51
|
Passamonti M, Ricci A, Milani L, Ghiselli F. Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae). BMC Genomics 2011; 12:442. [PMID: 21896183 PMCID: PMC3176263 DOI: 10.1186/1471-2164-12-442] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. RESULTS Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. CONCLUSIONS The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria.
Collapse
Affiliation(s)
- Marco Passamonti
- Department of Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
52
|
Goto TV, Tamate HB, Hanzawa N. Phylogenetic Characterization of Three Morphs of Mussels (Bivalvia, Mytilidae) Inhabiting Isolated Marine Environments in Palau Islands. Zoolog Sci 2011; 28:568-79. [DOI: 10.2108/zsj.28.568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
53
|
Breton S, Ghiselli F, Passamonti M, Milani L, Stewart DT, Hoeh WR. Evidence for a fourteenth mtDNA-encoded protein in the female-transmitted mtDNA of marine Mussels (Bivalvia: Mytilidae). PLoS One 2011; 6:e19365. [PMID: 21556327 PMCID: PMC3083442 DOI: 10.1371/journal.pone.0019365] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/02/2011] [Indexed: 11/30/2022] Open
Abstract
Background A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. Methodology/Principal Findings We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. Conclusions/Significance Our results offer support for the hypothesis that “novel F genome-specific mitochondrial genes” are involved in key biological functions in bivalve species with DUI.
Collapse
Affiliation(s)
- Sophie Breton
- Kent State University, Kent, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|
54
|
Xu X, Wu X, Yu Z. The mitogenome of Paphia euglypta (Bivalvia: Veneridae) and comparative mitogenomic analyses of three venerids. Genome 2011; 53:1041-52. [PMID: 21164537 DOI: 10.1139/g10-096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extraordinary variation has been found in mitochondrial (mt) genome inheritance, gene content and arrangement among bivalves. However, only few bivalve mt genomes have been comparatively analyzed to infer their evolutionary scenarios. In this study, the complete mt genome of the venerid Paphia euglypta (Bivalvia: Veneridae) was firstly studied and, secondly, it was comparatively analyzed with other venerids (e.g., Venerupis philippinarum and Meretrix petechialis) to better understand the mt genome evolution within a family. Though several common features such as the AT content, codon usage of protein-coding genes, and AT/GC skew are shared by the three venerids, a high level of variability is observed in genome size, gene content, gene order, arrangements and primary sequence of nucleotides or amino acids. Most of the gene rearrangement can be explained by the "tandem duplication and random loss" model. From the observed rearrangement patterns, we speculate that block interchange between adjacent genes may be common in the evolution of mt genomes in venerids. Furthermore, this study presents several new findings in mt genome annotation of V. philippinarum and M. petechialis, and hence we have reannotated the genome of these two species as: (1) the ORF of the formerly annotated cox2 gene in V. philippinarum is deduced by using a truncated "T" codon and a second cox2 gene is identified; (2) the trnS-AGN gene is identified and marked in the mt genome of both venerids. Thus, this study demonstrated a high variability of mt genomes in the Veneridae, and showed the importance of comparative mt genome analysis to interpret the evolution of the bivalve mt genome.
Collapse
Affiliation(s)
- Xiaodong Xu
- Key Laboratory of Marine Bio-resource Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | | | | |
Collapse
|
55
|
Characteristics of mitochondrial DNA of unionid bivalves (Mollusca: Bivalvia: Unionidae). I. Detection and characteristics of doubly uniparental inheritance (DUI) of unionid mitochondrial DNA. FOLIA MALACOLOGICA 2011. [DOI: 10.2478/v10125-010-0015-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
56
|
Characteristics of mitochondrial DNA of unionid bivalves (Mollusca: Bivalvia: Unionidae). II. Comparison of complete sequences of maternally inherited mitochondrial genomes of Sinanodonta woodiana and Unio pictorum. FOLIA MALACOLOGICA 2011. [DOI: 10.2478/v10125-010-0016-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
57
|
Ladoukakis ED, Theologidis I, Rodakis GC, Zouros E. Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes. Mol Biol Evol 2011; 28:1847-59. [PMID: 21220759 DOI: 10.1093/molbev/msr007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination is restricted to sequences of low divergence. This is attributed to the mismatch repairing system (MMR), which does not allow recombination between sequences that are highly divergent. This acts as a safeguard against recombination between nonhomologous sequences that could result in genome imbalance. Here, we report recombination between maternal and paternal mitochondrial genomes of the sea mussel, whose sequences differ by >20%. We propose that the strict maternal inheritance of the animal mitochondrial DNA and the ensuing homoplasmy has relieved the MMR system of the animal mitochondrion from the pressure to tolerate recombination only among sequences with a high degree of similarity.
Collapse
|
58
|
Ren J, Liu X, Jiang F, Guo X, Liu B. Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia. BMC Evol Biol 2010; 10:394. [PMID: 21189147 PMCID: PMC3040558 DOI: 10.1186/1471-2148-10-394] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 12/28/2010] [Indexed: 11/18/2022] Open
Abstract
Background Oysters are morphologically plastic and hence difficult subjects for taxonomic and evolutionary studies. It is long been suspected, based on the extraordinary species diversity observed, that Asia Pacific is the epicenter of oyster speciation. To understand the species diversity and its evolutionary history, we collected five Crassostrea species from Asia and sequenced their complete mitochondrial (mt) genomes in addition to two newly released Asian oysters (C. iredalei and Saccostrea mordax) for a comprehensive analysis. Results The six Asian Crassostrea mt genomes ranged from 18,226 to 22,446 bp in size, and all coded for 39 genes (12 proteins, 2 rRNAs and 25 tRNAs) on the same strand. Their genomes contained a split of the rrnL gene and duplication of trnM, trnK and trnQ genes. They shared the same gene order that differed from an Atlantic sister species by as many as nine tRNA changes (6 transpositions and 3 duplications) and even differed significantly from S. mordax in protein-coding genes. Phylogenetic analysis indicates that the six Asian Crassostrea species emerged between 3 and 43 Myr ago, while the Atlantic species evolved 83 Myr ago. Conclusions The complete conservation of gene order in the six Asian Crassostrea species over 43 Myr is highly unusual given the remarkable rate of rearrangements in their sister species and other bivalves. It provides strong evidence for the recent speciation of the six Crassostrea species in Asia. It further indicates that changes in mt gene order may not be strictly a function of time but subject to other constraints that are presently not well understood.
Collapse
Affiliation(s)
- Jianfeng Ren
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
59
|
Complete mtDNA of Meretrix lusoria (Bivalvia: Veneridae) reveals the presence of an atp8 gene, length variation and heteroplasmy in the control region. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:256-64. [DOI: 10.1016/j.cbd.2010.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 11/22/2022]
|
60
|
Śmietanka B, Burzyński A, Wenne R. Comparative Genomics of Marine Mussels (Mytilus spp.) Gender Associated mtDNA: Rapidly Evolving atp8. J Mol Evol 2010; 71:385-400. [DOI: 10.1007/s00239-010-9393-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/17/2010] [Indexed: 01/07/2023]
|
61
|
Kyriakou E, Zouros E, Rodakis GC. The atypical presence of the paternal mitochondrial DNA in somatic tissues of male and female individuals of the blue mussel species Mytilus galloprovincialis. BMC Res Notes 2010; 3:222. [PMID: 20691065 PMCID: PMC2924344 DOI: 10.1186/1756-0500-3-222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 08/06/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In animals mtDNA inheritance is maternal except in certain molluscan bivalve species which have a paternally inherited mitochondrial genome (genome M) along with the standard maternal one (genome F). Normally, the paternal genome occurs in the male gonad, but it can be often found, as a minority, in somatic tissues of males and females. This may happen in two ways. One is through "sperm mtDNA leakage" into somatic tissues, a deviation from the normal situation in which the sperm mtDNA vanishes in females or ends up exclusively in the germ line of males. The other is through "egg heteroplasmy", when the egg contains, in small quantities, the paternal genome in addition to maternal genome. FINDINGS To test the two hypotheses, we compared the sequences of one of the most variable domains of the M molecule in a somatic tissue (foot) and in the sperm of ten male and in the foot of ten female individuals of M. galloprovincialis. Presence of the M genome was rarer in the foot of females than males. The M genome in the sperm and in the foot of males was identical. CONCLUSIONS Given that the surveyed region differs from individual to individual, the identity of the M genome in the foot and the sperm of males supports strongly the hypothesis that, at least for the tissue examined, the presence of the M genome is due to sperm mtDNA leakage.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece.
| | | | | |
Collapse
|
62
|
Curole JP, Meyer E, Manahan DT, Hedgecock D. Unequal and genotype-dependent expression of mitochondrial genes in larvae of the pacific oyster Crassostrea gigas. THE BIOLOGICAL BULLETIN 2010; 218:122-131. [PMID: 20413789 DOI: 10.1086/bblv218n2p122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mitochondria are essential for regulation of energy metabolism, but little is known about patterns of mitochondrial genome expression in invertebrates. To explore the association of mitochondrial expression with differential growth of Crassostrea gigas, the Pacific oyster, we crossed two inbred lines to produce inbred and hybrid larvae, which grew at different rates under the same environmental conditions. Using high-throughput cloning and sequencing methods, we identified 1.1 million expressed sequence tags from the mitochondrial genome, 96.7% of which were perfect matches to genes targeted by the method. Expression varied significantly among genes, ranging over nearly four orders of magnitude, from mt:lRNA, which constituted 21% of all transcripts, to mt:CoII, which constituted less than 0.02% of all transcripts. Variable expression of genes coding for subunits of macromolecular complexes (e.g., mt:CoI and mt:CoII) implies that stoichiometry in these complexes must be regulated post-transcriptionally. Surprisingly, the mitochondrial transcriptome contained non-coding transcripts, which may play a role in the regulation of mitochondrial function. Finally, mitochondrial expression depended strongly on maternal factors and nuclear-cytoplasmic interactions, which may explain previously observed growth differences between reciprocal hybrids. Differences in mitochondrial gene expression could provide a biochemical index for the metabolic basis of genetically determined differences in larval growth.
Collapse
Affiliation(s)
- Jason P Curole
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371, USA
| | | | | | | |
Collapse
|
63
|
Zbawicka M, Burzyński A, Skibinski D, Wenne R. Scottish Mytilus trossulus mussels retain ancestral mitochondrial DNA: complete sequences of male and female mtDNA genomes. Gene 2010; 456:45-53. [PMID: 20206245 DOI: 10.1016/j.gene.2010.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/01/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Mytilus trossulus mussels occur in North America and in the Baltic Sea. Recently genetic markers for the three Mytilus subspecies M. edulis, M. galloprovincialis, and M. trossulus, have been detected at Loch Etive in Scotland suggesting mixed ancestry for this population. Of particular interest is the evidence that M. trossulus occurs at Loch Etive because it had not previously been reported in the British Isles. In the present study, analysis of subspecies-specific diagnostic nuclear DNA markers confirms the presence of a high frequency of mussels with M. trossulus ancestry at Loch Etive. The genetic structure suggests hybridisation at an intermediate stage compared with North American populations, where there is little hybridisation, and Baltic populations where there is extensive introgression. This points strongly against a Baltic origin for Loch Etive M. trossulus. The F and M mitochondrial DNA (mtDNA) genomes of Baltic M. trossulus are similar in sequence to the corresponding genomes in M. edulis and believed to be derived by introgression from that subspecies. Both F and M mtDNA genomes are observed at Loch Etive consistent with the presence of doubly uniparental inheritance. Here we provide the complete sequences of the three M. trossulus mtDNA genomes (one F and two M) from Loch Etive. These genomes are extremely similar to the corresponding genomes from ancestral M. trossulus in America but divergent from the genomes for Baltic M. trossulus. This is the first report of ancestral M. trossulus mtDNA genomes in Europe. The F and M genomes are diverged by 26% in nucleotide sequence, similar to other Mytilus F and M genomes. The gene arrangement in the sequenced genomes is also similar to that in other sequenced Mytilus mtDNA genomes. However the two sequenced M genomes differ by 960bp which is caused by a duplication in the main noncoding region (CR). This duplication has not so far been observed in North American populations of M. trossulus. The coding regions of the Loch Etive genomes have no features suggesting that they are other than functional genomes and have K(a)/K(s) values in coding regions less than one indicative of purifying selection. Estimates of divergence times were made for both genomes and are consistent with invasion of Loch Etive by M. trossulus towards the end of the last glacial period.
Collapse
Affiliation(s)
- Małgorzata Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | | | | | | |
Collapse
|
64
|
Doucet-Beaupré H, Breton S, Chapman EG, Blier PU, Bogan AE, Stewart DT, Hoeh WR. Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evol Biol 2010; 10:50. [PMID: 20167078 PMCID: PMC2834691 DOI: 10.1186/1471-2148-10-50] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, Venustaconcha ellipsiformis, Pyganodon grandis and Quadrula quadrula have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of Inversidens japanensis and F genome of Lampsilis ornata). Results Compared to their unionoid F counterparts, the M genomes contain some unique features including a novel localization of the trnH gene, an inversion of the atp8-trnD genes and a unique 3'coding extension of the cytochrome c oxidase subunit II gene. One or more of these unique M genome features could be causally associated with paternal transmission. Unionoid bivalves are characterized by extreme intraspecific sequence divergences between gender-associated mtDNAs with an average of 50% for V. ellipsiformis, 50% for I. japanensis, 51% for P. grandis and 52% for Q. quadrula (uncorrected amino acid p-distances). Phylogenetic analyses of 12 protein-coding genes from 29 bivalve and five outgroup mt genomes robustly indicate bivalve monophyly and the following branching order within the autolamellibranch bivalves: ((Pteriomorphia, Veneroida) Unionoida). Conclusion The basal nature of the Unionoida within the autolamellibranch bivalves and the previously hypothesized single origin of DUI suggest that (1) DUI arose in the ancestral autolamellibranch bivalve lineage and was subsequently lost in multiple descendant lineages and (2) the mitochondrial genome characteristics observed in unionoid bivalves could more closely resemble the DUI ancestral condition. Descriptions and comparisons presented in this paper are fundamental to a more complete understanding regarding the origins and consequences of DUI.
Collapse
Affiliation(s)
- Hélène Doucet-Beaupré
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada .
| | | | | | | | | | | | | |
Collapse
|
65
|
Breton S, Stewart DT, Hoeh WR. Characterization of a mitochondrial ORF from the gender-associated mtDNAs of Mytilus spp. (Bivalvia: Mytilidae): identification of the "missing" ATPase 8 gene. Mar Genomics 2010; 3:11-8. [PMID: 21798192 DOI: 10.1016/j.margen.2010.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/17/2009] [Accepted: 01/11/2010] [Indexed: 02/08/2023]
Abstract
Bivalve species are characterized by extraordinary variability in terms of mitochondrial (mt) genome size, gene arrangement and tRNA gene number. Many species are thought to lack the mitochondrial protein-coding gene atp8. Of these species, the Mytilidae appears to be the only known taxon with doubly uniparental inheritance of mtDNA that does not possess the atp8 gene. This raises the question as to whether mytilids have completely lost the ATP8 protein, whether the gene has been transferred to the nucleus or whether they possess a highly modified version of the gene/protein that has led to its lack of annotation. In the present study, we re-investigated all complete (or nearly complete) F and M mytilid mt genomes previously sequenced for the presence of conserved open reading frames (ORFs) that might code for ATP8 and/or have other functional importance in these bivalves. We also revised the annotations of all available complete mitochondrial genomes of bivalves and nematodes that are thought to lack atp8 in an attempt to detect it. Our results indicate that a novel mytilid ORF of significant length (i.e., the ORF is >85 amino acids in length), with complete start and stop codons, is a candidate for the atp8 gene: (1) it possesses a pattern of evolution expected for a protein-coding gene evolving under purifying selection (i.e., the 3rd>1st>2nd codon pattern of evolution), (2) it is actively transcribed in Mytilus species, (3) it has one predicted transmembrane helix (as do other metazoan ATP8 proteins), (4) it has conserved functional motifs and (5), comparisons of its amino acid sequence with ATP8 sequences of other molluscan or bivalve species reveal similar hydropathy profiles. Furthermore, our revised annotations also confirmed the mt presence of atp8 in almost all bivalve species and in one nematode species. Our results thus support recognizing the presence of ATPase 8 in most bivalves mt genomes (if not all) rather than the continued characterization of these genomes as lacking this gene.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, Kent State University, OH 44240 USA.
| | | | | |
Collapse
|
66
|
Craft JA, Gilbert JA, Temperton B, Dempsey KE, Ashelford K, Tiwari B, Hutchinson TH, Chipman JK. Pyrosequencing of Mytilus galloprovincialis cDNAs: tissue-specific expression patterns. PLoS One 2010; 5:e8875. [PMID: 20111607 PMCID: PMC2810337 DOI: 10.1371/journal.pone.0008875] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/21/2009] [Indexed: 01/28/2023] Open
Abstract
Background Mytilus species are important in marine ecology and in environmental quality assessment, yet their molecular biology is poorly understood. Molecular aspects of their reproduction, hybridisation between species, mitochondrial inheritance, skewed sex ratios of offspring and adaptation to climatic and pollution factors are priority areas. Methodology/Principal Findings To start to address this situation, expressed genetic transcripts from M. galloprovincialis were pyrosequenced. Transcripts were isolated from the digestive gland, foot, gill and mantle of both male and female mussels. In total, 175,547 sequences were obtained and for foot and mantle, 90% of the sequences could be assembled into contiguous fragments but this reduced to 75% for the digestive gland and gill. Transcripts relating to protein metabolism and respiration dominated including ribosomal proteins, cytochrome oxidases and NADH dehydrogenase subunits. Tissue specific variation was identified in transcripts associated with mitochondrial energy metabolism, with the digestive gland and gill having the greatest transcript abundance. Using fragment recruitment it was also possible to identify sites of potential small RNAs involved in mitochondrial transcriptional regulation. Sex ratios based on Vitelline Envelop Receptor for Lysin and Vitelline Coat Lysin transcript abundances, indicated that an equal sex distribution was maintained. Taxonomic profiling of the M. galloprovincialis tissues highlighted an abundant microbial flora associated with the digestive gland. Profiling of the tissues for genes involved in intermediary metabolism demonstrated that the gill and digestive gland were more similar to each other than to the other two tissues, and specifically the foot transcriptome was most dissimilar. Conclusions Pyrosequencing has provided extensive genomic information for M. galloprovincialis and generated novel observations on expression of different tissues, mitochondria and associated microorganisms. It will also facilitate the much needed production of an oligonucleotide microarray for the organism.
Collapse
Affiliation(s)
- John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Ren J, Shen X, Jiang F, Liu B. The Mitochondrial Genomes of Two Scallops, Argopecten irradians and Chlamys farreri (Mollusca: Bivalvia): The Most Highly Rearranged Gene Order in the Family Pectinidae. J Mol Evol 2009; 70:57-68. [DOI: 10.1007/s00239-009-9308-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/23/2009] [Indexed: 11/30/2022]
|
68
|
SONG WT, GAO XG, LI YF, LIU WD, LIU Y, HE CB. [Comparison of mitochondrial genomes of bivalves]. YI CHUAN = HEREDITAS 2009; 31:1127-1134. [PMID: 19933094 DOI: 10.3724/sp.j.1005.2009.01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The structure and organization of mitochondrial genomes of 14 marine bivalves and two freshwater bivalves were analyzed using comparative genomics and bioinformatics methods. The results showed that the organization and gene order of the mitochondrial genomes of these bivalve species studied were different from each other. The size, organization, gene numbers, and gene order of mitochondrial genomes in bivalves at different taxa were different. Phylogenetic analysis using the whole mitochondrial genomes and all the coding genes showed different results-- phylogenetic analysis conducted using the whole mitochondrial genomes was consistent with the existing classification and phylogenetic analysis conducted using all coding genes not consistent with the existing classification.
Collapse
Affiliation(s)
- Wen-Tao SONG
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Key Laboratory of Marine Fishery Molecular Biology, Dalian 116023, China.
| | | | | | | | | | | |
Collapse
|
69
|
Comparative mitochondrial genomics of freshwater mussels (Bivalvia: Unionoida) with doubly uniparental inheritance of mtDNA: gender-specific open reading frames and putative origins of replication. Genetics 2009; 183:1575-89. [PMID: 19822725 DOI: 10.1534/genetics.109.110700] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (O(H)) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (O(L)) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted.
Collapse
|
70
|
Paternal mtDNA and maleness are co-inherited but not causally linked in mytilid mussels. PLoS One 2009; 4:e6976. [PMID: 19759895 PMCID: PMC2736565 DOI: 10.1371/journal.pone.0006976] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In marine mussels of the genus Mytilus there are two mitochondrial genomes. One is transmitted through the female parent, which is the normal transmission route in animals, and the other is transmitted through the male parent which is an unusual phenomenon. In males the germ cell line is dominated by the paternal mitochondrial genome and the somatic cell line by the maternal. Research to date has not allowed a clear answer to the question of whether inheritance of the paternal genome is causally related to maleness. METHODOLOGY/PRINCIPAL FINDINGS Here we present results from hybrid crosses, from triploid mussels and from observations of sperm mitochondria in fertilized eggs which clearly show that maleness and presence of the paternal mitochondrial genome can be decoupled. These same results show that the female mussel has exclusive control of whether her progeny will inherit the mitochondrial genome of the male parent. CONCLUSIONS/SIGNIFICANCE These findings are important in our efforts to understand the mechanistic basis of this unusual mode of mitochondrial DNA inheritance that is common among bivalves.
Collapse
|
71
|
Ren J, Shen X, Sun M, Jiang F, Yu Y, Chi Z, Liu B. The complete mitochondrial genome of the clamMeretrix petechialis(Mollusca: Bivalvia: Veneridae). ACTA ACUST UNITED AC 2009; 20:78-87. [DOI: 10.1080/19401730902964425] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
72
|
Burzynski A, Smietanka B. Is Interlineage Recombination Responsible for Low Divergence of Mitochondrial nad3 Genes in Mytilus galloprovincialis? Mol Biol Evol 2009; 26:1441-5. [DOI: 10.1093/molbev/msp085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
73
|
Venier P, De Pittà C, Bernante F, Varotto L, De Nardi B, Bovo G, Roch P, Novoa B, Figueras A, Pallavicini A, Lanfranchi G. MytiBase: a knowledgebase of mussel (M. galloprovincialis) transcribed sequences. BMC Genomics 2009; 10:72. [PMID: 19203376 PMCID: PMC2657158 DOI: 10.1186/1471-2164-10-72] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/09/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although bivalves are among the most studied marine organisms due to their ecological role, economic importance and use in pollution biomonitoring, very little information is available on the genome sequences of mussels. This study reports the functional analysis of a large-scale Expressed Sequence Tag (EST) sequencing from different tissues of Mytilus galloprovincialis (the Mediterranean mussel) challenged with toxic pollutants, temperature and potentially pathogenic bacteria. RESULTS We have constructed and sequenced seventeen cDNA libraries from different Mediterranean mussel tissues: gills, digestive gland, foot, anterior and posterior adductor muscle, mantle and haemocytes. A total of 24,939 clones were sequenced from these libraries generating 18,788 high-quality ESTs which were assembled into 2,446 overlapping clusters and 4,666 singletons resulting in a total of 7,112 non-redundant sequences. In particular, a high-quality normalized cDNA library (Nor01) was constructed as determined by the high rate of gene discovery (65.6%). Bioinformatic screening of the non-redundant M. galloprovincialis sequences identified 159 microsatellite-containing ESTs. Clusters, consensuses, related similarities and gene ontology searches have been organized in a dedicated, searchable database http://mussel.cribi.unipd.it. CONCLUSION We defined the first species-specific catalogue of M. galloprovincialis ESTs including 7,112 unique transcribed sequences. Putative microsatellite markers were identified. This annotated catalogue represents a valuable platform for expression studies, marker validation and genetic linkage analysis for investigations in the biology of Mediterranean mussels.
Collapse
Affiliation(s)
- Paola Venier
- Department of Biology, University of Padova, Via U Bassi 58/B, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
The control region of maternally and paternally inherited mitochondrial genomes of three species of the sea mussel genus Mytilus. Genetics 2009; 181:1045-56. [PMID: 19139146 DOI: 10.1534/genetics.108.093229] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species of the mussel genus Mytilus possess maternally and paternally transmitted mitochondrial genomes. In the interbreeding taxa Mytilus edulis and M. galloprovincialis, several genomes of both types have been fully sequenced. The genome consists of the coding part (which, in addition to protein and RNA genes, contains several small noncoding sequences) and the main control region (CR), which in turn consists of three distinct parts: the first variable (VD1), the conserved (CD), and the second variable (VD2) domain. The maternal and paternal genomes are very similar in gene content and organization, even though they differ by >20% in primary sequence. They differ even more at VD1 and VD2, yet they are remarkably similar at CD. The complete sequence of a genome from the closely related species M. trossulus was previously reported and found to consist of a maternal-like coding part and a paternal-like and a maternal-like CR. From this and from the fact that it was extracted from a male individual, it was inferred that this is a genome that switched from maternal to paternal transmission. Here we provide clear evidence that this genome is the maternal genome of M. trossulus. We have found that in this genome the tRNA(Gln) in the coding region is apparently defective and that an intact copy of this tRNA occurs in the CR, that one of the two conserved domains is missing essential motifs, and that one of the two first variable domains has a high rate of divergence. These features may explain the large size and mosaic structure of the CR of the maternal genome of M. trossulus. We have also obtained CR sequences of the maternal and paternal genomes of M. californianus, a more distantly related species. We compare the control regions from all three species, focusing on the divergence among genomes of different species origin and among genomes of different transmission routes.
Collapse
|
75
|
Masculinization Events and Doubly Uniparental Inheritance of Mitochondrial DNA: A Model for Understanding the Evolutionary Dynamics of Gender-Associated mtDNA in Mussels. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Filipowicz M, Burzyński A, Śmietanka B, Wenne R. Recombination in Mitochondrial DNA of European Mussels Mytilus. J Mol Evol 2008; 67:377-88. [DOI: 10.1007/s00239-008-9157-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 07/08/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
77
|
Gérard K, Bierne N, Borsa P, Chenuil A, Féral JP. Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations. Mol Phylogenet Evol 2008; 49:84-91. [PMID: 18678263 DOI: 10.1016/j.ympev.2008.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 06/13/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
Abstract
Smooth-shelled mussels, Mytilus spp., have an antitropical distribution. In the Northern Hemisphere, the M. edulis complex of species is composed of three genetically well delineated taxa: M. edulis, M. galloprovincialis and M. trossulus. In the Southern Hemisphere, morphological characters, allozymes and intron length polymorphisms suggest that Mytilus spp. populations from South America and Kerguelen Islands are related to M. edulis and those from Australasia to M. galloprovincialis. On the other hand, a phylogeny of the 16S rDNA mitochondrial locus demonstrates a clear distinctiveness of southern mussels and suggests that they are related to Mediterranean M. galloprovincialis. Here, we analysed the faster-evolving cytochrome oxidase subunit I locus. The divergence between haplotypes of populations from the two hemispheres was confirmed and was found to predate the divergence between haplotypes of northern M. edulis and M. galloprovincialis. In addition, strong genetic structure was detected among the southern samples, revealing three genetic entities that correspond to (1) South America and Kerguelen Island, (2) Tasmania, (3) New Zealand. Using the trans-Arctic interchange as a molecular clock calibration, we estimated the time since divergence of populations from the two hemispheres to be between 0.5 million years (MY) and 1.3 MY (average 0.84 MY). The contrasting patterns observed for the nuclear and the organelle genomes suggested two alternative, complex scenarios: two trans-equatorial migrations and the existence of differential barriers to mitochondrial and nuclear gene flow, or a single trans-equatorial migration and a view of the composition of the nuclear genome biased by taxonomic preconception.
Collapse
Affiliation(s)
- Karin Gérard
- Université de la Méditerranée, Centre d'Océanologie de Marseille, Station Marine d'Endoume, 13007 Marseille, France.
| | | | | | | | | |
Collapse
|
78
|
Gissi C, Iannelli F, Pesole G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity (Edinb) 2008; 101:301-20. [PMID: 18612321 DOI: 10.1038/hdy.2008.62] [Citation(s) in RCA: 425] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial genome (mtDNA) of Metazoa is a good model system for evolutionary genomic studies and the availability of more than 1000 sequences provides an almost unique opportunity to decode the mechanisms of genome evolution over a large phylogenetic range. In this paper, we review several structural features of the metazoan mtDNA, such as gene content, genome size, genome architecture and the new parameter of gene strand asymmetry in a phylogenetic framework. The data reviewed here show that: (1) the plasticity of Metazoa mtDNA is higher than previously thought and mainly due to variation in number and location of tRNA genes; (2) an exceptional trend towards stabilization of genomic features occurred in deuterostomes and was exacerbated in vertebrates, where gene content, genome architecture and gene strand asymmetry are almost invariant. Only tunicates exhibit a very high degree of genome variability comparable to that found outside deuterostomes. In order to analyse the genomic evolutionary process at short evolutionary distances, we have also compared mtDNAs of species belonging to the same genus: the variability observed in congeneric species significantly recapitulates the evolutionary dynamics observed at higher taxonomic ranks, especially for taxa showing high levels of genome plasticity and/or fast nucleotide substitution rates. Thus, the analysis of congeneric species promises to be a valuable approach for the assessment of the mtDNA evolutionary trend in poorly or not yet sampled metazoan groups.
Collapse
Affiliation(s)
- C Gissi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Milano, Italy.
| | | | | |
Collapse
|
79
|
Chapman EG, Piontkivska H, Walker JM, Stewart DT, Curole JP, Hoeh WR. Extreme primary and secondary protein structure variability in the chimeric male-transmitted cytochrome c oxidase subunit II protein in freshwater mussels: evidence for an elevated amino acid substitution rate in the face of domain-specific purifying selection. BMC Evol Biol 2008; 8:165. [PMID: 18513440 PMCID: PMC2430956 DOI: 10.1186/1471-2148-8-165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 05/31/2008] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Freshwater unionoidean bivalves, and species representing two marine bivalve orders (Mytiloida and Veneroida), exhibit a mode of mtDNA inheritance involving distinct maternal (F) and paternal (M) transmission routes concomitant with highly divergent gender-associated mtDNA genomes. Additionally, male unionoidean bivalves have a approximately 550 bp 3' coding extension to the cox2 gene (Mcox2e), that is apparently absent from all other metazoan taxa. RESULTS Our molecular sequence analyses of MCOX2e indicate that both the primary and secondary structures of the MCOX2e region are evolving much faster than other regions of the F and M COX2-COX1 gene junction. The near N-terminus approximately 2/3 of the MCOX2e region contains an interspecifically variable number of predicted transmembrane helices (TMH) and interhelical loops (IHL) whereas the C-terminus approximately 1/3 is relatively conserved and hydrophilic while containing conserved functional motifs. MCOX2e displays an overall pattern of purifying selection that leads to the preservation of TMH/IHL and C-terminus tail sub-regions. However, 14 amino acid positions in the MCOX2e TMH/IHL sub-region might be targeted by diversifying selection, each representing a site where there exists interspecific variation for the constituent amino acids residing in a TMH or IHL. CONCLUSION Our results indicate that Mcox2e is unique to unionoidean bivalves, likely the result of a single insertion event that took place over 65 MYA and that MCOX2e is functional. The predicted TMH number, length and position variability likely stems from substitution-based processes rather than the typically implicated insertion/deletion events. MCOX2e has relatively high rates of primary and secondary structure evolution, with some amino acid residues potentially subjected to site-specific positive selection, yet an overall pattern of purifying selection leading to the preservation of the TMH/IHL and hydrophilic C-terminus tail subregions. The more conserved C-terminus tail (relative to the TMH/IHL sub-region of MCOX2e) is likely biologically active because it contains functional motifs. The rapid evolution of primary and secondary structure in MCOX2e, combined with the action of both positive and purifying selection, provide supporting evidence for the hypothesis that MCOX2e has a novel reproductive function within unionoidean bivalves. All tolled, our data indicate that unionoidean bivalve MCOX2 is the first reported chimeric animal mtDNA-encoded protein.
Collapse
Affiliation(s)
- Eric G Chapman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Jennifer M Walker
- Department of Biological Sciences, The University of Southern Mississippi, Long Beach, MS 39560, USA
| | | | - Jason P Curole
- University of Southern California, Los Angeles, CA 90089, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
80
|
Obata M, Shimizu M, Sano N, Komaru A. Maternal Inheritance of Mitochondrial DNA (mtDNA) in the Pacific oyster (Crassostrea gigas): a Preliminary Study Using mtDNA Sequence Analysis with Evidence of Random Distribution of MitoTracker-Stained Sperm Mitochondria in Fertilized Eggs. Zoolog Sci 2008; 25:248-54. [DOI: 10.2108/zsj.25.248] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 12/06/2007] [Indexed: 11/17/2022]
|
81
|
Hedtke SM, Stanger-Hall K, Baker RJ, Hillis DM. All-male asexuality: origin and maintenance of androgenesis in the Asian clam Corbicula. Evolution 2008; 62:1119-36. [PMID: 18266987 DOI: 10.1111/j.1558-5646.2008.00344.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Androgenesis is a rare form of asexual male reproduction found in disparate taxa across the Tree of Life. Phylogenetic analyses of mitochondrial genes suggest that androgenesis has arisen repeatedly in the Asian clam genus Corbicula. Two of these androgenetic species have been introduced to North America. Multiple lines of genetic evidence suggest that although nuclear recombination between these two species is rare, mitochondrial genome capture is a frequent consequence of androgenetic parasitism of heterospecific eggs. Egg parasitism may also rarely result in partial nuclear genome capture between closely related species of Corbicula, which provides a mechanism for the otherwise clonal species to avoid the deleterious effects of asexuality. Egg parasitism among congeners may explain why androgenesis has been maintained in Corbicula after fixation and has not yet led to population extinction. This mechanism also provides an explanation for the apparent multiple origins of androgenesis in Corbicula as seen on the mitochondrial DNA phylogeny. We suggest that a single androgenetic lineage may have repeatedly captured mitochondrial genomes (as well as portions of nuclear genomes) from various sexual species, resulting in several distinct androgenetic species with distantly related mtDNA genomes and divergent morphologies.
Collapse
Affiliation(s)
- Shannon M Hedtke
- Section of Integrative Biology, University of Texas Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
82
|
Adema CM, Luo MZ, Hanelt B, Hertel LA, Marshall JJ, Zhang SM, DeJong RJ, Kim HR, Kudrna D, Wing RA, Soderlund C, Knight M, Lewis FA, Caldeira RL, Jannotti-Passos LK, Carvalho ODS, Loker ES. A bacterial artificial chromosome library for Biomphalaria glabrata, intermediate snail host of Schistosoma mansoni. Mem Inst Oswaldo Cruz 2008; 101 Suppl 1:167-77. [PMID: 17308766 DOI: 10.1590/s0074-02762006000900027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/25/2006] [Indexed: 01/08/2023] Open
Abstract
To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (http://biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 x coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.
Collapse
Affiliation(s)
- Coen M Adema
- Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Theologidis I, Fodelianakis S, Gaspar MB, Zouros E. Doubly uniparental inheritance (DUI) of mitochondrial DNA in Donax trunculus (Bivalvia: Donacidae) and the problem of its sporadic detection in Bivalvia. Evolution 2008; 62:959-70. [PMID: 18208565 DOI: 10.1111/j.1558-5646.2008.00329.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitochondrial DNA is transmitted maternally in metazoan species. This rule does not hold in several species of bivalves that have two mtDNA types, one that is transmitted maternally and the other paternally. This system of mitochondrial DNA transmission is known as doubly uniparental inheritance (DUI). Here we present evidence of DUI in the clam Donax trunculus making Donacidae the sixth bivalve family in which the phenomenon has been found. In addition, we present the taxonomic affiliation of all species in which DUI is currently known to occur and construct a phylogeny of the maternal and paternal genomes of these species. We use this information to address the question of a single or multiple origins of DUI and to discuss whether failed attempts to demonstrate the presence of DUI in several bivalve species might be due to problems of detection or to genuine absence of the phenomenon.
Collapse
|
84
|
Chapman EG, Gordon ME, Walker JM, Lang BK, Campbell DC, Watters GT, Curole JP, Piontkivska H, Hoeh WR. Evolutionary Relationships Of Popenaias popeii and the Early Evolution Of Lampsiline Bivalves (Unionidae): Phylogenetic Analyses Of Dna and Amino Acid Sequences From F and M Mitochondrial Genomes. MALACOLOGIA 2008. [DOI: 10.4002/0076-2997-50.1-2.303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
85
|
Fonseca MM, Harris DJ. Relationship between mitochondrial gene rearrangements and stability of the origin of light strand replication. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Miguel M. Fonseca
- Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares, Portugal; Universidade do Porto, Portugal
| | - D. James Harris
- Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares, Portugal; Universidade do Porto, Portugal
| |
Collapse
|
86
|
Venetis C, Theologidis I, Zouros E, Rodakis GC. A mitochondrial genome with a reversed transmission route in the Mediterranean mussel Mytilus galloprovincialis. Gene 2007; 406:79-90. [PMID: 17611047 DOI: 10.1016/j.gene.2007.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/25/2007] [Accepted: 06/04/2007] [Indexed: 11/28/2022]
Abstract
Species of the marine mussel genus Mytilus are known to contain two mitochondrial genomes, one transmitted maternally (the F genome) and the other paternally (the M genome). The two genomes have diverged by more than 20% in DNA sequence. Here we present the complete sequence of a third genome, genome C, which we found in the sperm of a Mytilus galloprovincialis male. The coding part of the new genome resembles in sequence the F genome, from which it differs by about 2% on average, but differs from the M genome by as much as the F from the M. Its major control region (CR) is more than three times larger than that of the F or the M genome and consists of repeated sequence domains of the CR of the M genome flanked by domains of the CR of the F genome. We present a sequence of events that reconstruct most parsimoniously the derivation of the C genome from the F and M genomes. The sequence consists of a duplication of CR elements of the M genome and subsequent insertion of these tandemly repeated elements in the F genome by recombination. The fact that the C genome was found as the only mitochondrial genome in the sperm of the male from which it was extracted suggests that it is transmitted paternally.
Collapse
Affiliation(s)
- Constantinos Venetis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | | | | | | |
Collapse
|
87
|
Jha M, Côté J, Hoeh WR, Blier PU, Stewart DT. Sperm motility in Mytilus edulis in relation to mitochondrial DNA polymorphisms: implications for the evolution of doubly uniparental inheritance in bivalves. Evolution 2007; 62:99-106. [PMID: 18039328 DOI: 10.1111/j.1558-5646.2007.00262.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bivalves of the families Mytilidae, Unionidae, and Veneridae have an unusual mode of mitochondrial DNA (mtDNA) transmission called doubly uniparental inheritance (DUI). A characteristic feature of DUI is the presence of two gender-associated mtDNA genomes that are transmitted through males (M-type mtDNA) and females (F-type mtDNA), respectively. Female mussels are predominantly homoplasmic with only the F-type expressed in both somatic and gonadal tissue; males are heteroplasmic with the M-type expressed in the gonad and F-type in somatic tissue for the most part. An unusual evolutionary feature of this system is that an mt genome with F-coding sequences occasionally invades the male route of inheritance (i.e., a "role reversal" event), and is thereafter transmitted as a new M-type. Phylogenetic studies have demonstrated that the new or "recently masculinized" M-types may eventually replace the older or "standard" M-types over time. To investigate whether this replacement process could be due to an advantage in sperm swimming behavior, we measured differences in motility parameters and found that sperm with the recently masculinized M-type had significantly faster curvilinear velocity and average path velocity when compared to sperm with standard M-type. This increase in sperm swimming speed could explain the multiple evolutionary replacements of standard M-types by masculinized M-types that have been hypothesized for the mytilid lineage. However, our observations do not support the hypothesis that DUI originated because it permits the evolution of mitochondrial adaptations specific to sperm performance, otherwise, the evolutionarily older, standard M genome should perform better.
Collapse
Affiliation(s)
- M Jha
- Department of Biology, Acadia University, Wolfville, NS, Canada.
| | | | | | | | | |
Collapse
|
88
|
Chakrabarti R, Walker JM, Chapman EG, Shepardson SP, Trdan RJ, Curole JP, Watters GT, Stewart DT, Vijayaraghavan S, Hoeh WR. Reproductive function for a C-terminus extended, male-transmitted cytochrome c oxidase subunit II protein expressed in both spermatozoa and eggs. FEBS Lett 2007; 581:5213-9. [PMID: 17950289 DOI: 10.1016/j.febslet.2007.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 11/25/2022]
Abstract
Our previous study documented expression of a male-transmitted cytochrome c oxidase subunit II protein (MCOX2), with a C-terminus extension (MCOX2e), in unionoidean bivalve testes and sperm mitochondria. Here, we present evidence demonstrating that MCOX2 is seasonally expressed in testis, with a peak shortly before fertilization that is independent of sperm density. MCOX2 is localized to the inner and outer sperm mitochondrial membranes and the MCOX2 antibody's epitope is conserved across >65 million years of evolution. We also demonstrate the presence of male-transmitted mtDNA and season-specific MCOX2 spatial variation in ovaries. We hypothesize that MCOX2 plays a role in reproduction through gamete maturation, fertilization and/or embryogenesis.
Collapse
Affiliation(s)
- R Chakrabarti
- Department of Biochemistry, State University of New York, Buffalo, NY 14214, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zbawicka M, Burzyński A, Wenne R. Complete sequences of mitochondrial genomes from the Baltic mussel Mytilus trossulus. Gene 2007; 406:191-8. [PMID: 17980515 DOI: 10.1016/j.gene.2007.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 11/28/2022]
Abstract
Marine mussels Mytilus possess two mitochondrial (mt) genomes, which undergo doubly uniparental inheritance (DUI). Female (F) and male (M) genomes are usually highly diverged at the sequence level. Both genomes contain the same set of metazoan genes (for 12 proteins, 2 rRNAs and 23 tRNAs), both lack the atp8 gene and have two tRNAs for methionine. However, recently recombination between those variants has been reported. Both original F and M mt genomes of M. trossulus were replaced by M. edulis mtDNA in the Baltic populations. Highly diverged M genome occurs rarely in the Baltic mussels. Full sequences of the M genome identified in males (sperm) and F genome in females (eggs) were obtained. Both genomes were diverged by 24% in nucleotide sequence, but had similar nucleotide composition and codon usage bias. Constant domain (CD) of the control region (CR), the tRNA and rRNA genes were the most conserved. The most diverged was the variable domain 1 (VD1) of the control region. The F genome was longer than M by 147 bp. and the main difference was localised in the VD1 region. No recombination was observed in whole mtDNA of both studied variants. Nuclear mitochondrial pseudogenes (numts) have not been found by hybridisation with probes complementary to several fragments of the Baltic M. trossulus mtDNA.
Collapse
Affiliation(s)
- Małgorzata Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Poland
| | | | | |
Collapse
|
90
|
Smith DR, Snyder M. Complete mitochondrial DNA sequence of the scallop Placopecten magellanicus: evidence of transposition leading to an uncharacteristically large mitochondrial genome. J Mol Evol 2007; 65:380-91. [PMID: 17922075 DOI: 10.1007/s00239-007-9016-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 07/06/2007] [Indexed: 10/22/2022]
Abstract
Complete sequence determination of the mitochondrial (mt) genome of the sea scallop Placopecten magellanicus reveals a molecule radically different from that of the standard metazoan. With a minimum length of 30,680 nucleotides (nt; with one copy of a 1.4 kilobase (kb) repeat) and a maximum of 40,725 nt, it is the longest reported metazoan mitochondrial DNA (mtDNA). More than 50% of the genome is noncoding (NC), consisting of dispersed, imperfectly repeated sequences that are associated with tRNAs or tRNA-like structures. Although the genes for atp8 and two tRNAs were not discovered, the genome still has the potential for encoding 46 genes (the additional genes are all tRNAs), 9 of which encode tRNAs for methionine. The coding portions appear to be evolving at a rate consistent with other members of the pectinid clade. When the NC regions containing "dispersed repeat families" are examined in detail, we reach the conclusion that transposition involving tRNAs or tRNA-like structures is occurring and is responsible for the large size and abundance of noncoding DNA in the molecule. The rarity of enlarged mt genomes in the face of a demonstration that they can exist suggests that a small, compact organization is an actively maintained feature of metazoan mtDNA.
Collapse
Affiliation(s)
- David R Smith
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | | |
Collapse
|
91
|
Iannelli F, Griggio F, Pesole G, Gissi C. The mitochondrial genome of Phallusia mammillata and Phallusia fumigata (Tunicata, Ascidiacea): high genome plasticity at intra-genus level. BMC Evol Biol 2007; 7:155. [PMID: 17764550 PMCID: PMC2220002 DOI: 10.1186/1471-2148-7-155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 08/31/2007] [Indexed: 11/24/2022] Open
Abstract
Background Within Chordata, the subphyla Vertebrata and Cephalochordata (lancelets) are characterized by a remarkable stability of the mitochondrial (mt) genome, with constancy of gene content and almost invariant gene order, whereas the limited mitochondrial data on the subphylum Tunicata suggest frequent and extensive gene rearrangements, observed also within ascidians of the same genus. Results To confirm this evolutionary trend and to better understand the evolutionary dynamics of the mitochondrial genome in Tunicata Ascidiacea, we have sequenced and characterized the complete mt genome of two congeneric ascidian species, Phallusia mammillata and Phallusia fumigata (Phlebobranchiata, Ascidiidae). The two mtDNAs are surprisingly rearranged, both with respect to one another and relative to those of other tunicates and chordates, with gene rearrangements affecting both protein-coding and tRNA genes. The new data highlight the extraordinary variability of ascidian mt genome in base composition, tRNA secondary structure, tRNA gene content, and non-coding regions (number, size, sequence and location). Indeed, both Phallusia genomes lack the trnD gene, show loss/acquisition of DHU-arm in two tRNAs, and have a G+C content two-fold higher than other ascidians. Moreover, the mt genome of P. fumigata presents two identical copies of trnI, an extra tRNA gene with uncertain amino acid specificity, and four almost identical sequence regions. In addition, a truncated cytochrome b, lacking a C-terminal tail that commonly protrudes into the mt matrix, has been identified as a new mt feature probably shared by all tunicates. Conclusion The frequent occurrence of major gene order rearrangements in ascidians both at high taxonomic level and within the same genus makes this taxon an excellent model to study the mechanisms of gene rearrangement, and renders the mt genome an invaluable phylogenetic marker to investigate molecular biodiversity and speciation events in this largely unexplored group of basal chordates.
Collapse
Affiliation(s)
- Fabio Iannelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Francesca Griggio
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Graziano Pesole
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milano, Italy
- Dipartimento di Biochimica e Biologia Molecolare "E. Quagliariello", Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Carmela Gissi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
92
|
Obata M, Sano N, Kawamura K, Komaru A. Inheritance of two M type mitochondrial DNA from sperm and unfertilized eggs to offspring in Mytilus galloprovincialis. Dev Growth Differ 2007; 49:335-44. [PMID: 17501909 DOI: 10.1111/j.1440-169x.2007.00930.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Mytilus mussels, paternal mitochondrial DNA (mtDNA) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, sperm mtDNA (M type) is inherited only by males. Female mussels receive maternal mtDNA (F type). However, in our previous study, we showed female and unfertilized eggs have both F and M types. We hypothesized that the two M types both from sperm and unfertilized eggs were transmitted to offspring. To test the hypothesis, we examined the number of M type haplotypes in mature M. galloprovincialis. The M type in larvae was compared with those of the parents. Cross experiments were carried out to test the inheritance of M type. In six of 20 mature mussels, two M types were detected by sequence analysis and polymerase chain reaction-restriction fragment length polymorphism. In cross experiments of larval samples from five of 12 crosses, double peak wave was observed by single nucleotide polymorphisms analysis. In these larval samples, the higher peak wave was identical to the parental M type. Larvae received much more paternal M type than the maternal ones. We demonstrated that two M types from sperm and unfertilized eggs were transmitted to offspring in M. galloprovincialis.
Collapse
Affiliation(s)
- Mayu Obata
- Faculty of Bioresources, Mie University, 1577 Kurimamachiya, Tsu 514-8507, Japan.
| | | | | | | |
Collapse
|
93
|
Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU. The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends Genet 2007; 23:465-74. [PMID: 17681397 DOI: 10.1016/j.tig.2007.05.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
Mitochondria possess their own genetic material (mitochondrial DNA or mtDNA), whose gene products are involved in mitochondrial respiration and oxidative phosphorylation, transcription, and translation. In animals, mitochondrial DNA is typically transmitted to offspring by the mother alone. The discovery of 'doubly uniparental inheritance' (DUI) of mtDNA in some bivalves has challenged the paradigm of strict maternal inheritance (SMI). In this review, we survey recent advances in our understanding of DUI, which is a peculiar system of cytoplasmic DNA inheritance that involves distinct maternal and paternal routes of mtDNA transmission, a novel extension of a mitochondrial gene (cox2), recombination, and periodic 'role-reversals' of the normally male and female-transmitted mitochondrial genomes. DUI provides a unique opportunity for studying nuclear-cytoplasmic genome interactions and the evolutionary significance of different modes of mitochondrial inheritance.
Collapse
Affiliation(s)
- Sophie Breton
- Département de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada.
| | | | | | | | | |
Collapse
|
94
|
Rodakis GC, Cao L, Mizi A, Kenchington ELR, Zouros E. Nucleotide Content Gradients in Maternally and Paternally Inherited Mitochondrial Genomes of the Mussel Mytilus. J Mol Evol 2007; 65:124-36. [PMID: 17632681 DOI: 10.1007/s00239-005-0298-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Accepted: 07/26/2006] [Indexed: 10/23/2022]
Abstract
Several studies have shown that in vertebrate mtDNAs the nucleotide content at fourfold degenerate sites is well correlated with the site's time of exposure to the single-strand state, as predicted from the asymmetrical model of mtDNA replication. Here we examine whether the same explanation may hold for the regional variation in nucleotide content in the maternal and paternal mtDNAs of the mussel Mytilus galloprovincialis. The origin of replication of the heavy strand (O(H)) of these genomes has been previously established. A systematic search of the two genomes for sequences that are likely to act as the origin of replication of the light strand (O(L)) suggested that the most probable site lies within the ND3 gene. By adopting this O(L) position we calculated times of exposure for 0(FD) (nondegenerate), 2(FD) (twofold degenerate), and 4(FD) (fourfold degenerate) sites of the protein-coding part of the genome and for the rRNA, tRNA and noncoding parts. The presence of thymine and absence of guanine at 4(FD) sites was highly correlated with the presumed time of exposure. Such an effect was not found for the 2(FD) sites, the rRNA, the tRNA, or the noncoding parts. There was a trend for a small increase in cytosine at 0(FD) sites with exposure time, which is explicable as the result of biased usage of 4(FD) codons. The same analysis was applied to a recently sequenced mitochondrial genome of Mytilus trossulus and produced similar results. These results are consistent with the asymmetrical model of replication and suggest that guanine oxidation due to single-strand exposure is the main cause of regional variation of nucleotide content in Mytilus mitochondrial genomes.
Collapse
Affiliation(s)
- George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | | | | | | | | |
Collapse
|
95
|
Theologidis I, Saavedra C, Zouros E. No evidence for absence of paternal mtDNA in male progeny from pair matings of the mussel Mytilus galloprovincialis. Genetics 2007; 176:1367-9. [PMID: 17435225 PMCID: PMC1894600 DOI: 10.1534/genetics.106.069930] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The claim that a Mytilus galloprovincialis male failed to transmit mtDNA to its sons in controlled crosses is shown to be false. At present there is no evidence for mussel males lacking a paternal mtDNA. This makes unlikely the hypothesis that maternal genomes may become paternally transmitted by invading the germ line of males that lack a paternal genome.
Collapse
Affiliation(s)
- Ioannis Theologidis
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece and Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, E 12595, Castellón, Spain
| | - Carlos Saavedra
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece and Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, E 12595, Castellón, Spain
| | - Eleftherios Zouros
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece and Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, E 12595, Castellón, Spain
- Corresponding author: Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece. E-mail:
| |
Collapse
|
96
|
Venetis C, Theologidis I, Zouros E, Rodakis GC. No evidence for presence of maternal mitochondrial DNA in the sperm of Mytilus galloprovincialis males. Proc Biol Sci 2007; 273:2483-9. [PMID: 16959639 PMCID: PMC1634914 DOI: 10.1098/rspb.2006.3607] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis. In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.
Collapse
Affiliation(s)
- Constantinos Venetis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of AthensPanepistimioupolis, 15701 Athens, Greece
| | | | - Eleftherios Zouros
- Department of Biology, University of Crete71409 Heraklion, Crete, Greece
| | - George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of AthensPanepistimioupolis, 15701 Athens, Greece
- Author for correspondence ()
| |
Collapse
|
97
|
Burzyński A. Two events are responsible for an insertion in a paternally inherited mitochondrial genome of the mussel Mytilus galloprovincialis. Genetics 2006; 175:959-62. [PMID: 17151240 PMCID: PMC1800603 DOI: 10.1534/genetics.106.065698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Frequent nonhomologous recombination has been previously postulated to explain the 1045-bp insertion in one mitochondrial sperm-transmitted haplotype of Mytilus galloprovincialis. Such recombination would lead to the disruption of gene order and so the existence of a specific mechanism for maintaining the same gene order in both mitochondrial genomes of Mytilus has been proposed. Here the simpler explanation of the observed structure, involving a tandem duplication and a deletion, is presented. Their occasional occurrence in Mytilus mtDNA proves the similarity, not the difference, between animals with and without DUI.
Collapse
Affiliation(s)
- Artur Burzyński
- Department of Genetics and Marine Biotechnology, Polish Academy of Sciences, Institute of Oceanology, 81-712 Sopot, Poland.
| |
Collapse
|
98
|
Fonseca MM, Froufe E, Harris DJ. Mitochondrial gene rearrangements and partial genome duplications detected by multigene asymmetric compositional bias analysis. J Mol Evol 2006; 63:654-61. [PMID: 17075699 DOI: 10.1007/s00239-005-0242-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 05/30/2006] [Indexed: 11/30/2022]
Abstract
Asymmetric compositional and mutation bias between the two strands occurs in mitochondrial genomes, and an asymmetric mechanism of mtDNA replication is a potential source of this bias. Some evidence indicates that during replication the heavy strand is subject to a gradient of time spent in a single-stranded state (D (ssH)) and a gradient of mutational damage. The nucleotide composition bias among genes varies with D (ssH). Consequently, partial genome duplications (PGD) will alter the skew for genes located downstream of the duplication, relatively to nascent light strand synthesis, and in the same way, gene rearrangements (GRr) will affect genes by changing their skews. We examined cases where there had been PGD or GRr and determined whether this left a trace in the form of unusual patterns of base composition. We compared the skew of genes differently located on the mtDNA genome of previously published whole mtDNA genomes from amphibians, a group that shows considerable levels of both GRr and PGD. After observing a significant correlation between AT and GC skew with D (ssH) at fourfold redundant sites, we ran our analysis and detected 31.3% of the species with GRr and/or PGD. By comparing the nucleotide composition at fourfold redundant sites in normal and "abnormal" species, we found that A/C variation occurs and is associated with GRr/PGD. These results show that by analyzing the nucleotide skews of only three genes, it may be possible to predict some mitochondrial GRr and/or PGD without knowing the complete mtDNA genome sequence.
Collapse
Affiliation(s)
- Miguel M Fonseca
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO/UP), ICETA-UP, Campus Agrário de Vairão, Rua Padre Armando, 4485-661 Vairão, Portugal
| | | | | |
Collapse
|
99
|
Dreyer H, Steiner G. The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica--and the first record for a putative Atpase subunit 8 gene in marine bivalves. Front Zool 2006; 3:13. [PMID: 16948842 PMCID: PMC1570459 DOI: 10.1186/1742-9994-3-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/01/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial (mt) gene arrangement is highly variable among molluscs and especially among bivalves. Of the 30 complete molluscan mt-genomes published to date, only one is of a heterodont bivalve, although this is the most diverse taxon in terms of species numbers. We determined the complete sequence of the mitochondrial genomes of Acanthocardia tuberculata and Hiatella arctica, (Mollusca, Bivalvia, Heterodonta) and describe their gene contents and genome organisations to assess the variability of these features among the Bivalvia and their value for phylogenetic inference. RESULTS The size of the mt-genome in Acanthocardia tuberculata is 16.104 basepairs (bp), and in Hiatella arctica 18.244 bp. The Acanthocardia mt-genome contains 12 of the typical protein coding genes, lacking the Atpase subunit 8 (atp8) gene, as all published marine bivalves. In contrast, a complete atp8 gene is present in Hiatella arctica. In addition, we found a putative truncated atp8 gene when re-annotating the mt-genome of Venerupis philippinarum. Both mt-genomes reported here encode all genes on the same strand and have an additional trnM. In Acanthocardia several large non-coding regions are present. One of these contains 3.5 nearly identical copies of a 167 bp motive. In Hiatella, the 3' end of the NADH dehydrogenase subunit (nad)6 gene is duplicated together with the adjacent non-coding region. The gene arrangement of Hiatella is markedly different from all other known molluscan mt-genomes, that of Acanthocardia shows few identities with the Venerupis philippinarum. Phylogenetic analyses on amino acid and nucleotide levels robustly support the Heterodonta and the sister group relationship of Acanthocardia and Venerupis. Monophyletic Bivalvia are resolved only by a Bayesian inference of the nucleotide data set. In all other analyses the two unionid species, being to only ones with genes located on both strands, do not group with the remaining bivalves. CONCLUSION The two mt-genomes reported here add to and underline the high variability of gene order and presence of duplications in bivalve and molluscan taxa. Some genomic traits like the loss of the atp8 gene or the encoding of all genes on the same strand are homoplastic among the Bivalvia. These characters, gene order, and the nucleotide sequence data show considerable potential of resolving phylogenetic patterns at lower taxonomic levels.
Collapse
Affiliation(s)
- Hermann Dreyer
- Emerging Focus Molecular Biology, Department of Evolutionary Biology, University of Vienna, 1090 Vienna, Austria
| | - Gerhard Steiner
- Emerging Focus Molecular Biology, Department of Evolutionary Biology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
100
|
Obata M, Kamiya C, Kawamura K, Komaru A. Sperm mitochondrial DNA transmission to both male and female offspring in the blue mussel Mytilus galloprovincialis. Dev Growth Differ 2006; 48:253-61. [PMID: 16681650 DOI: 10.1111/j.1440-169x.2006.00863.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Mytilus mussels, paternal mitochondrial DNA (M type) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, it has been reported that female mussels generally have only maternal mtDNA (F type). In this study, we examined the mode of mtDNA transmission in Mytilus galloprovincialis using M and F type-specific primer sets. The ratio of M and F types were measured in each sample by SNaPshot. The M type was detected in the adductor muscle and female gonad of all females. In unfertilized eggs spawned by 84.6% of females (22/26), M type was also detected. The F type was more abundant than the M type in all females. Although the ratio of M type in females was very low, all females contained the M type. From these results, we propose a new possibility about DUI inheritance. The presence of M type in unfertilized eggs indicates that the M type of eggs may also contribute to M type inheritance.
Collapse
Affiliation(s)
- Mayu Obata
- Faculty of Biresources, Mie University, 1577 Kurimamachiya, Tsu 514-8507, Japan.
| | | | | | | |
Collapse
|