52
|
Richet N, Afif D, Tozo K, Pollet B, Maillard P, Huber F, Priault P, Banvoy J, Gross P, Dizengremel P, Lapierre C, Perré P, Cabané M. Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula x alba). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4291-301. [PMID: 22553285 PMCID: PMC3398455 DOI: 10.1093/jxb/ers118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 05/07/2023]
Abstract
Trees will have to cope with increasing levels of CO(2) and ozone in the atmosphere. The purpose of this work was to assess whether the lignification process could be altered in the wood of poplars under elevated CO(2) and/or ozone. Young poplars were exposed either to charcoal-filtered air (control), to elevated CO(2) (800 μl l(-1)), to ozone (200 nl l(-1)) or to a combination of elevated CO(2) and ozone in controlled chambers. Lignification was analysed at different levels: biosynthesis pathway activities (enzyme and transcript), lignin content, and capacity to incorporate new assimilates by using (13)C labelling. Elevated CO(2) and ozone had opposite effects on many parameters (growth, biomass, cambial activity, wood cell wall thickness) except on lignin content which was increased by elevated CO(2) and/or ozone. However, this increased lignification was due to different response mechanisms. Under elevated CO(2), carbon supply to the stem and effective lignin synthesis were enhanced, leading to increased lignin content, although there was a reduction in the level of some enzyme and transcript involved in the lignin pathway. Ozone treatment induced a reduction in carbon supply and effective lignin synthesis as well as transcripts from all steps of the lignin pathway and some corresponding enzyme activities. However, lignin content was increased under ozone probably due to variations in other major components of the cell wall. Both mechanisms seemed to coexist under combined treatment and resulted in a high increase in lignin content.
Collapse
Affiliation(s)
- Nicolas Richet
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| | - Dany Afif
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| | - Koffi Tozo
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
- Département de Botanique, Faculté des Sciences, Université de Lomé, BP 1515 Lomé, Togo
| | - Brigitte Pollet
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles, France
| | - Pascale Maillard
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| | - Françoise Huber
- INRA, UMR 1092 LERFOB, ENGREF, 14 rue Girardet, F-54042 Nancy cedex, France; AgroParisTech, UMR 1092 LERFOB, 14 rue Girardet, F-54042 Nancy cedex, France
| | - Pierrick Priault
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| | - Jacques Banvoy
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| | - Patrick Gross
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| | - Pierre Dizengremel
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles, France
| | - Patrick Perré
- INRA, UMR 1092 LERFOB, ENGREF, 14 rue Girardet, F-54042 Nancy cedex, France; AgroParisTech, UMR 1092 LERFOB, 14 rue Girardet, F-54042 Nancy cedex, France
- Ecole Centrale Paris, LGPM, Grande Voie des Vignes, 92 295 Châtenay-Malabry, France
| | - Mireille Cabané
- Nancy-Université, UMR 1137 Ecologie et Ecophysiologie Forestières, Boulevard des Aiguillettes, BP 70239, F-54506 Vandœuvre lès Nancy, France; INRA, UMR 1137 Ecologie et Ecophysiologie Forestières, F-54280 Champenoux, France
| |
Collapse
|
53
|
Galant A, Koester RP, Ainsworth EA, Hicks LM, Jez JM. From climate change to molecular response: redox proteomics of ozone-induced responses in soybean. THE NEW PHYTOLOGIST 2012; 194:220-229. [PMID: 22272738 DOI: 10.1111/j.1469-8137.2011.04037.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Ozone (O₃) causes significant agricultural losses, with soybean (Glycine max) being highly sensitive to this oxidant. Here we assess the effect of elevated seasonal O₃ exposure on the total and redox proteomes of soybean. • To understand the molecular responses to O₃ exposure, soybean grown at the Soybean Free Air Concentration Enrichment facility under ambient (37 ppb), moderate (58 ppb), and high (116 ppb) O₃ concentrations was examined by redox-sensitive thiol labeling, mass spectrometry, and targeted enzyme assays. • Proteomic analysis of soybean leaf tissue exposed to high O₃ concentrations reveals widespread changes. In the high-O₃ treatment leaf, 35 proteins increased up to fivefold in abundance, 22 proteins showed up to fivefold higher oxidation, and 22 proteins increased in both abundance and oxidation. These changes occurred in carbon metabolism, photosynthesis, amino acid synthesis, flavonoid and isoprenoid biosynthesis, signaling and homeostasis, and antioxidant pathways. • This study shows that seasonal O₃ exposure in soybean alters the abundance and oxidation state of redox-sensitive multiple proteins and that these changes reflect a combination of damage effects and adaptive responses that influence a wide range of metabolic processes, which in some cases may help mitigate oxidative stress.
Collapse
Affiliation(s)
- Ashley Galant
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | - Robert P Koester
- Department of Plant Biology, 1201 West Gregory Drive, MC-051, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Ainsworth
- Department of Plant Biology, 1201 West Gregory Drive, MC-051, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- USDA-ARS Global Change and Photosynthesis Research Unit, 1201 West Gregory Drive, MC-051, Urbana, IL 61801, USA
| | - Leslie M Hicks
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Joseph M Jez
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| |
Collapse
|
54
|
Gillespie KM, Xu F, Richter KT, McGrath JM, Markelz RJC, Ort DR, Leakey ADB, Ainsworth EA. Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. PLANT, CELL & ENVIRONMENT 2012; 35:169-84. [PMID: 21923758 DOI: 10.1111/j.1365-3040.2011.02427.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration ([CO(2)]) is increasing at an unprecedented rate and will surpass 550 ppm by 2050. This study investigated the molecular, biochemical and physiological changes in soybean exposed to elevated [O(3) ] in a background of ambient [CO(2)] and elevated [CO(2)] in the field. Previously, it has been difficult to demonstrate any link between antioxidant defences and O(3) stress under field conditions. However, this study used principle components analysis to separate variability in [O(3)] from variability in other environmental conditions (temperature, light and relative humidity). Subsequent analysis of covariance determined that soybean antioxidant metabolism increased with increasing [O(3)], in both ambient and elevated [CO(2)]. The transcriptional response was dampened at elevated [CO(2)], consistent with lower stomatal conductance and lower O(3) flux into leaves. Energetically expensive increases in antioxidant metabolism and tetrapyrrole synthesis at elevated [O(3)] were associated with greater transcript levels of enzymes involved in respiratory metabolism.
Collapse
Affiliation(s)
- Kelly M Gillespie
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|