093/jac/dkz379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES To investigate the in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against clinical isolates of MDR Pseudomonas aeruginosa from Qatar, as well as the mechanisms of resistance. METHODS MDR P. aeruginosa isolated between October 2014 and September 2015 from all public hospitals in Qatar were included. The BD PhoenixTM system was used for identification and initial antimicrobial susceptibility testing, while Liofilchem MIC Test Strips (Liofilchem, Roseto degli Abruzzi, Italy) were used for confirmation of ceftazidime/avibactam and ceftolozane/tazobactam susceptibility. Ten ceftazidime/avibactam- and/or ceftolozane/tazobactam-resistant isolates were randomly selected for WGS. RESULTS A total of 205 MDR P. aeruginosa isolates were included. Of these, 141 (68.8%) were susceptible to ceftazidime/avibactam, 129 (62.9%) were susceptible to ceftolozane/tazobactam, 121 (59.0%) were susceptible to both and 56 (27.3%) were susceptible to neither. Twenty (9.8%) isolates were susceptible to ceftazidime/avibactam but not to ceftolozane/tazobactam and only 8 (3.9%) were susceptible to ceftolozane/tazobactam but not to ceftazidime/avibactam. Less than 50% of XDR isolates were susceptible to ceftazidime/avibactam or ceftolozane/tazobactam. The 10 sequenced isolates belonged to six different STs and all produced AmpC and OXA enzymes; 5 (50%) produced ESBL and 4 (40%) produced VIM enzymes. CONCLUSIONS MDR P. aeruginosa susceptibility rates to ceftazidime/avibactam and ceftolozane/tazobactam were higher than those to all existing antipseudomonal agents, except colistin, but were less than 50% in extremely resistant isolates. Non-susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam was largely due to the production of ESBL and VIM enzymes. Ceftazidime/avibactam and ceftolozane/tazobactam are possible options for some patients with MDR P. aeruginosa in Qatar.
Collapse
Affiliation(s)
- Mazen A Sid Ahmed
- Microbiology Division, Hamad Medical Corporation, Doha, Qatar.,The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Hamad Abdel Hadi
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | | | | | | | | | - Khalid M Dousa
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Louis Stokes Cleveland, Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Bo Soderquist
- The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Louis Stokes Cleveland, Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,The CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | | | - Jana Jass
- The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Ali S Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
89
|
Pathogenicity Genomic Island-Associated CrpP-Like Fluoroquinolone-Modifying Enzymes among Pseudomonas aeruginosa Clinical Isolates in Europe. Antimicrob Agents Chemother 2020; 64:AAC.00489-20. [PMID: 32340994 DOI: 10.1128/aac.00489-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.
Collapse
|
90
|
A Dimer, but Not Monomer, of Tobramycin Potentiates Ceftolozane against Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa and Delays Resistance Development. Antimicrob Agents Chemother 2020; 64:AAC.02055-19. [PMID: 31907191 DOI: 10.1128/aac.02055-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ceftolozane-tazobactam is a potent β-lactam/β-lactamase inhibitor combination approved for the treatment of complicated intraabdominal and complicated urinary tract infections and, more recently, the treatment of hospital-acquired and ventilator-associated bacterial pneumonia. Although the activities of ceftolozane are not enhanced by tazobactam against Pseudomonas aeruginosa, it remains the most potent antipseudomonal agent approved to date. Emerging data worldwide has included reports of microbiological failure in patients with serious bacterial infections caused by multidrug-resistant (MDR) P. aeruginosa as a result of ceftolozane resistance developed within therapy. The objective of this study is to compare the efficacy of a tobramycin homodimer plus ceftolozane versus ceftolozane-tazobactam alone against MDR and extensively drug-resistant (XDR) P. aeruginosa Tobramycin homodimer, a synthetic dimer of two monomeric units of tobramycin, was developed to abrogate the ribosomal properties of tobramycin with a view to mitigating aminoglycoside-related toxicity and resistance. Herein, we report that tobramycin homodimer, a nonribosomal aminoglycoside derivative, potentiates the activities of ceftolozane versus MDR/XDR P. aeruginosa in vitro and delays the emergence of resistance to ceftolozane-tazobactam in the wild-type PAO1 strain. This combination is also more potent than a standard ceftazidime-avibactam combination against these isolates. Conversely, a tobramycin monomer with intrinsic ribosomal properties does not potentiate ceftolozane under similar conditions. Susceptibility and checkerboard studies were assessed using serial 2-fold dilution assays, following the Clinical and Laboratory Standards Institute (CLSI) guidelines. This strategy provides an avenue to further preserve the clinical utility of ceftolozane and enhances its spectrum of activity against one of the most difficult-to-treat pathogens in hospitals.
Collapse
|
91
|
Aires-de-Sousa M, Ortiz de la Rosa JM, Gonçalves ML, Pereira AL, Nordmann P, Poirel L. Epidemiology of Carbapenemase-Producing Klebsiella pneumoniae in a Hospital, Portugal. Emerg Infect Dis 2020; 25:1632-1638. [PMID: 31441424 PMCID: PMC6711212 DOI: 10.3201/eid2509.190656] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to provide updated epidemiologic data on carbapenem-resistant Klebsiella pneumoniae in Portugal by characterizing all isolates (N = 46) recovered during 2013–2018 in a 123-bed hospital in Lisbon. We identified blaKPC-3 (n = 36), blaOXA-181 (n = 9), and blaGES-5 (n = 8) carbapenemase genes and observed co-occurrence of blaKPC-3 and blaGES-5 in 7 isolates. A single GES-5–producing isolate co-produced the extended-spectrum β-lactamase BEL-1; both corresponding genes were co-located on the same ColE1-like plasmid. The blaOXA-181 gene was always located on an IncX3 plasmid, whereas blaKPC-3 was carried on IncN, IncFII, IncFIB, and IncFIIA plasmid types. The 46 isolates were distributed into 13 pulsotypes and 9 sequence types. All isolates remained susceptible to ceftazidime/avibactam, but some exhibited reduced antimicrobial susceptibility (MIC = 3 mg/L).
Collapse
|
92
|
Intestinal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae at admission in a Portuguese hospital. Eur J Clin Microbiol Infect Dis 2019; 39:783-790. [PMID: 31873863 DOI: 10.1007/s10096-019-03798-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022]
Abstract
To evaluate the prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae fecal carriers at admission in a Portuguese hospital and to determine the epidemiology and antimicrobial resistance patterns of ESBL-producing isolates. During a 2-month period, rectal swabs were collected at hospital admission from 151 at-risk patients. In addition, 48 rectal swabs were obtained from weekly screenings of 37 patients hospitalized for > 48 h. All ESBL/carbapenemase-producing isolates were tested for antimicrobial susceptibility and characterized by PFGE and MLST. The prevalence of ESBL producers at hospital admission was 17% and 24% among at-risk patients hospitalized for > 48 h, while the prevalence of carbapenemase producers was 3% in both cases. Most of the isolates were Escherichia coli (54%) and Klebsiella pneumoniae (41%). The most common ESBL identified was CTX-M-15 (n = 17/34; 50%), followed by CTX-M-27 (n = 10; 29%), CTX-M-33 (n = 4; 12%), SHV-12 (n = 2), and CTX-M-55 (n = 1). The 20 E. coli isolates were distributed into 16 PFGE types and nine sequence types (ST), with 60% of the isolates belonging to ST131. The 15 K. pneumoniae were grouped into 12 PFGE types and nine STs, with three STs (ST17, ST449, ST147) corresponding to 60% of the isolates. A high proportion of isolates showed resistance to ciprofloxacin (86%), trimethoprim-sulfamethoxazole (68%), tobramycin (57%), and gentamicin (43%). All isolates remained susceptible to fosfomycin. A high prevalence of ESBL-producing Enterobacteriaceae was found at hospital admission among at-risk patients and > 50% of the isolates showed resistance to first-line antibiotics for the treatment of lower urinary tract infections, leaving fosfomycin as an alternative.
Collapse
|
93
|
CTX-M-33, a CTX-M-15 derivative conferring reduced susceptibility to carbapenems. Antimicrob Agents Chemother 2019:AAC.01515-19. [PMID: 31527021 DOI: 10.1128/aac.01515-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CTX-M-type extended-spectrum ß-lactamases (ESBL) are widespread among Enterobacterales worldwide. The most common variant is CTX-M-15 hydrolyzing ceftazidime at high rate, but sparing carbapenems. We identified here CTX-M-33, a point mutant derivative of CTX-M-15 (Asp to Ser substitution at Ambler position 109), exhibiting a low carbapenemase activity. ß-Lactamase CTX-M-33 was identified in a Klebsiella pneumoniae isolate belonging to ST405, lacking the outer membrane protein OmpK36, that was resistant to broad-spectrum cephalosporins and ß-lactam/ß-lactamase inhibitor combinations, and displayed a decreased susceptibility to carbapenems. Comparative hydrolytic activity assays showed that CTX-M-33 hydrolyzed ceftazidime at a lower level than CTX-M-15, but significantly hydrolyzed meropenem. In addition, CTX-M-33 showed higher Mutant Prevention Concentration values and wider mutant selection window in presence of meropenem, in accordance with its observed hydrolytic properties. We identified here the very first CTX-M enzyme possessing a weak carbapenemase activity, that may correspond to an emerging phenomenon when considering its possibility to evolve from the widespread ESBL CTX-M-15.
Collapse
|