51
|
Carrington JC, Jensen PE, Schaad MC. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:393-400. [PMID: 9670556 DOI: 10.1046/j.1365-313x.1998.00120.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The potyvirus cylindrical inclusion (CI) protein, an RNA helicase required for genome replication, was analyzed genetically using alanine-scanning mutagenesis. Thirty-one mutations were introduced into the CI protein coding region of modified tobacco etch virus (TEV) genomes expressing either beta-glucuronidase or green fluorescent protein reporters. Twelve of the mutants were replication-defective in protoplast inoculation assays. Among the 19 replication-competent mutants, several possessed cell-to-cell or long-distance movement defects in tobacco plants. Two mutants, AS1 and AS8, were restricted to single cells in inoculated leaves despite genome amplification levels that were equivalent to that of parental virus. Other mutants, such as AS9 and AS14, were able to move cell to cell slowly but were debilitated in long-distance movement. These data provide genetic evidence for a direct role of CI protein in potyvirus intercellular movement, and for distinct roles of the CI protein in genome replication and movement. In combination with high-resolution ultrastructural analyzes and previous genetic data, these results support a model in which CI protein interacts directly with plasmodesmata and capsid protein-containing ribonucleoprotein complexes to facilitate potyvirus cell-to-cell movement.
Collapse
Affiliation(s)
- J C Carrington
- Institute of Biological Chemistry, Washington State University, Pullman 99164, USA.
| | | | | |
Collapse
|
52
|
Teterina NL, Gorbalenya AE, Egger D, Bienz K, Ehrenfeld E. Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J Virol 1997; 71:8962-72. [PMID: 9371552 PMCID: PMC230196 DOI: 10.1128/jvi.71.12.8962-8972.1997] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Poliovirus protein 2C is a 329-amino acid-protein that is essential for viral RNA synthesis and may perform multiple functions. In infected cells, it is associated with virus-specific membrane vesicles. Recombinant 2C protein expressed in transfected cells has been shown to associate with and induce rearrangement of the intracellular membrane network. This study was designed to map the determinants of membrane binding and rearrangement in the 2C protein. Computer-assisted analysis of the protein sequence led to a prediction that the protein folds into a structure composed of three domains. Expression plasmids that encode each or combinations of these predicted domains were used to examine the abilities of the partial protein sequences to associate with intracellular membranes and to induce rearrangement of these membranes in HeLa cells. Biochemical fractionation procedures suggested that the N-terminal region of the protein was required for membrane association. Electron microscopic and immunoelectron microscopic observation showed that both the N- and C-terminal regions, but not the central portion, of 2C protein interact with intracellular membranes and induce major changes in their morphology. The central portion, when fused to the N-terminal region, altered the specific membrane architecture induced by the N-terminal region, giving rise to vesicles resembling those observed during poliovirus infection.
Collapse
Affiliation(s)
- N L Teterina
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine 92697, USA.
| | | | | | | | | |
Collapse
|
53
|
Fernández A, Guo HS, Sáenz P, Simón-Buela L, Gómez de Cedrón M, García JA. The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic Acids Res 1997; 25:4474-80. [PMID: 9358154 PMCID: PMC147072 DOI: 10.1093/nar/25.22.4474] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The plum pox potyvirus (PPV) protein CI is an RNA helicase whose function in the viral life cycle is still unknown. The CI protein contains seven conserved sequence motifs typical of RNA helicases of the superfamily SF2. We have introduced several individual point mutations into the region coding for motif V of the PPV CI protein and expressed these proteins in Escherichia coli as maltose binding protein fusions. Mutations that abolished RNA helicase activity also disturbed NTP hydrolysis. No mutations affected the RNA binding capacity of the CI protein. These mutations were also introduced in the PPV genome making use of a full-length cDNA clone. Mutant viruses carrying CI proteins with reduced RNA helicase activity replicated very poorly in protoplasts and were unable to infect whole plants without rapid pseudoreversion to wild-type. These results indicate that motif V is involved in the NTP hydrolysis step required for potyvirus RNA helicase activity, and that this activity plays an essential role in virus RNA replication inside the infected cell.
Collapse
Affiliation(s)
- A Fernández
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Stäuber N, Martinez-Costas J, Sutton G, Monastyrskaya K, Roy P. Bluetongue virus VP6 protein binds ATP and exhibits an RNA-dependent ATPase function and a helicase activity that catalyze the unwinding of double-stranded RNA substrates. J Virol 1997; 71:7220-6. [PMID: 9311795 PMCID: PMC192062 DOI: 10.1128/jvi.71.10.7220-7226.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA-dependent ATPase and helicase activities have been identified associated with the purified VP6 protein of bluetongue virus, a member of the Orbivirus genus of double-stranded RNA (dsRNA; Reoviridae family) viruses. In addition, the protein has an ATP binding activity. RNA unwinding of duplexes occurred with both 3' and 5' overhang templates, as well as with blunt-ended dsRNA, an activity not previously identified in other viral helicases. Although little sequence similarity to other helicases was detected, certain similarities to motifs commonly attributed to such proteins were identified.
Collapse
Affiliation(s)
- N Stäuber
- Department of Biochemistry, Oxford University, United Kingdom
| | | | | | | | | |
Collapse
|
55
|
Rodríguez-Cerezo E, Findlay K, Shaw JG, Lomonossoff GP, Qiu SG, Linstead P, Shanks M, Risco C. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 1997; 236:296-306. [PMID: 9325237 DOI: 10.1006/viro.1997.8736] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subcellular locations of two potyviral proteins, the coat (CP) and nonstructural cylindrical inclusion (CI) proteins of tobacco vein mottling virus (TVMV), during early stages in the development of systemic infections in plants, have been investigated. Ultrathin sections of newly emerged leaves in infected plants were treated with antibodies specific to these proteins and then with gold-labeled secondary antibodies and examined by electron microscopy. CI was detected near plasmodesmatal connections between mesophyll cells prior to the appearance of CP or any virus-induced features or effects. Further accumulation of CI was evident in the form of conical structures, many of which appeared to penetrate the cell wall and to be connected to cones in neighboring cells. Prior to its appearance in other parts of the cells, the viral CP was detected, often in linear arrays, near the vertices or inside the cones and in plasmodesmata. In situ hybridization analysis of similar tissue sections with a TVMV RNA-specific oligoribonucleotide probe revealed the presence of the viral RNA in plasmodesmata. These results lend support to the notion that the formation of specific structures by potyviral CI proteins is required for and plays a direct role in the intercellular passage of viral genetic material, in the form of virus particles or complexes containing viral CP and RNA, in infected plants.
Collapse
|
56
|
Eberl DF, Lorenz LJ, Melnick MB, Sood V, Lasko P, Perrimon N. A new enhancer of position-effect variegation in Drosophila melanogaster encodes a putative RNA helicase that binds chromosomes and is regulated by the cell cycle. Genetics 1997; 146:951-63. [PMID: 9215899 PMCID: PMC1208063 DOI: 10.1093/genetics/146.3.951] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Drosophila melanogaster, position-effect variegation of the white gene has been a useful phenomenon by which to study chromosome structure and the genes that modify it. We have identified a new enhancer of variegation locus, Dmrnahel (hel). Deletion of mutation of hel enhances white variegation, and this can be reversed by a transformed copy of hel+. In the presence of two endogenous copies, the transformed hel+ behaves as a suppressor of variegation. hel is an essential gene and functions both maternally and zygotically. The HEL protein is similar to known RNA helicases, but contains an unusual variant (DECD) of the DEAD motif common to these proteins. Potential HEL homologues have been found in mammals, yeast and worms. HEL protein associates with salivary gland chromosomes and locates to nuclei of embryos and ovaries, but disappears in mitotic domains of embryos as chromosomes condense. We propose that the HEL protein promotes an open chromatin structure that favors transcription during development by regulating the spread of heterochromatin, and that HEL is regulated by, and may have a role in, the mitotic cell cycle during embryogenesis.
Collapse
Affiliation(s)
- D F Eberl
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Echarri A, González ME, Carrasco L. The N-terminal Arg-rich region of human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus Nef is involved in RNA binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:38-44. [PMID: 9210463 DOI: 10.1111/j.1432-1033.1997.00038.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Comparison of the amino acid sequences of human immunodeficiency virus (HIV) Nef protein and several RNA-binding proteins shows similarities in some regions of these proteins. Thus, poliovirus protein 2C, an RNA-binding protein, shares with Nef the sequence YXQQ...MDD...DXXD. In addition, both proteins contain an Arg-rich motif that, in the case of poliovirus 2C, is involved in RNA-binding activity. Moreover, the RNA-binding, anti-terminator N proteins of lambda, phi21 and P22 phages show sequence similarities with HIV Nef at the Arg-rich motif. To assess the significance of this motif, native and deletion variants of Nef protein were assayed for RNA-binding activity. The N-terminal 35 amino acids of HIV-1 Nef that comprise the Arg-rich motif are sufficient for RNA binding. Point mutations engineered at the Arg-rich motif of HIV-1 Nef revealed that basic amino acid residues are essential for RNA-binding activity. The Nef proteins from HIV-2 and SIV can also interact with RNA, while the same proteins with the N-terminal Arg-rich domain truncated fail to interact with RNA. These findings indicate that all three Nef proteins from HIV-1, HIV-2 and simian immunodeficiency virus belong to the RNA-binding family of proteins. The three proteins contain an Arg-rich region at the N-terminus which is necessary to interact with RNA.
Collapse
Affiliation(s)
- A Echarri
- Centro de Biología Molecular CSIC-UAM, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
58
|
Chu M, Lopez-Moya JJ, Llave-Correas C, Pirone TP. Two separate regions in the genome of the tobacco etch virus contain determinants of the wilting response of Tabasco pepper. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:472-480. [PMID: 9150596 DOI: 10.1094/mpmi.1997.10.4.472] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Infection of Tabasco pepper by the tobacco etch virus (TEV) typically causes wilting associated with root necrosis. However, a strain of TEV, designated TEV nonwilting (TEV NW), is able to infect Tabasco pepper plants but does not cause wilting. In order to locate the genetic determinants responsible for the wilting response, a full-length cDNA clone of TEV NW from which infectious transcripts can be derived was made. A number of chimeric constructs were prepared by substituting cDNA fragments between TEV HAT (which causes wilting) and TEV NW clones. This approach was used to identify two wilting determinants in TEV HAT: one encompasses the 3' one-third of the P3 encoding region; the other spans the 3' end of the CI, the 6-kDa protein, and the 5' end of the VPg-NIa coding regions. Substitutions of both these TEV NW fragments into TEV HAT resulted in infection but not wilting of Tabasco pepper, while the replacement of either of the fragments alone did not alter the wilting response. This indicates that both TEV NW regions contain determinants necessary but not sufficient to alter the wilting response and that both must be present in order to avoid the wilting response. There was no difference between the in vitro transcription-translation products derived from constructs containing these regions from TEV HAT and TEV NW.
Collapse
Affiliation(s)
- M Chu
- Department of Plant Pathology, University of Kentucky, Lexington 40546, USA
| | | | | | | |
Collapse
|
59
|
Lorković ZJ, Herrmann RG, Oelmüller R. PRH75, a new nucleus-localized member of the DEAD-box protein family from higher plants. Mol Cell Biol 1997; 17:2257-65. [PMID: 9121476 PMCID: PMC232075 DOI: 10.1128/mcb.17.4.2257] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The putative RNA helicases of the DEAD-box protein family are involved in pre-mRNA splicing, rRNA maturation, ribosome assembly, and translation. Members of this protein family have been identified in organisms from Escherichia coli to humans, but except for the translation initiation factor 4A, there have been no reports on the characterization of other DEAD-box proteins from plants. Here we report on a novel member of the DEAD-box protein family, the plant RNA helicase 75 (PRH75). PRH75 is localized in the nucleus and contains two domains for RNA binding. One is located at the C terminus and is similar to RGG RNA-binding domains of nucleus-localized RNA-binding proteins. The other one is located between amino acids 308 and 622, a region containing the conserved motif VI characteristic of DEAD-box proteins and known as the RNA-binding site of eIF-4A. The N-terminal 81 amino acids are sufficient for nuclear targeting of the protein. Northern and Western blot analyses show that PRH75 is mainly expressed in young and rapidly developing tissues. The purified recombinant PRH75 has a weak ATPase activity which is barely stimulated by RNA ligands. The fractionation of spinach whole-cell extracts by glycerol gradient centrifugation and gel filtration on a Superdex 200 column shows that the protein exists in a complex of about 500 kDa. Possible biological functions of PRH75 as well as structure-function relationships in the context of its modular primary structure are discussed.
Collapse
Affiliation(s)
- Z J Lorković
- Botanisches Institut der Ludwig-Maximilians-Universität, Munich, Germany.
| | | | | |
Collapse
|
60
|
Affiliation(s)
- G Kadaré
- Institut Jacques Monod, Paris, France
| | | |
Collapse
|
61
|
Li XH, Valdez P, Olvera RE, Carrington JC. Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J Virol 1997; 71:1598-607. [PMID: 8995687 PMCID: PMC191218 DOI: 10.1128/jvi.71.2.1598-1607.1997] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The NIb protein of tobacco etch potyvirus (TEV) possesses several functions, including RNA-dependent RNA polymerase and nuclear translocation activities. Using a reporter protein fusion strategy, NIb was shown to contain two independent nuclear localization signals (NLS I and NLS II). NLS I was mapped to a sequence within amino acid residues 1 to 17, and NLS II was identified between residues 292 and 316. Clustered point mutations resulting in substitutions of basic residues within the NLSs were shown previously to disrupt nuclear translocation activity. These mutations also abolished TEV RNA amplification when introduced into the viral genome. The amplification defects caused by each NLS mutation were complemented in trans within transgenic cells expressing functional NIb, although the level of complementation detected for each mutant differed significantly. Combined with previous results (X. H. Li and J. C. Carrington, Proc. Natl. Acad. Sci. USA 92:457-461, 1995), these data suggest that the NLSs overlap with essential regions necessary for NIb trans-active function(s). The fact that NIb functions in trans implies that it must interact with one or more other components of the genome replication apparatus. A yeast two-hybrid system was used to investigate physical interactions between NIb and several other TEV replication proteins, including the multifunctional VPg/proteinase NIa and the RNA helicase CI. A specific interaction was detected between NIa and NIb. Deletion of any of five regions spanning the NIb sequence resulted in NIb variants that were unable to interact with NIa. Clustered point mutations affecting the conserved GDD motif or NLS II within the central region of NIb, but not mutations affecting NLS I near the N terminus, reduced or eliminated the interaction. The C-terminal proteinase (Pro) domain of NIa, but not the N-terminal VPg domain, interacted with NIb. The effects of NIb mutations within NLS I, NLS II, and the GDD motif on the interaction between the Pro domain and NIb were identical to the effects of these mutations on the interaction between full-length NIa and NIb. These data are compatible with a model in which NIb is directed to replication complexes through an interaction with the Pro domain of NIa.
Collapse
Affiliation(s)
- X H Li
- Department of Biology, Texas A&M University, College Station 77843, USA
| | | | | | | |
Collapse
|
62
|
Tai CL, Chi WK, Chen DS, Hwang LH. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J Virol 1996; 70:8477-84. [PMID: 8970970 PMCID: PMC190938 DOI: 10.1128/jvi.70.12.8477-8484.1996] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.
Collapse
Affiliation(s)
- C L Tai
- Graduate Institute of Microbiology, National Taiwan University, Taipei
| | | | | | | |
Collapse
|
63
|
Kadaré G, David C, Haenni AL. ATPase, GTPase, and RNA binding activities associated with the 206-kilodalton protein of turnip yellow mosaic virus. J Virol 1996; 70:8169-74. [PMID: 8892948 PMCID: PMC190897 DOI: 10.1128/jvi.70.11.8169-8174.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 206-kDa protein of turnip yellow mosaic virus belongs to an expanding group of proteins containing a domain which includes the consensus nucleotide binding site GxxxxGKS/T. A portion of this protein (amino acids [aa] 916 to 1259) was expressed in Escherichia coli and purified by affinity chromatography to near homogeneity. In the absence of any other viral factors, it exhibited ATPase and GTPase activities in vitro. A mutant protein with a single amino acid substitution in the consensus nucleotide binding site (Lys-982 to Ser) exhibited only low levels of both activities, implying that Lys-982 is important for nucleoside triphosphatase activity. The protein also possessed nonspecific RNA binding capacity. Deletion mutants revealed that an N-terminal domain (aa 916 to 1061) and a C-terminal domain (aa 1182 to 1259) participate in RNA binding. The results presented here provide the first experimental evidence that turnip yellow mosaic virus encodes nucleoside triphosphatase and RNA binding activities.
Collapse
Affiliation(s)
- G Kadaré
- Institut Jacques Monod, Paris, France
| | | | | |
Collapse
|
64
|
Bao Y, Carter SA, Nelson RS. The 126- and 183-kilodalton proteins of tobacco mosaic virus, and not their common nucleotide sequence, control mosaic symptom formation in tobacco. J Virol 1996; 70:6378-83. [PMID: 8709266 PMCID: PMC190664 DOI: 10.1128/jvi.70.9.6378-6383.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nucleotide substitutions at two positions within the open reading frame encoding the 126-kDa protein in the attenuated masked (M) strain of tobacco mosaic tobamovirus (TMV) to those found in the virulent U1-TMV genome led to the induction of near U1-TMV-like symptoms on leaves of Nicotiana tabacum L. cv. Xanthi nn by progeny virus (M. H. Shintaku, S. A. Carter, Y. Bao, and R. S. Nelson, Virology 221:218-225, 1996). In this study, further site-directed mutations were made at these positions within the M strain cDNA to determine whether the protein or nucleotide sequence directly controlled the symptom phenotype. The protein and not the nucleotide sequence directly controlled the symptom phenotype when amino acid 360 within the 126-kDa protein sequence was altered and likely controlled the symptom phenotype when amino acid 601 was altered. The effects of the substitutions at amino acid position 360 on viral protein accumulation were studied by pulse-labeling proteins in infected protoplasts. Accumulation of the 126- and 183-kDa proteins was less for an attenuated mutant than for two virulent mutants, but the viral movement protein and coat protein accumulated to levels reported to be sufficient for normal systemic symptom development. The size of necrotic local lesions on N. tabacum L. cv. Xanthi NN was negatively correlated with symptom development and accumulation of the 126-kDa protein for these mutants. With reference to this last finding, an explanation of the cause of the differing symptoms induced by these viruses is presented.
Collapse
Affiliation(s)
- Y Bao
- Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73402, USA
| | | | | |
Collapse
|
65
|
Aleman ME, Marcos JF, Brugidou C, Beachy RN, Fauquet C. The complete nucleotide sequence of yam mosaic virus (Ivory Coast isolate) genomic RNA. Arch Virol 1996; 141:1259-78. [PMID: 8774686 DOI: 10.1007/bf01718829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The complete nucleotidic sequence of the yam mosaic virus (YMV) RNA was determined following the cloning of partial segments of the genome by reverse transcription and polymerase chain reactions (RT-PCR) using degenerate and/or specific oligonucleotide primers. YMV genomic RNA is 9,608 nucleotides in length and contains one open reading frame (ORF) encoding a polyprotein of 3,103 amino acids (aa) with a calculated Mr of 350,915. The 5' leader sequence of YMV RNA preceding the ORF is 134 nucleotides (nt) long while the 3' untranslated region (UTR) is 165 nt excluding the poly(A) tail. A computer algorithm predicted that the 3'UTR forms four stem loop structures which form a cloverleaf-like secondary structure. These structures apparently share some homologies with those observed in the 3'UTR of the potato virus Y-NL1 strain. Seven potential recognition sites for the NIa protease were found: one putative cleavage site for the P1 proteinase and one for the HC proteinase. The organization of the YMV genome is therefore similar to the other members of the genus Potyvirus based upon conserved sequence motifs common amongst members of this group. Despite its similarity with the other potyviruses in these conserved regions, YMV appears to be a distinct potyvirus species based upon a comparison of its sequence with those of other potyviruses.
Collapse
Affiliation(s)
- M E Aleman
- International Laboratory for Tropical Agricultural Biotechnology ILTAB/ORSTOM-TSRI, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
66
|
Hong Z, Ferrari E, Wright-Minogue J, Chase R, Risano C, Seelig G, Lee CG, Kwong AD. Enzymatic characterization of hepatitis C virus NS3/4A complexes expressed in mammalian cells by using the herpes simplex virus amplicon system. J Virol 1996; 70:4261-8. [PMID: 8676447 PMCID: PMC190357 DOI: 10.1128/jvi.70.7.4261-4268.1996] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hepatitis C virus (HCV) NS3 protein possesses three enzymatic activities: an N-terminal serine protease activity, a C-terminal RNA-stimulated NTPase activity, and an RNA helicase activity. To characterize them, the full-length NS3(631)/4A and three C-terminal truncated proteases (NS3(201)/4A, NS3(181)/4A, and NS3(155)/4A were expressed in mammalian cells with HSV amplicon-defective viruses. Our results revealed that all of the NS3/4A proteins produced in mammalian cells (except NS3(155)/4A) are active in processing both cis and trans cleavage sites. Temperature optimization studies revealed that the protease is more active at temperatures ranging from 4 to 25 degrees C and is completely inactive at 42 degrees C. The RNA-stimulated ATPase activity was characterized with a partially purified NS3(631)/4A fraction and has a higher optimal temperature at 37 to 42 degrees C. The effects of detergents on both NS3 protease and RNA-stimulated ATPase were similar. Nonionic detergents such as Triton X-100, Nonidet P-40 and Tween 20 did not affect the activities, while anionic detergents such as sodium dodecyl sulfate and deoxycholic acid were inhibitory. Zwitterionic detergent such as 3-[(3-cholamidopropyl)- dimethyl-ammoniol-1-propanesulfonate (CHAPS) inhibited protease activity at a concentration of 0.5% (8 mM), which had no effect on ATPase activity. Finally, RNA-unwinding activity was demonstrated in the NS3(631)/4A fraction but not in the similarly purified NS3(181)/4A and NS3(201)/4A fractions. NS(363)/4A unwinds RNA duplexes with 3' but not 5' single-stranded overhangs, suggesting that the NS3 RNA helicase functions in a 3'-to-5' direction.
Collapse
Affiliation(s)
- Z Hong
- Antiviral Chemotherapy and Structural Chemistry Departments, Schering-Plough Research Institute, Kenilworth, New Jersey 07033-0539,
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Fernández A, García JA. The RNA helicase CI from plum pox potyvirus has two regions involved in binding to RNA. FEBS Lett 1996; 388:206-10. [PMID: 8690088 DOI: 10.1016/0014-5793(96)00571-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plum pox virus (PPV) protein CI is an RNA helicase, whose function in the virus replication is still unknown. Recently, an RNA binding domain was mapped to a region of the CI protein that includes the arginine-rich motif VI typical of RNA helicases of the superfamily SF2. In the present study, a second region involved in RNA binding activity of the CI protein has been identified. Northwestern assays with a series of maltose-binding protein fusions that contain different CI fragments showed that the RNA binding domain is located between residues 75 and 143. This segment contains the two most amino-terminal conserved domains of RNA helicases: I, involved in NTP binding, and Ia, of unknown function. The results can be explained in the context of a close interdependence between the protein regions involved in the NTPase and RNA binding activities that is expected for an RNA helicase.
Collapse
Affiliation(s)
- A Fernández
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
68
|
Dé I, Sawicki SG, Sawicki DL. Sindbis virus RNA-negative mutants that fail to convert from minus-strand to plus-strand synthesis: role of the nsP2 protein. J Virol 1996; 70:2706-19. [PMID: 8627744 PMCID: PMC190127 DOI: 10.1128/jvi.70.5.2706-2719.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We identified mutations in the gene for nsP2, a nonstructural protein of the alphavirus Sindbis virus, that appear to block the conversion of the initial, short-lived minus-strand replicase complex (RCinitial) into mature, stable forms that are replicase and transcriptase complexes (RCstable), producing 49S genome or 26S mRNA. Base changes at nucleotide (nt) 2166 (G-->A, predicting a change of Glu-163-->Lys), at nt 2502 (G-->A, predicting a change of Val-275-->Ile), and at nt 2926 (C-->U, predicting a change of Leu-416-->Ser) in the nsP2 N domain were responsible for the phenotypes of ts14, ts16, and ts19 members of subgroup 11 (D.L. Sawicki and S.G. Sawicki, Virology 44:20-34, 1985) of the A complementation group of Sindbis virus RNA-negative mutants. Unlike subgroup I mutants, the RCstable formed at 30 degrees C transcribed 26S mRNA normally and did not synthesize minus strands in the absence of protein synthesis after temperature shift. The N-domain substitutions did not inactivate the thiol protease in the C domain of nsP2 and did not stop the proteolytic processing of the polyprotein containing the nonstructural proteins. The distinct phenotypes of subgroup I and 11 A complementation group mutants are evidence that the two domains of nsP2 are essential and functionally distinct. A detailed analysis of ts14 found that its nsPs were synthesized, processed, transported, and assembled at 40 degrees C into complexes with the properties of RCinitial and synthesized minus strands for a short time after shift to 40 degrees C. The block in the pathway to the formation of RCstable occurred after cleavage of the minus-strand replicase P123 or P23 polyprotein into mature nsP1, nsP2, nsP3, and nsP4, indicating that structures resembling RCstable, were formed at 40 degrees C. However, these RCstable or pre-RCstable structures were not capable of recovering activity at 30 degrees C. Therefore, failure to increase the rate of plus-strand synthesis after shift to 40 degrees C appears to result from failure to convert RCinitial to RCstable. We conclude that RCstable is derived from RCinitial by a conversion process and that ts14 is a conversion mutant. From their similar phenotypes, we predict that other nsP2 N-domain mutants are blocked also in the conversion of RCinitial to RCstable. Thus, the N domain of nsP2 plays an essential role in a folding pathway of the nsPs responsible for formation of the initial minus-strand replicase and for its conversion into stable plus-strand RNA-synthesizing enzymes.
Collapse
Affiliation(s)
- I Dé
- Department of Microbiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
69
|
Gross CH, Shuman S. The QRxGRxGRxxxG motif of the vaccinia virus DExH box RNA helicase NPH-II is required for ATP hydrolysis and RNA unwinding but not for RNA binding. J Virol 1996; 70:1706-13. [PMID: 8627691 PMCID: PMC189994 DOI: 10.1128/jvi.70.3.1706-1713.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Vaccinia virus NPH-II is an essential nucleic acid-dependent nucleoside triphosphate that catalyzes unidirectional unwinding of duplex RNA containing a 3' tail. NPH-II is the prototypal RNA helicase of the DExH box protein family, which is defined by several shared sequence motifs. The contribution of the conserved QRKGRVGRVNPG region to enzyme activity was assessed by alanine-scanning mutagenesis. Ten mutated versions of NPH-II were expressed in vaccinia virus-infected BSC-40 cells and purified by nickel affinity chromatography and glycerol gradient sedimentation. The mutated proteins were characterized with respect to RNA helicase, nucleic acid-dependent ATPase, and RNA binding functions. Individual alanine substitutions at invariant residues Q-491, G-494, R-495, G-497, R-498, and G-502 caused severe defects in RNA unwinding that correlated with reduced rates of ATP hydrolysis. None of these mutations affected the binding of NPH-II to single-strand RNA or to the tailed duplex RNA used as a helicase substrate. Mutation of the strictly conserved position R-492 inhibited ATPase and helicase activities and also caused a modest decrement in RNA binding. Alanine mutations at the nonconserved position N-500 and the weakly conserved residue P-501 had no apparent effect on any activity associated with NPH-II, whereas a mutation at the weakly conserved position K-493 reduced helicase to one-third and ATPase to two-thirds of the activity of wild-type required for ATP hydrolysis and RNA unwinding but not for RNA binding. Because mutations in the HRxGRxxR motif of the prototypal DEAD box RNA helicase eIF-4A abolish or severely inhibit RNA binding, we surmise that the contribution of conserved helicase motifs to overall protein function is context dependent.
Collapse
Affiliation(s)
- C H Gross
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
70
|
Abstract
It is clear from the experimental data that there are some similarities in RNA replication for all eukaryotic positive-stranded RNA viruses—that is, the mechanism of polymerization of the nucleotides is probably similar for all. It is noteworthy that all mechanisms appear to utilize host membranes as a site of replication. Membranes appear to function not only as a way of compartmentalizing virus RNA replication but also appear to have a central role in the organization and functioning of the replication complex, and further studies in this area are needed. Within virus supergroups, similarities are evident between animal and plant viruses—for example, in the nature and arrangements of replication genes and in sequence similarities of functional domains. However, it is also clear that there has been considerable divergence, even within supergroups. For example, the animal alpha-viruses have evolved to encode proteinases which play a central controlling function in the replication cycle, whereas this is not common in the plant alpha-like viruses and even when it occurs, as in the tymoviruses, the strategies that have evolved appear to be significantly different. Some of the divergence could be host-dependent and the increasing interest in the role of host proteins in replication should be fruitful in revealing how different systems have evolved. Finally, there are virus supergroups that appear to have no close relatives between animals and plants, such as the animal coronavirus-like supergroup and the plant carmo-like supergroup.
Collapse
Affiliation(s)
- K W Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London, England
| |
Collapse
|
71
|
Agranovsky AA. Principles of molecular organization, expression, and evolution of closteroviruses: over the barriers. Adv Virus Res 1996; 47:119-58. [PMID: 8895832 PMCID: PMC7130501 DOI: 10.1016/s0065-3527(08)60735-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This chapter focuses on the molecular organization, evolution, and expression of closterovirus genomes, as well as on their unique particle structure. The closterovirus group combines several positive-strand RNA viruses with very flexuous filamentous particles, of which beet yellows virus (BYV) is the type virus. Closteroviruses are distinct from other RNA viruses of plants in some important phenomenological aspects. They have genomes of up to 20 kilobases (kb), a value comparable only to those of the animal coronaviruses and toroviruses, which have the largest RNA genomes of all positive-strand RNA viruses. The existence of such genomes having a coding capacity several times that of an average RNA virus genome raises questions as to the trend whereby the long genomes have evolved and the possible novel functions they have acquired. The dramatic increase in the closterovirus genome coding capacity may be linked to the distinct ecological niche they occupy. Thus, closteroviruses are the only elongated plant viruses known so far to cause phloem-limited infections in plants and to persist in their insect vectors for many hours, in contrast to only minutes.
Collapse
Affiliation(s)
- A A Agranovsky
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| |
Collapse
|
72
|
Driesel G, Diedrich S, Kunkel U, Schreier E. Vaccine-associated cases of poliomyelitis over a 30 year period in East Germany. Eur J Epidemiol 1995; 11:647-54. [PMID: 8861848 DOI: 10.1007/bf01720298] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A report is presented about studies on poliovirus type 3 isolates from vaccine-associated cases or contacts of cases of paralytic poliomyelitis, observed over a period of 30 years in East Germany (former GDR). In the viral isolates, some mutations were found in comparison to the Sabin vaccine type 3 strain, distributed over the whole genome. The significance of these mutations has been discussed, especially the mutation at position 472 in the 5' noncoding region found in all the isolates investigated. In five isolates, intertypic recombination between Sabin type 3 and Sabin type 1 vaccine strain occurred. Primary and secondary structures were analysed for the recombination sites.
Collapse
Affiliation(s)
- G Driesel
- Robert Koch Institute, Berlin, Germany
| | | | | | | |
Collapse
|
73
|
Abstract
Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability.
Collapse
Affiliation(s)
- A R Mushegian
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|
74
|
Gross CH, Shuman S. Mutational analysis of vaccinia virus nucleoside triphosphate phosphohydrolase II, a DExH box RNA helicase. J Virol 1995; 69:4727-36. [PMID: 7609038 PMCID: PMC189280 DOI: 10.1128/jvi.69.8.4727-4736.1995] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vaccinia virus nucleoside triphosphate phosphohydrolase II (NPH-II), a 3'-to-5' RNA helicase, displays sequence similarity to members of the DExH family of nucleic acid-dependent nucleoside triphosphatases (NTPases). The contributions of the conserved GxGKT and DExH motifs to enzyme activity were assessed by alanine scanning mutagenesis. Histidine-tagged versions of NPH-II were expressed in vaccinia virus-infected BSC40 cells and purified by nickel affinity and conventional fractionation steps. Wild-type His-NPH-II was indistinguishable from native NPH-II with respect to RNA helicase, RNA binding, and nucleic acid-stimulated NTPase activities. The K-191-->A (K191A), D296A, and E297A mutant proteins bound RNA as well as wild-type His-NPH-II did, but they were severely defective in NTPase and helicase functions. The H299A mutant was active in RNA binding and NTP hydrolysis but was defective in duplex unwinding. Whereas the NTPase of wild-type NPH-II was stimulated > 10-fold by polynucleotide cofactors, the NTPase of the H299A mutant was nucleic acid independent. Because the specific NTPase activity of the H299A mutant in the absence of nucleic acid was near that of wild-type enzyme in the presence of DNA or RNA and because the Km for ATP was unaltered by the H299A substitution, we regard this mutation as a "gain-of-function" mutation and suggest that the histidine residue in the DExH box is required to couple the NTPase and helicase activities.
Collapse
Affiliation(s)
- C H Gross
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
75
|
Fernández A, Laín S, García JA. RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli. Mapping of an RNA binding domain. Nucleic Acids Res 1995; 23:1327-32. [PMID: 7538661 PMCID: PMC306857 DOI: 10.1093/nar/23.8.1327] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The plum pox potyvirus (PPV) cylindrical inclusion (CI) protein fused to the maltose binding protein (MBP) has been synthesized in Escherichia coli and purified by affinity chromatography in amylose resin. In the absence of any other viral factors, the fusion product had NTPase, RNA binding and RNA helicase activities. These in vitro activities were not affected by removal of the last 103 amino acids of the CI protein. However, other deletions in the C-terminal part of the protein, although leaving intact all the region conserved in RNA helicases, drastically impaired the ability to unwind dsRNA and to hydrolyze NTPs. A mutant protein lacking the last 225 residues retained the competence to interact with RNA. Further deletions mapped boundaries of the RNA binding domain within residues 350 and 402 of the PPV CI protein. This region includes the arginine-rich motif VI, the most carboxy terminal conserved domain of RNA helicases of the superfamily SF2. These results indicate that NTP hydrolysis is not an essential component for RNA binding of the PPV CI protein.
Collapse
Affiliation(s)
- A Fernández
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
76
|
Abstract
The pestivirus bovine viral diarrhea virus (BVDV) p80 protein (referred to here as the NS3 protein) contains amino acid sequence motifs predictive of three enzymatic activities: serine proteinase, nucleoside triphosphatase, and RNA helicase. We have previously demonstrated that the former two enzymatic activities are associated with this protein. Here, we show that a purified recombinant BVDV NS3 protein derived from baculovirus-infected insect cells possesses RNA helicase activity. BVDV NS3 RNA helicase activity was specifically inhibited by monoclonal antibodies to the p80 protein. The activity was dependent on the presence of nucleoside triphosphate and divalent cation, with a preference for ATP and Mn2+. Hydrolysis of the nucleoside triphosphate was necessary for strand displacement. The helicase activity required substrates with an un-base-paired region on the template strand 3' of the duplex region. As few as three un-base-paired nucleotides were sufficient for efficient oligonucleotide displacement. However, the enzyme did not act on substrates having a single-stranded region only to the 5' end of the duplex or on substrates lacking single-stranded regions altogether (blunt-ended duplex substrates), suggesting that the directionality of the BVDV RNA helicase was 3' to 5' with respect to the template strand. The BVDV helicase activity was able to displace both RNA and DNA oligonucleotides from RNA template strands but was unable to release oligonucleotides from DNA templates. The possible role of this activity in pestivirus replication is discussed.
Collapse
Affiliation(s)
- P Warrener
- PathoGenesis Corporation, Seattle, Washington 98119
| | | |
Collapse
|
77
|
Li XH, Carrington JC. Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Proc Natl Acad Sci U S A 1995; 92:457-61. [PMID: 7831310 PMCID: PMC42759 DOI: 10.1073/pnas.92.2.457] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A genetic complementation system was developed in which tobacco etch virus (TEV) polymerase (NIb)-expressing transgenic plants or protoplasts were inoculated with NIb-defective TEV mutants. A beta-glucuronidase (GUS) reporter gene integrated into the genomes of parental and four mutant viruses was used to assay RNA amplification. Two mutants (termed VNN and EDE) contained substitutions affecting the conserved "GDD" polymerase motif or a nuclear localization signal sequence, respectively; one (aD/b) contained a mutation debilitating the NIb N-terminal cleavage site, whereas the other (delta b) lacked the entire NIb sequence. Each mutant was unable to amplify in nontransformed tobacco protoplasts. In contrast, the VNN, EDE, and delta b mutants were complemented to various degrees in NIb-expressing cells, whereas the aD/b mutant was not complemented. The VNN mutant was complemented most efficiently, reaching an average of 11-12% the level of parental TEV-GUS, although in some experiments the level was near 100%. This mutant also replicated in, and spread through, whole transgenic plants to the same level as parental virus. The EDE mutant was complemented relatively poorly, reaching 1% or less of the level of parental TEV-GUS. Despite the close proximity of the EDE substitution to the N-terminal cleavage site, proteolytic processing of NIb was unaffected in an in vitro assay. The delta b mutant was complemented to an intermediate degree in protoplasts, reaching 3.5% the level of parental virus, and replicated and moved systemically in transgenic plants. These data indicate that free NIb supplied entirely in trans can provide all NIb functions essential for RNA amplification. The relative inefficient complementation of the EDE mutant suggests that the resulting mutant protein was transinhibitory.
Collapse
Affiliation(s)
- X H Li
- Department of Biology, Texas A&M University, College Station 77843
| | | |
Collapse
|
78
|
Chen S, Das P, Abdel Ghaffar MH, Hari V. Electron microscopic localization of ATPase activity in tobacco cells infected by tobacco etch potyvirus and tobacco mosaic virus. Arch Virol 1995; 140:173-8. [PMID: 7646342 DOI: 10.1007/bf01309732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thin sections of leaves of plants infected by tobacco etch potyvirus (TEV) or tobacco mosaic virus (TMV) were examined for the presence of ATPase activity by electron microscopy. ATPase activity was found as expected in mitochondria, chloroplasts and plasmalemma of both uninfected as well as cells infected by either TEV or TMV. In the TEV-infected cells, ATPase activity was localized to virus-induced vesicles, endoplasmic reticulum and in some cells, to ribosomes attached to the ER. In TMV-infected cells, ATPase activity was found in vesicles as well as in tubular membranes closely associated with the X-bodies.
Collapse
Affiliation(s)
- S Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
79
|
Chen S, Das P, Hari V. In situ localization of ATPase activity in cells of plants infected by maize dwarf mosaic potyvirus. Arch Virol 1994; 134:433-9. [PMID: 8129627 DOI: 10.1007/bf01310581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cells of healthy maize plants as well as those infected by maize dwarf mosaic potyvirus were examined by electron microscopy for the location of ATPase activity. In healthy and virus infected plants, ATPase activity was found in plasma membranes, chloroplast thylakoid membranes, nuclear membranes and in mitochondria. In virus-infected cells, ATPase activity was also observed in cytoplasmic vesicles which were found in close proximity to the virus-specific cytoplasmic inclusion bodies (CI), at the ends of the arms of the CI and in plasmodesmata.
Collapse
Affiliation(s)
- S Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan
| | | | | |
Collapse
|
80
|
Rikkonen M, Peränen J, Kääriäinen L. ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2. J Virol 1994; 68:5804-10. [PMID: 8057461 PMCID: PMC236984 DOI: 10.1128/jvi.68.9.5804-5810.1994] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The replication of Semliki Forest virus requires four nonstructural proteins (nsP1 to nsP4), all derived from the same polyprotein. One of these, nsP2, is a multifunctional protein needed in RNA replication and in the processing of the nonstructural polyprotein. On the basis of amino acid sequence homologies, nsP2 was predicted to possess nucleoside triphosphatase and RNA helicase activities. Here, we report the engineered expression in Escherichia coli of nsP2 and of an amino-terminal fragment of it by use of the highly efficient T7 expression system. Both polypeptides were produced as fusion proteins with a histidine tag at the amino terminus and purified by immobilized-metal affinity chromatography. The two recombinant proteins exhibited ATPase and GTPase activities, which were further stimulated by the presence of single-stranded RNA. The activities were not found in similarly prepared fractions from uninduced control cells or cells expressing an unrelated polypeptide. Radiolabeled ribonucleoside triphosphates could be cross-linked to both the full-length and the carboxy-terminally truncated nsP2 protein, and both polypeptides had RNA-binding capacity. We also expressed and purified an nsP2 variant which had a single amino acid substitution in the nucleotide-binding motif (Lys-192-->Asn). No nucleoside triphosphatase activity was associated with this mutant protein.
Collapse
Affiliation(s)
- M Rikkonen
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | |
Collapse
|
81
|
GARCÍA JA, RIECHMANN JL, LAÍN S, MARTÍN MT, GUO H, SIMON L, FERNÁNDEZ A, DOMÍNGUEZ E, CERVERA MT. Molecular characterization of plum pox potyvirus. ACTA ACUST UNITED AC 1994. [DOI: 10.1111/j.1365-2338.1994.tb01067.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Eagles RM, Balmori-Melián E, Beck DL, Gardner RC, Forster RL. Characterization of NTPase, RNA-binding and RNA-helicase activities of the cytoplasmic inclusion protein of tamarillo mosaic potyvirus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:677-84. [PMID: 7925384 DOI: 10.1111/j.1432-1033.1994.t01-1-00677.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 66-kDa cytoplasmic inclusion protein of tamarillo mosaic potyvirus was purified to near homogeneity using organic solvent clarification, differential centrifugation and sucrose density gradient centrifugation. ATPase and GTPase activities were shown to co-purify with the 66-kDa protein. ATPase activity was stimulated up to fivefold in the presence of 20 microM poly(A). The Km value for ATP hydrolysis (18 microM), was minimally affected upon addition of poly(A). In contrast, the Vmax value for ATP hydrolysis was increased fivefold by the addition of poly(A). Binding of RNA by the cytoplasmic inclusion protein was demonstrated by gel electrophoresis of ultraviolet cross-linked enzyme-RNA complexes. In the absence of added NTP, complexes between the cytoplasmic inclusion protein and single-stranded RNA species formed rapidly in the pH range 3-7, but not at pH 8 or 9. Binding to single-stranded RNA was markedly decreased by the addition of NaCl (10 mM), suggesting a weak association between RNA and enzyme. The cytoplasmic inclusion protein bound single-stranded RNA or partially double-stranded RNA duplexes with single-stranded overhangs of 35 bases and 81 bases, respectively, but did not bind 16-bp blunt-ended double-stranded RNA. RNA binding occurred in the absence of NTP (ATP, GTP, CTP or UTP), whereas dissociation of bound RNA occurred only in the presence of NTP. RNA duplex unwinding (helicase) activity of the enzyme was demonstrated in the presence of any of the above four NTPs using partially double-stranded RNA duplexes with 3' single-stranded overhangs. We propose that the cytoplasmic inclusion protein of tamarillo mosaic virus is an RNA helicase, which translocates in the 3' to 5' direction in an energy-dependent manner, unwinding double-stranded regions.
Collapse
Affiliation(s)
- R M Eagles
- Molecular Genetics Group, Horticulture and Food Research Institute Ltd., Auckland, New Zealand
| | | | | | | | | |
Collapse
|
83
|
Gibson TJ, Thompson JD. Detection of dsRNA-binding domains in RNA helicase A and Drosophila maleless: implications for monomeric RNA helicases. Nucleic Acids Res 1994; 22:2552-6. [PMID: 8041617 PMCID: PMC308209 DOI: 10.1093/nar/22.13.2552] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Searches with dsRNA-binding domain profiles detected two copies of the domain in each of RNA helicase A, Drosophila maleless and C. elegans ORF T20G5-11 (of unknown function). RNA helicase A is unusual in being one of the few characterised DEAD/DExH helicases that are active as monomers. Other monomeric DEAD/DExH RNA helicases (p68, NPH-II) have domains that match another RNA-binding motif, the RGG repeat. The DEAD/DExH domain appears to be insufficient on its own to promote helicase activity and additional RNA-binding capacity must be supplied either as domains adjacent to the DEAD/DExH-box or by bound partners as in the eIF-4AB dimer. The presence or absence of extra RNA-binding domains should allow classification of DEAD/DExH proteins as monomeric or multimeric helicases.
Collapse
Affiliation(s)
- T J Gibson
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
84
|
Restrepo-Hartwig MA, Carrington JC. The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J Virol 1994; 68:2388-97. [PMID: 8139025 PMCID: PMC236716 DOI: 10.1128/jvi.68.4.2388-2397.1994] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The tobacco etch potyvirus (TEV) genome encodes a polyprotein that is processed by three virus-encoded proteinases. Although replication of TEV likely occurs in the cytoplasm, two replication-associated proteins, VPg-proteinase (nuclear inclusion protein a) (NIa) and RNA-dependent RNA polymerase (nuclear inclusion protein b) (NIb), accumulate in the nucleus of infected cells. The 6-kDa protein is located adjacent to the N terminus of NIa in the TEV polyprotein, and, in the context of a 6-kDa protein/NIa (6/NIa) polyprotein, impedes nuclear translocation of NIa (M. A. Restrepo-Hartwig and J. C. Carrington, J. Virol. 66:5662-5666, 1992). The 6-kDa protein and three polyproteins containing the 6-kDa protein were identified by affinity chromatography of extracts from infected plants. Two of the polyproteins contained NIa or the N-terminal VPg domain of NIa linked to the 6-kDa protein. To investigate the role of the 6-kDa protein in vivo, insertion and substitution mutagenesis was targeted to sequences coding for the 6-kDa protein and its N- and C-terminal cleavage sites. These mutations were introduced into a TEV genome engineered to express the reporter protein beta-glucuronidase (GUS), allowing quantitation of virus amplification by a fluorometric assay. Three-amino-acid insertions at each of three positions in the 6-kDa protein resulted in viruses that were nonviable in tobacco protoplasts. Disruption of the N-terminal cleavage site resulted in a virus that was approximately 10% as active as the parent, while disruption of the C-terminal processing site eliminated virus viability. The subcellular localization properties of the 6-kDa protein were investigated by fractionation and immunolocalization of 6-kDa protein/GUS (6/GUS) fusion proteins in transgenic plants. Nonfused GUS was associated with the cytosolic fraction (30,000 x g centrifugation supernatant), while 6/GUS and GUS/6 fusion proteins sedimented with the crude membrane fraction (30,000 x g centrifugation pellet). The GUS/6 fusion protein was localized to apparent membranous proliferations associated with the periphery of the nucleus. These data suggest that the 6-kDa protein is membrane associated and is necessary for virus replication.
Collapse
|
85
|
Yáñez RJ, Rodríguez JM, Boursnell M, Rodríguez JF, Viñuela E. Two putative African swine fever virus helicases similar to yeast 'DEAH' pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R. Gene 1993; 134:161-74. [PMID: 8262374 DOI: 10.1016/0378-1119(93)90090-p] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two open reading frames (ORFs) of African swine fever virus (ASFV) encoding putative helicases have been sequenced. The two genes, termed D1133L and B962L, are located in the central region of the viral genome, but are separated by about 40 kb of DNA. Both genes are expressed late during ASFV infection of Vero cells, after replication of viral DNA has begun. Contiguous to D1133L, three other ORFs (D129L, D79L and D339L), encoding putative proteins of unknown function, have been sequenced. Proteins D1133L and B962L contain the amino acid motifs that characterize helicases of superfamily II. D1133L is most similar to a group of putative helicases which includes two proteins of vaccinia virus (D11L and D6R) involved in transcription of the viral genome, their homologues in other poxviruses, the protein encoded by ORF 4 of the yeast plasmids, pGKL2 and pSKL, and the previously identified ASFV protein, Q706L. B962L resembles a group of RNA-helicase-like proteins which includes three proteins of Saccharomyces cerevisiae involved in pre-mRNA splicing (PRP2, PRP16 and PRP22), Drosophila melanogaster KURZ and MLE, and vaccinia virus 18R.
Collapse
Affiliation(s)
- R J Yáñez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
86
|
The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol Cell Biol 1993. [PMID: 8413273 DOI: 10.1128/mcb.13.11.6789] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
eIF-4A is a eukaryotic translation initiation factor that is required for mRNA binding to ribosomes. It exhibits single-stranded RNA-dependent ATPase activity, and in combination with a second initiation factor, eIF-4B, it exhibits duplex RNA helicase activity. eIF-4A is the prototype of a large family of proteins termed the DEAD box protein family, whose members share nine highly conserved amino acid regions. The functions of several of these conserved regions in eIF-4A have previously been assigned to ATP binding, ATPase, and helicase activities. To define the RNA-binding region of eIF-4A, a UV-induced cross-linking assay was used to analyze binding of mutant eIF-4A proteins to RNA. Mutants carrying mutations in the ATP-binding region (AXXXXGKT), ATPase region (DEAD), helicase region (SAT), and the most carboxy-terminal conserved region of the DEAD family, HRIGRXXR, were tested for RNA cross-linking. We show that mutations, either conservative or not, in any one of the three arginines in the HRIGRXXR sequence drastically reduced eIF-4A cross-linking to RNA. In addition, all the mutations in the HRIGRXXR region abrogate RNA helicase activity. Some but not all of these mutations affect ATP binding and ATPase activity. This is consistent with the hypothesis that the HRIGRXXR region is involved in the ATP hydrolysis reaction and would explain the coupling of ATPase and RNA-binding/helicase activities. Our results show that the HRIGRXXR region, which is QRXGRXXR or QXXGRXXR in the RNA and DNA helicases of the helicase superfamily II, is involved in ATP hydrolysis-dependent RNA interaction during unwinding. We also show that mutations in other regions of eIF-4A that abolish ATPase activity sharply decrease eIF-4A cross-linking to RNA. A model is proposed in which eIF-4A first binds ATP, resulting in a change in eIF-4A conformation which allows RNA binding that is dependent on the HRIGRXXR region. Binding of RNA induces ATP hydrolysis, leading to a more stable interaction with RNA. This process is then linked to unwinding of duplex RNA in the presence of eIF-4B.
Collapse
|
87
|
Pause A, Méthot N, Sonenberg N. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol Cell Biol 1993; 13:6789-98. [PMID: 8413273 PMCID: PMC364741 DOI: 10.1128/mcb.13.11.6789-6798.1993] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
eIF-4A is a eukaryotic translation initiation factor that is required for mRNA binding to ribosomes. It exhibits single-stranded RNA-dependent ATPase activity, and in combination with a second initiation factor, eIF-4B, it exhibits duplex RNA helicase activity. eIF-4A is the prototype of a large family of proteins termed the DEAD box protein family, whose members share nine highly conserved amino acid regions. The functions of several of these conserved regions in eIF-4A have previously been assigned to ATP binding, ATPase, and helicase activities. To define the RNA-binding region of eIF-4A, a UV-induced cross-linking assay was used to analyze binding of mutant eIF-4A proteins to RNA. Mutants carrying mutations in the ATP-binding region (AXXXXGKT), ATPase region (DEAD), helicase region (SAT), and the most carboxy-terminal conserved region of the DEAD family, HRIGRXXR, were tested for RNA cross-linking. We show that mutations, either conservative or not, in any one of the three arginines in the HRIGRXXR sequence drastically reduced eIF-4A cross-linking to RNA. In addition, all the mutations in the HRIGRXXR region abrogate RNA helicase activity. Some but not all of these mutations affect ATP binding and ATPase activity. This is consistent with the hypothesis that the HRIGRXXR region is involved in the ATP hydrolysis reaction and would explain the coupling of ATPase and RNA-binding/helicase activities. Our results show that the HRIGRXXR region, which is QRXGRXXR or QXXGRXXR in the RNA and DNA helicases of the helicase superfamily II, is involved in ATP hydrolysis-dependent RNA interaction during unwinding. We also show that mutations in other regions of eIF-4A that abolish ATPase activity sharply decrease eIF-4A cross-linking to RNA. A model is proposed in which eIF-4A first binds ATP, resulting in a change in eIF-4A conformation which allows RNA binding that is dependent on the HRIGRXXR region. Binding of RNA induces ATP hydrolysis, leading to a more stable interaction with RNA. This process is then linked to unwinding of duplex RNA in the presence of eIF-4B.
Collapse
Affiliation(s)
- A Pause
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
88
|
Characterization of a new RNA helicase from nuclear extracts of HeLa cells which translocates in the 5‘ to 3‘ direction. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36933-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
89
|
Freije JM, Laín S, Viñuela E, López-Otín C. Nucleotide sequence of a nucleoside triphosphate phosphohydrolase gene from African swine fever virus. Virus Res 1993; 30:63-72. [PMID: 8266720 DOI: 10.1016/0168-1702(93)90016-g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A putative nucleoside triphosphate phosphohydrolase (NTPase) gene of African swine fever virus was identified by using a degenerate oligonucleotide probe derived from the nucleoside triphosphate binding motif, which is highly conserved among viral and cellular NTPases. The probe hybridized with fragments SalI E and EcoRI Q, which is entirely contained in the former one. Sequencing of this region revealed an open reading frame, designated Q706L, coding for a protein of 706 amino acids, with a calculated molecular weight of 80,283. The deduced amino acid sequence of this open reading frame has significant similarity with the putative helicase encoded by the killer plasmid pGKL2 of Kluyveromyces lactis as well as with the NTPase I of vaccinia virus and entomopoxvirus and a subunit of the early transcription factor of vaccinia and fowlpox virus. The protein encoded by this open reading frame contains the sequence features characteristic of helicases of the superfamily II. According to this, we propose the inclusion of the product of this ASF virus gene in this superfamily.
Collapse
Affiliation(s)
- J M Freije
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
90
|
Suzich JA, Tamura JK, Palmer-Hill F, Warrener P, Grakoui A, Rice CM, Feinstone SM, Collett MS. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J Virol 1993; 67:6152-8. [PMID: 8396675 PMCID: PMC238037 DOI: 10.1128/jvi.67.10.6152-6158.1993] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sequence motifs within the nonstructural protein NS3 of members of the Flaviviridae family suggest that this protein possesses nucleoside triphosphatase (NTPase) and RNA helicase activity. The RNA-stimulated NTPase activity of this protein from prototypic members of the Pestivirus and Flavivirus genera has recently been established and enzymologically characterized. Here, we experimentally demonstrate that the NS3 protein from a member of the third genus of Flaviviridae, human hepatitis C virus (HCV), also possesses a polynucleotide-stimulated NTPase activity. Characterization of the purified HCV NTPase activity showed that it exhibited reaction condition optima with respect to pH, MgCl2, and salt identical to those of the representative pestivirus and flavivirus enzymes. However, each NTPase also possessed several unique properties when compared with one another. Notably, the profile of polynucleotide stimulation of the NTPase activity was distinct for the three enzymes. The HCV NTPase was the only one whose activity was significantly enhanced by a deoxyribopolynucleotide. Additional distinguishing features among the three enzymes relating to the kinetic properties of their NTPase activities are discussed. These studies provide a foundation for investigation of the putative RNA helicase activity of these proteins and for further study of the role of the NS3 proteins of members of the Flaviviridae in the replication cycle of these viruses.
Collapse
Affiliation(s)
- J A Suzich
- MedImmune, Inc., Gaithersburg, Maryland 20878
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Cho MW, Richards OC, Dmitrieva TM, Agol V, Ehrenfeld E. RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3Dpol. J Virol 1993; 67:3010-8. [PMID: 8388485 PMCID: PMC237637 DOI: 10.1128/jvi.67.6.3010-3018.1993] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ability of highly purified preparations of poliovirus RNA-dependent RNA polymerase, 3Dpol, to unwind RNA duplex structures was examined during a chain elongation reaction in vitro. Using an antisense RNA prehybridized to an RNA template, we show that poliovirus polymerase can elongate through a highly stable RNA duplex of over 1,000 bp. Radiolabeled antisense RNA was displaced from the template during the reaction, and product RNAs which were equal in length to the template strand were synthesized. Unwinding did not occur in the absence of chain elongation and did not require hydrolysis of the gamma-phosphate of ATP. The rate of elongation through the duplex region was comparable to the rate of elongation on the single-stranded region of the template. Parallel experiments conducted with avian myeloblastosis virus reverse transcriptase showed that this enzyme was not able to unwind the RNA duplex, suggesting that strand displacement by poliovirus 3Dpol is not a property shared by all polymerases.
Collapse
Affiliation(s)
- M W Cho
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | | | | | | | |
Collapse
|
92
|
Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 1993. [DOI: 10.1016/s0959-440x(05)80116-2] [Citation(s) in RCA: 849] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
93
|
|
94
|
Ohshima K, Inoue AK, Shikata E. Molecular cloning, sequencing, and expression in Escherichia coli of the potato virus Y cytoplasmic inclusion gene. Arch Virol 1993; 128:15-27. [PMID: 8418790 DOI: 10.1007/bf01309785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Complete nucleotide sequences of cytoplasmic inclusion (CI) genes of two strains of potato virus Y (PVY) were determined from six polymerase chain reaction (PCR)-amplified cDNA clones. The size of the CI genes of both ordinary (PVY-O) and necrotic strains (PVY-T13) was 1902 nucleotides, with a sequence homology of 83.4%. Comparison of the predicted amino acid sequences showed more than 90% homology. When these were compared with those of other potyviruses, the homology ranged from 53 to 61%. cDNAs of all or a part of the PVY-O CI gene containing an additional initiation codon (ATG) at the 5' end and a stop codon at the 3' end were constructed by PCR amplification and cloned into an Escherichia coli expression vector, pKK 223-3. Complete and truncated PVY-O CI proteins were successfully produced in E. coli as judged by reactivities with PVY-O CI protein-specific antiserum. To our knowledge, this is the first report on expression of PVY CI proteins in E. coli.
Collapse
Affiliation(s)
- K Ohshima
- Department of Botany, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
95
|
Warrener P, Tamura JK, Collett MS. RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. J Virol 1993; 67:989-96. [PMID: 8380474 PMCID: PMC237453 DOI: 10.1128/jvi.67.2.989-996.1993] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The nonstructural protein NS3 of the prototypic flavivirus, yellow fever virus, was investigated for possession of an NTPase activity. The entire NS3 protein coding sequence and an amino-terminal truncated version thereof were engineered into Escherichia coli expression plasmids. Bacteria harboring these plasmids produced the expected polypeptides, which upon cell disruption were found in an insoluble aggregated material considerably enriched for the NS3-related polypeptides. Solubilization and renaturation of these materials, followed by examination of their ability to hydrolyze ATP, revealed an ATPase activity present in both the full-length and amino-terminal truncated NS3 preparations but not in a similarly prepared fraction from E. coli cells engineered to express an unrelated polypeptide. The amino-terminal truncated NS3 polypeptide was further enriched to greater than 95% purity by ion-exchange and affinity chromatography. Throughout the purification scheme, the ATPase activity cochromatographed with the recombinant NS3 polypeptide. The enzymatic activity of the purified material was shown to be a general NTPase and was dramatically stimulated by the presence of particular single-stranded polyribonucleotides. These results are discussed in view of similar activities identified for proteins of other positive-strand RNA viruses.
Collapse
Affiliation(s)
- P Warrener
- Medimmune, Inc., Gaithersburg, Maryland 20878
| | | | | |
Collapse
|
96
|
Affiliation(s)
- S Henikoff
- Howard Hughes Medical Institute, Seattle, Washington
| | | |
Collapse
|
97
|
Bradley DW, Beach MJ, Purdy MA. Molecular characterization of hepatitis C and E viruses. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1993; 7:1-14. [PMID: 8219795 DOI: 10.1007/978-3-7091-9300-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular features of each of the major viruses of non-A, non-B hepatitis, namely hepatitis C virus (HCV) and hepatitis E virus (HEV) are briefly described. The organization of the genome of each of these viruses is discussed and compared to those of other related or distantly related viruses that contain single-stranded, positive-sense RNA genomes. HCV has been tentatively classified as a separate genus within the Flaviviridae, whereas HEV has been loosely associated with caliciviruses and subsequently assigned to the Caliciviridae, although it does possess unique genetic features not found in other caliciviruses.
Collapse
Affiliation(s)
- D W Bradley
- Hepatitis Branch, Centers for Disease Control, Atlanta, GA
| | | | | |
Collapse
|
98
|
|
99
|
Koonin EV, Dolja VV. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 1993; 28:375-430. [PMID: 8269709 DOI: 10.3109/10409239309078440] [Citation(s) in RCA: 714] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the rapid mutational change that is typical of positive-strand RNA viruses, enzymes mediating the replication and expression of virus genomes contain arrays of conserved sequence motifs. Proteins with such motifs include RNA-dependent RNA polymerase, putative RNA helicase, chymotrypsin-like and papain-like proteases, and methyltransferases. The genes for these proteins form partially conserved modules in large subsets of viruses. A concept of the virus genome as a relatively evolutionarily stable "core" of housekeeping genes accompanied by a much more flexible "shell" consisting mostly of genes coding for virion components and various accessory proteins is discussed. Shuffling of the "shell" genes including genome reorganization and recombination between remote groups of viruses is considered to be one of the major factors of virus evolution. Multiple alignments for the conserved viral proteins were constructed and used to generate the respective phylogenetic trees. Based primarily on the tentative phylogeny for the RNA-dependent RNA polymerase, which is the only universally conserved protein of positive-strand RNA viruses, three large classes of viruses, each consisting of distinct smaller divisions, were delineated. A strong correlation was observed between this grouping and the tentative phylogenies for the other conserved proteins as well as the arrangement of genes encoding these proteins in the virus genome. A comparable correlation with the polymerase phylogeny was not found for genes encoding virion components or for genome expression strategies. It is surmised that several types of arrangement of the "shell" genes as well as basic mechanisms of expression could have evolved independently in different evolutionary lineages. The grouping revealed by phylogenetic analysis may provide the basis for revision of virus classification, and phylogenetic taxonomy of positive-strand RNA viruses is outlined. Some of the phylogenetically derived divisions of positive-strand RNA viruses also include double-stranded RNA viruses, indicating that in certain cases the type of genome nucleic acid may not be a reliable taxonomic criterion for viruses. Hypothetical evolutionary scenarios for positive-strand RNA viruses are proposed. It is hypothesized that all positive-strand RNA viruses and some related double-stranded RNA viruses could have evolved from a common ancestor virus that contained genes for RNA-dependent RNA polymerase, a chymotrypsin-related protease that also functioned as the capsid protein, and possibly an RNA helicase.
Collapse
Affiliation(s)
- E V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | | |
Collapse
|
100
|
Intracellular localization of three non-structural plum pox potyvirus proteins by immunogold labelling. Virus Res 1992. [DOI: 10.1016/0168-1702(92)90134-u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|