51
|
Feng H. Mutational analysis of bacterial NAD+-dependent DNA ligase: role of motif IV in ligation catalysis. Acta Biochim Biophys Sin (Shanghai) 2007; 39:608-16. [PMID: 17687496 DOI: 10.1111/j.1745-7270.2007.00313.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The bacterial DNA ligase as a multiple domain protein is involved in DNA replication, repair and recombination. Its catalysis of ligation can be divided into three steps. To delineate the roles of amino acid residues in motif IV in ligation catalysis, site-directed mutants were constructed in a bacterial NAD+-dependent DNA ligase from Thermus sp. TAK16D. It was shown that four conserved residues (D286, G287, V289 and K291) in motif IV had significant roles on the overall ligation. Under single turnover conditions, the observed apparent rates of D286E, G287A, V289I and K291R mutants were clearly reduced compared with that of WT ligase on both match and mismatch nicked substrates. The effects of D286E mutation on overall ligation may not only be ascribed to the third step. The G287A mutation has a major effect on the second step. The effects of V289I and K291R mutation on overall ligation are not on the third step, perhaps other aspects, such as conformation change of ligase protein in ligation catalysis, are involved. Moreover, the amino acid substitutions of above four residues were more sensitive on mismatch nicked substrate, indicating an enhanced ligation fidelity.
Collapse
Affiliation(s)
- Hong Feng
- Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
52
|
Ihara T, Mukae M. Homogeneous DNA-detection based on the non-enzymatic reactions promoted by target DNA. ANAL SCI 2007; 23:625-9. [PMID: 17575342 DOI: 10.2116/analsci.23.625] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Much effort has focused on methods for detecting various genetic differences in individuals, including single nucleotide polymorphisms (SNPs). SNP can be characterized as a substitution, insertion, or deletion at a single base position on a DNA strand. There is expected to be on average one SNP for every 1000 bases of the human genome, and some variations located in genes are suspected to alter both the protein structure and the expression level. Therefore, highly sensitive techniques with a simple procedure would be desirable for a high-throughput screening of millions of SNPs widely dispersed throughout the human genome. In this short review, we consider recently reported unique techniques for genotyping in a homogeneous solution, and organize them in terms of the chemical and physical processes accelerated on DNA.
Collapse
Affiliation(s)
- Toshihiro Ihara
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, Japan.
| | | |
Collapse
|
53
|
Yoshimura Y, Okamura D, Ogino M, Fujimoto K. Highly selective and sensitive template-directed photoligation of DNA via 5-carbamoylvinyl-2'-deoxycytidine. Org Lett 2007; 8:5049-51. [PMID: 17048840 DOI: 10.1021/ol0619462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a highly efficient template-directed photoligation of oligodeoxynucleotides (ODNs) through 5-carbamoylvinyl-2'-deoxycytidine ((CV)C). When an ODN containing (CV)C at the 5' end was photoirradiated with an ODN containing a pyrimidine base at the 3' end in the presence of template DNA, efficient photoligation was observed without any byproduct formation. Single nucleotide differences can be successfully distinguished by using photoligation-based DNA chip assay. [structure: see text]
Collapse
Affiliation(s)
- Yoshinaga Yoshimura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | | | | | |
Collapse
|
54
|
Banér J, Gyarmati P, Yacoub A, Hakhverdyan M, Stenberg J, Ericsson O, Nilsson M, Landegren U, Belák S. Microarray-based molecular detection of foot-and-mouth disease, vesicular stomatitis and swine vesicular disease viruses, using padlock probes. J Virol Methods 2007; 143:200-6. [PMID: 17451815 DOI: 10.1016/j.jviromet.2007.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 11/12/2022]
Abstract
The World Organization for Animal Health (Office International des Epizooties, OIE) includes the diseases caused by foot-and-mouth disease virus (FMDV), swine vesicular disease virus (SVDV), and vesicular stomatitis virus (VSV), as "Diseases Notifiable to the OIE". Foot-and-mouth disease (FMD) outbreaks have severe economical as well as social effects and cannot be differentiated from the diseases caused by the other two viruses on the basis of clinical symptoms. Efficient laboratory techniques are therefore required for detection and identification of the viruses causing similar vesicular symptoms in swine. A rapid method is described using padlock probes and microarrays to detect simultaneously and differentiate the three viruses in a single reaction, as well as providing serotype information in cases of VSV infection. The padlock probe/microarray assay detected successfully and identified 39 cDNA samples of different origin representing the three viruses. The results were in complete agreement with identities and serotypes determined previously. This novel virus detection method is discussed in terms of usefulness and further development.
Collapse
Affiliation(s)
- Johan Banér
- Joint Research and Development Division, Department of Virology, The National Veterinary Institute and the Swedish University of Agricultural Sciences, Ulls väg 2B, SE-75189 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Nishida N, Tanabe T, Takasu M, Suyama A, Tokunaga K. Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay. Anal Biochem 2007; 364:78-85. [PMID: 17359929 DOI: 10.1016/j.ab.2007.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/02/2007] [Accepted: 02/02/2007] [Indexed: 12/01/2022]
Abstract
A number of single nucleotide polymorphisms (SNPs) are considered to be candidate susceptibility or resistance genetic factors for multifactorial disease. Genome-wide searches for disease susceptibility regions followed by high-resolution mapping of primary genes require cost-effective and highly reliable technology. To accomplish successful and low-cost typing for candidate SNPs, new technologies must be developed. We previously reported a multiplex SNP typing method, designated the DigiTag assay, that has the potential to analyze nearly any SNP with high accuracy and reproducibility. However, the DigiTag assay requires multiple washing steps in manipulation and uses genotyping probes modified with biotin for each target SNP. Here we describe the next version of the assay, DigiTag2, which works with simple protocols and uses unmodified genotyping probes. We investigated the feasibility of the DigiTag2 assay by genotyping 96 target SNPs spanning a 610-kb region of human chromosome 5. The DigiTag2 assay is suitable for genotyping an intermediate number of SNPs (tens to hundreds of sites) with a high conversion rate (>90%), high accuracy, and low cost.
Collapse
Affiliation(s)
- Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
56
|
Pang L, Li J, Jiang J, Shen G, Yu R. DNA point mutation detection based on DNA ligase reaction and nano-Au amplification: a piezoelectric approach. Anal Biochem 2006; 358:99-103. [PMID: 16996020 DOI: 10.1016/j.ab.2006.06.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 06/24/2006] [Accepted: 06/30/2006] [Indexed: 11/17/2022]
Abstract
A novel piezoelectric method for DNA point mutation detection based on DNA ligase reaction and nano-Au-amplified DNA probes is proposed. A capture probe was designed with the potential point mutation site located at the 3' end and a thiol group at the 5' end to be immobilized on the gold electrode surface of quartz crystal microbalance (QCM). Successive hybridization with the target DNA and detection probe of nano-Au-labeled DNA forms a double-strand DNA (dsDNA). After the DNA ligase reaction and denaturing at an elevated temperature, the QCM frequency would revert to the original value for the target with single-base mismatch, whereas a reduced frequency response would be obtained for the case of the perfect match target. In this way, the purpose of point mutation discrimination could be achieved. The current approach is demonstrated with the identification of a single-base mutation in artificial codon CD17 of the beta-thalassemia gene, and the wild type and mutant type were discriminated successfully. The scanning electron microscope (SEM) image showing that plenty of gold nanoparticles remained on the electrode surface demonstrated that the nano-Au label served as an efficient signal amplification agent in QCM assay. A detection limit of 2.6 x 10(-9)mol/L of oligonucleotides was achieved. Owing to its ease of operation and low detection limit, it is expected that the proposed procedure may hold great promise in both research-based and clinical genomic assays.
Collapse
Affiliation(s)
- Lanlan Pang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | |
Collapse
|
57
|
Ficht S, Dose C, Seitz O. As fast and selective as enzymatic ligations: unpaired nucleobases increase the selectivity of DNA-controlled native chemical PNA ligation. Chembiochem 2006; 6:2098-103. [PMID: 16208732 DOI: 10.1002/cbic.200500229] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DNA-controlled reactions offer interesting opportunities in biological, chemical, and nanosciences. In practical applications, such as in DNA sequence analysis, the sequence fidelity of the chemical-ligation reaction is of central importance. We present a ligation reaction that is as fast as and much more selective than enzymatic T4 ligase-mediated oligonucleotide ligations. The selectivity was higher than 3000-fold in discriminating matched from singly mismatched DNA templates. It is demonstrated that this enormous selectivity is the hallmark of the particular ligation architecture, which is distinct from previous ligation architectures designed as "nick ligations". Interestingly, the fidelity of the native chemical ligation of peptide nucleic acids was increased by more than one order of magnitude when performing the ligation in such a way that an abasic-site mimic was formed opposite an unpaired template base. It is shown that the high sequence fidelity of the abasic ligation could facilitate the MALDI-TOF mass-spectrometric analysis of early cancer onset by allowing the detection of as little as 0.2 % of single-base mutant DNA in the presence of 99.8 % wild-type DNA.
Collapse
Affiliation(s)
- Simon Ficht
- Institut für Chemie der Humboldt-Universität zu Berlin, Germany
| | | | | |
Collapse
|
58
|
Cheng YW, Shawber C, Notterman D, Paty P, Barany F. Multiplexed profiling of candidate genes for CpG island methylation status using a flexible PCR/LDR/Universal Array assay. Genome Res 2005; 16:282-9. [PMID: 16369045 PMCID: PMC1361724 DOI: 10.1101/gr.4181406] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation in CpG islands is associated with transcriptional silencing. Accurate determination of cytosine methylation status in promoter CpG dinucleotides may provide diagnostic and prognostic value for human cancers. We have developed a quantitative PCR/LDR/Universal Array assay that allows parallel evaluation of methylation status of 75 CpG dinucleotides in the promoter regions of 15 tumor suppressor genes (CDKN2B, CDKN2A, CDKN2D, CDKN1A, CDKN1B, TP53, BRCA1, TIMP3, APC, RASSF1, CDH1, MGMT, DAPK1, GSTP1, and RARB). When compared with an independent pyrosequencing method at a single promoter, the two approaches gave good correlation. In a study using 15 promoter regions and seven blinded tumor cell lines, our technology was capable of distinguishing methylation profiles that identified cancer cell lines derived from the same origins. Preliminary studies using 96 colorectal tumor samples and 73 matched normal tissues indicated CpG methylation is a gene-specific and nonrandom event in colon cancer. This new approach is suitable for clinical applications where sample quantity and purity can be limiting factors.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
59
|
Macdonald SJ, Pastinen T, Genissel A, Cornforth TW, Long AD. A low-cost open-source SNP genotyping platform for association mapping applications. Genome Biol 2005; 6:R105. [PMID: 16356268 PMCID: PMC1414086 DOI: 10.1186/gb-2005-6-12-r105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 07/20/2005] [Accepted: 10/21/2005] [Indexed: 02/27/2023] Open
Abstract
Association mapping aimed at identifying DNA polymorphisms that contribute to variation in complex traits entails genotyping a large number of single-nucleotide polymorphisms (SNPs) in a very large panel of individuals. Few technologies, however, provide inexpensive high-throughput genotyping. Here, we present an efficient approach developed specifically for genotyping large fixed panels of diploid individuals. The cost-effective, open-source nature of our methodology may make it particularly attractive to those working in nonmodel systems.
Collapse
Affiliation(s)
- Stuart J Macdonald
- Department of Ecology and Evolutionary Biology, University of California Irvine, CA 92697-2525, USA
| | - Tomi Pastinen
- McGill University and Genome Québec Innovation Centre, 740 Docteur Penfield Avenue, Montreal, Québec H3A 1A4, Canada
| | - Anne Genissel
- Department of Ecology and Evolutionary Biology, University of California Irvine, CA 92697-2525, USA
- Section of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - Theodore W Cornforth
- Department of Ecology and Evolutionary Biology, University of California Irvine, CA 92697-2525, USA
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403-1254, USA
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California Irvine, CA 92697-2525, USA
| |
Collapse
|
60
|
Li J, Chu X, Liu Y, Jiang JH, He Z, Zhang Z, Shen G, Yu RQ. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Res 2005; 33:e168. [PMID: 16257979 PMCID: PMC1275593 DOI: 10.1093/nar/gni163] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The present study reported proof-of-principle for a genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) through the gold nanoparticle assembly and the ligase reaction. By incorporating the high-fidelity DNA ligase (Tth DNA ligase) into the allele-specific ligation-based gold nanoparticle assembly, this assay provided a convenient yet powerful colorimetric detection that enabled a straightforward single-base discrimination without the need of precise temperature control. Additionally, the ligase reaction can be performed at a relatively high temperature, which offers the benefit for mitigating the non-specific assembly of gold nanoparticles induced by interfering DNA strands. The assay could be implemented via three steps: a hybridization reaction that allowed two gold nanoparticle-tagged probes to hybrid with the target DNA strand, a ligase reaction that generates the ligation between perfectly matched probes while no ligation occurred between mismatched ones and a thermal treatment at a relatively high temperature that discriminate the ligation of probes. When the reaction mixture was heated to denature the formed duplex, the purple color of the perfect-match solution would not revert to red, while the mismatch gave a red color as the assembled gold nanoparticles disparted. The present approach has been demonstrated with the identification of a single-base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild-type and mutant type were successfully scored. To our knowledge, this was the first report concerning SNP detection based on the ligase reaction and the gold nanoparticle assembly. Owing to its ease of operation and high specificity, it was expected that the proposed procedure might hold great promise in practical clinical diagnosis of gene-mutant diseases.
Collapse
Affiliation(s)
| | | | - Yali Liu
- Clinical Pharmacology Laboratory, Tumor Hospital of Hunan ProvinceChangsha 410012, P. R. China
| | - Jian-Hui Jiang
- To whom correspondence should be addressed. Tel: +86 731 8821355; Fax: +86 731 8821355; or
| | - Zhimin He
- Cancer Research Institute, Xiangya School of Medicine, Central South UniversityChangsha 410078, P. R. China
| | - Zhiwei Zhang
- Cancer Research Institute, Xiangya School of Medicine, Central South UniversityChangsha 410078, P. R. China
| | - Guoli Shen
- To whom correspondence should be addressed. Tel: +86 731 8821355; Fax: +86 731 8821355; or
| | | |
Collapse
|
61
|
Wang B, Potter SJ, Lin Y, Cunningham AL, Dwyer DE, Su Y, Ma X, Hou Y, Saksena NK. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol 2005; 43:2339-44. [PMID: 15872263 PMCID: PMC1153787 DOI: 10.1128/jcm.43.5.2339-2344.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The severe acute respiratory syndrome (SARS) epidemic of 2003 was responsible for 774 deaths and caused significant economic damage worldwide. Since July 2003, a number of SARS cases have occurred in China, raising the possibility of future epidemics. We describe here a rapid, sensitive, and highly efficient assay for the detection of SARS coronavirus (SARS-CoV) in cultured material and a small number (n = 7) of clinical samples. Using rolling circle amplification (RCA), we were able to achieve sensitive detection levels of SARS-CoV RNA in both solid and liquid phases. The main advantage of RCA is that it can be performed under isothermal conditions with minimal reagents and avoids the generation of false-positive results, a problem that is frequently encountered in PCR-based assays. Furthermore, the RCA technology provides a faster, more sensitive, and economical option to currently available PCR-based methods.
Collapse
Affiliation(s)
- Bin Wang
- Retroviral Genetics Laboratory, Centre for Virus Research, Westmead Millennium Institute, The University of Sydney, Darcy Rd., Westmead, Sydney, NSW 2145, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Szemes M, Bonants P, de Weerdt M, Baner J, Landegren U, Schoen CD. Diagnostic application of padlock probes--multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res 2005; 33:e70. [PMID: 15860767 PMCID: PMC1087788 DOI: 10.1093/nar/gni069] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Padlock probes (PLPs) are long oligonucleotides, whose ends are complementary to adjacent target sequences. Upon hybridization to the target, the two ends are brought into contact, allowing PLP circularization by ligation. PLPs provide extremely specific target recognition, which is followed by universal amplification and microarray detection. Since target recognition is separated from downstream processing, PLPs enable the development of flexible and extendable diagnostic systems, targeting diverse organisms. To adapt padlock technology for diagnostic purposes, we optimized PLP design to ensure high specificity and eliminating ligation on non-target sequences under real-world assay conditions. We designed and tested 11 PLPs to target various plant pathogens at the genus, species and subspecies levels, and developed a prototype PLP-based plant health chip. Excellent specificity was demonstrated toward the target organisms. Assay background was determined for each hybridization using a no-target reference sample, which provided reliable and sensitive identification of positive samples. A sensitivity of 5 pg genomic DNA and a dynamic range of detection of 100 were observed. The developed multiplex diagnostic system was validated using genomic DNAs of characterized isolates and artificial mixtures thereof. The demonstrated system is adaptable to a wide variety of applications ranging from pest management to environmental microbiology.
Collapse
Affiliation(s)
| | | | | | - Johan Baner
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala UniversitySE-751 85 Uppsala, Sweden
| | - Ulf Landegren
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala UniversitySE-751 85 Uppsala, Sweden
| | - Cor D. Schoen
- To whom correspondence should be addressed. Tel: +31 317 476 026; Fax: +31 317 418 094;
| |
Collapse
|
63
|
Bakht S, Qi X. Ligation-mediated rolling-circle amplification-based approaches to single nucleotide polymorphism detection. Expert Rev Mol Diagn 2005; 5:111-6. [PMID: 15723597 DOI: 10.1586/14737159.5.1.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ligation-mediated single nucleotide polymorphism detection coupled with an efficient method of signal enhancement, such as rolling-circle amplification, hyperbranched rolling-circle amplification or PCR, has provided the foundation for the development of variable single nucleotide polymorphism genotyping and analyzing methods for different applications. Several methods based on the above approaches have been developed, enabling rapid genotyping of a large number of single nucleotide polymorphisms directly from a small amount of genomic DNA and large-scale multiplex single nucleotide polymorphism (>1000 single nucleotide polymorphisms per assay) analysis on microarrays. This review categorizes different approaches and describes the principles of each approach for single nucleotide polymorphism detection. Possible future research directions including the development of optimized methods for analysis of cytologic samples and other applications are also discussed.
Collapse
Affiliation(s)
- Saleha Bakht
- John Innes Centre, Sainsbury Laboratory, Norwich Research Park, Colney, Norwich NR47UH, UK.
| | | |
Collapse
|
64
|
Landegren U, Nilsson M, Gullberg M, Söderberg O, Jarvius M, Larsson C, Jarvius J. Prospects for in situ analyses of individual and complexes of DNA, RNA, and protein molecules with padlock and proximity probes. Methods Cell Biol 2005; 75:787-97. [PMID: 15603453 DOI: 10.1016/s0091-679x(04)75034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Ulf Landegren
- Department of Genetics and Pathology, University of Uppsala, S-751-85 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
65
|
Burgner D, D'Amato M, Kwiatkowski DP, Loakes D. Improved allelic differentiation using sequence-specific oligonucleotide hybridization incorporating an additional base-analogue mismatch. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:755-65. [PMID: 15281364 DOI: 10.1081/ncn-120039216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sequence-specific oligonucleotide hybridization (SSOH, 'dot-blotting') is a widely employed method of typing single nucleotide polymorphisms (SNPs), but it is often compromised by lack of allelic differentiation. We describe a novel improvement to SSOH that incorporates an additional mismatch into the oligonucleotide probe using the universal base analogue 3-nitropyrrole. This method greatly increases allelic differentiation compared to standard SSOH where oligonucleotides contain only SNP-defining base changes. Moreover, stringency of the hybridisation is predictably maintained over a wide range of temperatures, which can be calculated empirically, thus facilitating the genotyping of multiple SNPs using similar conditions. This improved method increases the usefulness of hybridisation-based methods of rapid genotyping of SNPs and may have implications for array methodologies.
Collapse
Affiliation(s)
- David Burgner
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
66
|
Genissel A, Pastinen T, Dowell A, Mackay TFC, Long AD. No evidence for an association between common nonsynonymous polymorphisms in delta and bristle number variation in natural and laboratory populations of Drosophila melanogaster. Genetics 2004; 166:291-306. [PMID: 15020426 PMCID: PMC1470686 DOI: 10.1534/genetics.166.1.291] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We test the hypothesis that naturally occurring nonsynonymous variants in the Delta ligand of the Notch signaling pathway contribute to standing variation in sternopleural and/or abdominal bristle number in Drosophila melanogaster, for both a large cohort of wild-caught flies and previously described laboratory lines. We sequenced the transcribed region of Delta for 16 naturally occurring chromosomes and 65 SNPs, including 7 nonsynonymous SNPs (nsSNPs), were observed. Identified nsSNPs and 6 additional common SNPs, all located in exon 6 and the 3' UTR, were genotyped in 2060 wild-caught flies using an OLA-based methodology and genotyped in 38 additional natural chromosomes via DNA sequencing. None of the genotyped nsSNPs were significantly associated with natural variation in bristle number as assessed by a permutation test. A 95% upper bound on the additive genetic variance attributable to each genotyped SNP in the large natural cohort is <2% of the total phenotypic variation. Results suggest that two previously detected genotype/phenotype associations between bristle number and variants in the introns of Delta cannot be explained by linkage disequilibrium between these variants and nearby nonsynonymous variants. Unidentified regulatory variants more parsimoniously explain previous observations.
Collapse
Affiliation(s)
- Anne Genissel
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | | | | | |
Collapse
|
67
|
Lu J, Tong J, Feng H, Huang J, Afonso CL, Rock DL, Barany F, Cao W. Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1701:37-48. [PMID: 15450174 DOI: 10.1016/j.bbapap.2004.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 05/26/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
The eukaryotic Melanoplus sanguinipes entomopoxvirus (MsEPV) genome reveals a homologous sequence to eubacterial nicotinamide adenine dinucleotide (NAD(+))-dependent DNA ligases [J. Virol. 73 (1999) 533]. This 522-amino acid open reading frame (ORF) contains all conserved nucleotidyl transferase motifs but lacks the zinc finger motif and BRCT domain found in conventional eubacterial NAD(+) ligases. Nevertheless, cloned MsEPV ligase seals DNA nicks in a NAD(+)-dependent fashion, while adenosine 5'-monophosphate (ATP) cannot serve as an adenylation cofactor. The ligation activity of MsEPV ligase requires Mg(2+) or Mn(2+). MsEPV ligase seals sticky ends efficiently, but has little activity on 1-nucleotide gap or blunt-ended DNA substrates even in the presence of polyethylene glycol. In comparison, bacterial NAD(+)-dependent ligases seal blunt-ended DNA substrates in the presence of polyethylene glycol. MsEPV DNA ligase readily joins DNA nicks with mismatches at either side of the nick junction, except for mismatches at the nick junction containing an A base in the template strand (A/A, G/A, and C/A). MsEPV NAD(+)-dependent DNA ligase can join DNA probes on RNA templates, a unique property that distinguishes this enzyme from other conventional bacterial NAD(+) DNA ligases. T4 ATP-dependent DNA ligase shows no detectable mismatch ligation at the 3' side of the nick but substantial 5' T/G mismatch ligation on an RNA template. In contrast, MsEPV ligase joins mismatches at the 3' side of the nick more frequently than at the 5' side of the nick on an RNA template. The complementary specificities of these two enzymes suggest alternative primer design for genomic profiling approaches that use allele-specific detection directly from RNA transcripts.
Collapse
Affiliation(s)
- Jing Lu
- Department of Genetics, Biochemistry and Life Science Studies, South Carolina Experiment Station, Clemson University, Room 219, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Kiviniemi M, Nurmi J, Turpeinen H, Lövgren T, Ilonen J. A homogeneous high-throughput genotyping method based on competitive hybridization. Clin Biochem 2004; 36:633-40. [PMID: 14636879 DOI: 10.1016/s0009-9120(03)00106-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES A reliable high-throughput assay system is necessary for the analysis of the ever-increasing numbers of single-nucleotide polymorphisms (SNP) relevant to genetic screening studies. We describe an assay suitable also for large-scale screening programs. DESIGN AND METHODS The one-step assay is based on asymmetric PCR amplification of the target sequence and subsequent time-resolved fluorescence measurement. Asymmetric amplification results in a single-stranded PCR product that is detected in the amplification vessel with a highly sensitive, homogeneous hybridization method. RESULTS A dual label, homogeneous high-throughput platform for nucleic acid sequence analysis was developed and validated using a C/T single-nucleotide polymorphism in the insulin gene as a model analyte and applied also to two other SNP-assays (poliovirus receptor A/G-polymorphism and CD86-gene exon 2 A/G-polymorphism). CONCLUSIONS The described high-throughput genotyping technology is very competitive in price, simple in design and easily applied to any analyte sequence.
Collapse
Affiliation(s)
- Minna Kiviniemi
- Department of Virology, University of Turku, Tykistökatu 6 A, 4th floor, 20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
69
|
Liu P, Burdzy A, Sowers LC. DNA ligases ensure fidelity by interrogating minor groove contacts. Nucleic Acids Res 2004; 32:4503-11. [PMID: 15328364 PMCID: PMC516055 DOI: 10.1093/nar/gkh781] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA ligases, found in both prokaryotes and eukaryotes, covalently link the 3'-hydroxyl and 5'-phosphate ends of duplex DNA segments. This reaction represents a completion step for DNA replication, repair and recombination. It is well established that ligases are sensitive to mispairs present on the 3' side of the ligase junction, but tolerant of mispairs on the 5' side. While such discrimination would increase the overall accuracy of DNA replication and repair, the mechanisms by which this fidelity is accomplished are as yet unknown. In this paper, we present the results of experiments with Tth ligase from Thermus thermophilus HB8 and a series of nucleoside analogs in which the mechanism of discrimination has been probed. Using a series of purine analogs substituted in the 2 and 6 positions, we establish that the apparent base pair geometry is much more important than relative base pair stability and that major groove contacts are of little importance. This result is further confirmed using 5-fluorouracil (FU) mispaired with guanine. At neutral pH, the FU:G mispair on the 3' side of a ligase junction is predominantly in a neutral wobble configuration and is poorly ligated. Increasing the solution pH increases the proportion of an ionized base pair approximating Watson-Crick geometry, substantially increasing the relative ligation efficiency. These results suggest that the ligase could distinguish Watson-Crick from mispaired geometry by probing the hydrogen bond acceptors present in the minor groove as has been proposed for DNA polymerases. The significance of minor groove hydrogen bonding interactions is confirmed with both Tth and T4 DNA ligases upon examination of base pairs containing the pyrimidine shape analog, difluorotoluene (DFT). Although DFT paired with adenine approximates Watson-Crick geometry, a minor groove hydrogen bond acceptor is lost. Consistent with this hypothesis, we observe that DFT-containing base pairs inhibit ligation when on the 3' side of the ligase junction. The NAD+-dependent ligase, Tth, is more sensitive to the DFT analog on the unligated strand whereas the ATP-dependent T4 ligase is more sensitive to substitutions in the template strand. Electrophoretic gel mobility-shift assays demonstrate that the Tth ligase binds poorly to oligonucleotide substrates containing analogs with altered minor groove contacts.
Collapse
Affiliation(s)
- Pingfang Liu
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
70
|
Ren B, Zhou JM, Komiyama M. Straightforward detection of SNPs in double-stranded DNA by using exonuclease III/nuclease S1/PNA system. Nucleic Acids Res 2004; 32:e42. [PMID: 14982961 PMCID: PMC390314 DOI: 10.1093/nar/gnh039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in double-stranded DNA (dsDNA) have been straightforwardly genotyped by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS). Peptide nucleic acid (PNA), a DNA analog, was used as a probe molecule. In its presence, genomic dsDNA was first treated with exonuclease III and then with nuclease S1. By these one-pot reactions, single-stranded DNA fragments including the SNP sites were formed in situ. These fragments were directly analyzed by MALDI-TOF MS, and the identity of the DNA base at the SNP site was determined in terms of mass number. By using two or more PNA probes simultaneously, multiplex analysis was also successful. Various genotypes of apolipoprotein E gene (epsilon2/epsilon2, epsilon3/epsilon3, epsilon4/epsilon4, epsilon2/epsilon3 and epsilon3/epsilon4) were identified from dsDNA obtained by PCR from corresponding patients.
Collapse
Affiliation(s)
- Binzhi Ren
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | | | | |
Collapse
|
71
|
Zhong XB, Reynolds R, Kidd JR, Kidd KK, Jenison R, Marlar RA, Ward DC. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc Natl Acad Sci U S A 2003; 100:11559-64. [PMID: 12975525 PMCID: PMC208797 DOI: 10.1073/pnas.1934783100] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) constitute the bulk of human genetic variation and provide excellent markers to identify genetic factors contributing to complex disease susceptibility. A rapid, sensitive, and inexpensive assay is important for large-scale SNP scoring. Here we report the development of a multiplex SNP detection system using silicon chips coated to create a thin-film optical biosensor. Allele-discriminating, aldehyde-labeled oligonucleotides are arrayed and covalently attached to a hydrazinederivatized chip surface. Target sequences (e.g., PCR amplicons) then are hybridized in the presence of a mixture of biotinylated detector probes, one for each SNP, and a thermostable DNA ligase. After a stringent wash (0.01 M NaOH), ligation of biotinylated detector probes to perfectly matched capture oligomers is visualized as a color change on the chip surface (gold to blue/purple) after brief incubations with an anti-biotin IgG-horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate. Testing of PCR fragments is completed in 30-40 min. Up to several hundred SNPs can be assayed on a 36-mm2 chip, and SNP scoring can be done by eye or with a simple digital-camera system. This assay is extremely robust, exhibits high sensitivity and specificity, and is format-flexible and economical. In studies of mutations associated with risk for venous thrombosis and genotyping/haplotyping of African-American samples, we document high-fidelity analysis with 0 misassignments in 500 assays performed in duplicate.
Collapse
Affiliation(s)
- Xiao-Bo Zhong
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Banér J, Isaksson A, Waldenström E, Jarvius J, Landegren U, Nilsson M. Parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Res 2003; 31:e103. [PMID: 12930977 PMCID: PMC212823 DOI: 10.1093/nar/gng104] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parallel, highly specific analysis methods are required to take advantage of the extensive information about DNA sequence variation and of expressed sequences. We present a scalable laboratory technique suitable to analyze numerous target sequences in multiplexed assays. Sets of padlock probes were applied to analyze single nucleotide variation directly in total genomic DNA or cDNA for parallel genotyping or gene expression analysis. All reacted probes were then co-amplified and identified by hybridization to a standard tag oligonucleotide array. The technique was illustrated by analyzing normal and pathogenic variation within the Wilson disease-related ATP7B gene, both at the level of DNA and RNA, using allele-specific padlock probes.
Collapse
Affiliation(s)
- Johan Banér
- The Beijer Laboratory, Department of Genetics and Pathology, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
73
|
Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 2003; 100:8817-22. [PMID: 12857956 PMCID: PMC166396 DOI: 10.1073/pnas.1133470100] [Citation(s) in RCA: 553] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many areas of biomedical research depend on the analysis of uncommon variations in individual genes or transcripts. Here we describe a method that can quantify such variation at a scale and ease heretofore unattainable. Each DNA molecule in a collection of such molecules is converted into a single magnetic particle to which thousands of copies of DNA identical in sequence to the original are bound. This population of beads then corresponds to a one-to-one representation of the starting DNA molecules. Variation within the original population of DNA molecules can then be simply assessed by counting fluorescently labeled particles via flow cytometry. This approach is called BEAMing on the basis of four of its principal components (beads, emulsion, amplification, and magnetics). Millions of individual DNA molecules can be assessed in this fashion with standard laboratory equipment. Moreover, specific variants can be isolated by flow sorting and used for further experimentation. BEAMing can be used for the identification and quantification of rare mutations as well as to study variations in gene sequences or transcripts in specific populations or tissues.
Collapse
Affiliation(s)
- Devin Dressman
- Howard Hughes Medical Institute and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
74
|
Alexander RC, Johnson AK, Thorpe JA, Gevedon T, Testa SM. Canonical nucleosides can be utilized by T4 DNA ligase as universal template bases at ligation junctions. Nucleic Acids Res 2003; 31:3208-16. [PMID: 12799448 PMCID: PMC162249 DOI: 10.1093/nar/gkg415] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
T4 DNA ligase catalyzes the template-dependent ligation of DNA. Using T4 DNA ligase under specific experimental conditions, we demonstrate that each of the four canonical nucleosides, centrally located on a template molecule such that they flank the site of ligation, can direct the ligation of nucleic acids regardless of the identity of the terminal nucleosides being covalently joined. This universal templating capability extends to those positions adjacent to the ligation junction. This is the first report, irrespective of the ligation method used or the identity of the template nucleosides (including analogs), which shows that nucleosides can act essentially as universal templates at ligation junctions in vitro. The canonical nucleosides do, however, differ in their ability to template sequence- independent ligations, with thymidine and guanosine being equally effective, yet more effective than adenosine and cytidine. Results indicate that hybridization strength surrounding the ligation junction is an important factor. The implications of this previously undiscovered property of T4 DNA ligase with canonical nucleosides are discussed.
Collapse
|
75
|
Kirk BW, Feinsod M, Favis R, Kliman RM, Barany F. Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 2002; 30:3295-311. [PMID: 12140314 PMCID: PMC137089 DOI: 10.1093/nar/gkf466] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Revised: 04/02/2002] [Accepted: 06/12/2002] [Indexed: 12/16/2022] Open
Abstract
Successful investigation of common diseases requires advances in our understanding of the organization of the genome. Linkage disequilibrium provides a theoretical basis for performing candidate gene or whole-genome association studies to analyze complex disease. However, to constructively interrogate SNPs for these studies, technologies with sufficient throughput and sensitivity are required. A plethora of suitable and reliable methods have been developed, each of which has its own unique advantage. The characteristics of the most promising genotyping and polymorphism scanning technologies are presented. These technologies are examined both in the context of complex disease investigation and in their capacity to face the unique physical and molecular challenges (allele amplification, loss of heterozygosity and stromal contamination) of solid tumor research.
Collapse
Affiliation(s)
- Brian W Kirk
- Department of Microbiology, Box 62, Hearst Microbiology Research Center, Joan and Sanford I. Weill Medical College of Cornell University, Room B-406, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
76
|
Pickering J, Bamford A, Godbole V, Briggs J, Scozzafava G, Roe P, Wheeler C, Ghouze F, Cuss S. Integration of DNA ligation and rolling circle amplification for the homogeneous, end-point detection of single nucleotide polymorphisms. Nucleic Acids Res 2002; 30:e60. [PMID: 12060698 PMCID: PMC117302 DOI: 10.1093/nar/gnf060] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Association studies using common sequence variants or single nucleotide polymorphisms (SNPs) may provide a powerful approach to dissect the genetic inheritance of common complex traits. Such studies necessitate the development of cost-effective, high throughput technologies for scoring SNPs. The method described in this paper for the co-detection of both alleles of a SNP in a single homogeneous reaction combines the specificity of a high fidelity DNA ligation step with the power of rolling circle amplification. The incorporation of Amplifluor energy transfer primers enables signal detection in a homogeneous format, making this approach highly amenable to automation. The adaptation of the genotyping method for high throughput screening using conventional liquid handling systems is described.
Collapse
Affiliation(s)
- Judith Pickering
- Amersham Biosciences UK Ltd, The Grove Centre, AL16, White Lion Road, Amersham, Buckinghamshire HP7 9LL, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Nilsson M, Banér J, Mendel-Hartvig M, Dahl F, Antson DO, Gullberg M, Landegren U. Making ends meet in genetic analysis using padlock probes. Hum Mutat 2002; 19:410-5. [PMID: 11933195 DOI: 10.1002/humu.10073] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Padlock probes are molecular tools that combine highly specific target sequence recognition with the potential for multiplexed analysis of large sets of target DNA or RNA sequences. In this brief review, we exemplify the ability of these probes to distinguish single-nucleotide target sequence variants. We further discuss means to detect the location of target sequences in situ, and to amplify reacted padlock probes via rolling-circle replication, as well as to sort reaction products on tag-arrays. We argue that the probes have the potential to render high-throughput genetic analyses precise and affordable.
Collapse
Affiliation(s)
- Mats Nilsson
- Beijer Laboratory, Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
78
|
Housby JN, Southern EM. Thermus scotoductus and Rhodothermus marinus DNA ligases have higher ligation efficiencies than thermus thermophilus DNA ligase. Anal Biochem 2002; 302:88-94. [PMID: 11846380 DOI: 10.1006/abio.2001.5532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To mimic large numbers of nicked DNA duplexes we used a technique that produces nicked duplex DNA substrates by hybridization of complementary oligonucleotides, adjacent to an initiating primer, which are ligated together by a thermostable DNA ligase. Sequential ligation of nonanucleotides to this primary duplex results in the formation of polymers that can be analyzed by gel electrophoresis. The extent of polymerization is a measure of the efficiency of ligation. We determined the efficiency of ligation of nonanucleotides, using various length initiating primers, with three thermostable DNA ligases: Thermus thermophilus (Tth), Thermus scotoductus (Ts), and Rhodothermus marinus (Rm). Analysis of the effect of temperature for each ligase, and for each directing primer length, revealed that at 37 and 41 degrees C there was variation between ligase efficiency in the order Rm > or = Ts > or = Tth. The higher temperature of 46 degrees C was optimal for polymerization with each of the ligases and Rm ligase was the most efficient. Analysis of directionality of the ligations reactions suggests that for each of the Thermus ligases we tested, there was a bias to polymerization of nonanucleotides in a 5'-3' direction.
Collapse
Affiliation(s)
- J Nicholas Housby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| | | |
Collapse
|
79
|
Demchinskaya AV, Shilov IA, Karyagina AS, Lunin VG, Sergienko OV, Voronina OL, Leiser M, Plobner L. A new approach for point mutation detection based on a ligase chain reaction. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 50:79-89. [PMID: 11714514 DOI: 10.1016/s0165-022x(01)00178-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new method for the identification of point mutations is proposed. The method is based on ligase chain reaction (LCR) and it includes a procedure for correction of ligation by Cleavase. Reaction products are detected by a colorimetric method after adsorption of the resulting DNA duplexes to the solid phase. One strand of LCR products carries biotin to be bound on a streptavidin-coated microwell. Another strand contains a single-stranded region that is to be coupled with an oligonucleotide carrying a substrate for colorimetric detection. The suggested method has two advantages: (i) use of Cleavase increases the accuracy of ligation and (ii) a template independent ligation does not occur in LCR due to a special design of primers.
Collapse
Affiliation(s)
- A V Demchinskaya
- Institute of Agricultural Biotechnology, Timiryazevskaya ul. 42, 127550, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Qi X, Bakht S, Devos KM, Gale MD, Osbourn A. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res 2001; 29:E116. [PMID: 11713336 PMCID: PMC92587 DOI: 10.1093/nar/29.22.e116] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A flexible, non-gel-based single nucleotide polymorphism (SNP) detection method is described. The method adopts thermostable ligation for allele discrimination and rolling circle amplification (RCA) for signal enhancement. Clear allelic discrimination was achieved after staining of the final reaction mixtures with Cybr-Gold and visualisation by UV illumination. The use of a compatible buffer system for all enzymes allows the reaction to be initiated and detected in the same tube or microplate well, so that the experiment can be scaled up easily for high-throughput detection. Only a small amount of DNA (i.e. 50 ng) is required per assay, and use of carefully designed short padlock probes coupled with generic primers and probes make the SNP detection cost effective. Biallelic assay by hybridisation of the RCA products with fluorescence dye-labelled probes is demonstrated, indicating that ligation-RCA (L-RCA) has potential for multiplexed assays.
Collapse
Affiliation(s)
- X Qi
- Sainsbury Laboratory and John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | | | | | | | | |
Collapse
|
81
|
|
82
|
Faruqi AF, Hosono S, Driscoll MD, Dean FB, Alsmadi O, Bandaru R, Kumar G, Grimwade B, Zong Q, Sun Z, Du Y, Kingsmore S, Knott T, Lasken RS. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2001; 2:4. [PMID: 11511324 PMCID: PMC37402 DOI: 10.1186/1471-2164-2-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Accepted: 08/01/2001] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. RESULTS SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. CONCLUSIONS Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.
Collapse
Affiliation(s)
- A Fawad Faruqi
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Seiyu Hosono
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Mark D Driscoll
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Frank B Dean
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Osama Alsmadi
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | | | - Gyanendra Kumar
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Brian Grimwade
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Qiuling Zong
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Zhenyu Sun
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Yuefen Du
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Stephen Kingsmore
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| | - Tim Knott
- Amersham Pharmacia Biotech, Amersham Laboratories, White Lion Road, Amersham, Buckinghamshire, HP7 9LL, England
| | - Roger S Lasken
- Molecular Staging Inc., 300 George St., Suite 701, New Haven, CT 06511, USA
| |
Collapse
|
83
|
Abstract
We describe a convenient assay for rapid qualitative evaluation of hybridization/ligation fidelity. The approach uses randomized probe strands of DNA and restriction enzyme digestion after amplification of reaction products by the polymerase chain reaction (PCR). We report ligation efficiencies and fidelities of two DNA ligases, T4 DNA ligase and Thermus aquaticus (Taq) DNA ligase, over a range of temperatures.
Collapse
Affiliation(s)
- D Faulhammer
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
84
|
Loakes D. Survey and summary: The applications of universal DNA base analogues. Nucleic Acids Res 2001; 29:2437-47. [PMID: 11410649 PMCID: PMC55727 DOI: 10.1093/nar/29.12.2437] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2001] [Revised: 04/18/2001] [Accepted: 04/18/2001] [Indexed: 11/13/2022] Open
Abstract
A universal base analogue forms 'base pairs' with each of the natural DNA/RNA bases with little discrimination between them. A number of such analogues have been prepared and their applications as biochemical tools investigated. Most of these analogues are non-hydrogen bonding, hydrophobic, aromatic 'bases' which stabilise duplex DNA by stacking interactions. This review of the literature of universal bases (to 2000) details the analogues investigated, and their uses and limitations are discussed.
Collapse
Affiliation(s)
- D Loakes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
85
|
Dong SM, Traverso G, Johnson C, Geng L, Favis R, Boynton K, Hibi K, Goodman SN, D'Allessio M, Paty P, Hamilton SR, Sidransky D, Barany F, Levin B, Shuber A, Kinzler KW, Vogelstein B, Jen J. Detecting colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst 2001; 93:858-65. [PMID: 11390535 DOI: 10.1093/jnci/93.11.858] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer cells are shed into the stool, providing a potential means for the early detection of the disease using noninvasive approaches. Our goal was to develop reliable, specific molecular genetic tests for the detection of colorectal cancer in stool samples. METHODS Stool DNA was isolated from paired stools and primary tumor samples from 51 colorectal cancer patients. Three genetic targets-TP53, BAT26, and K-RAS-were used to detect tumor-associated mutations in the stool prior to or without regard to the molecular analyses of the paired tumors. TP53 gene mutations were detected with a mismatch-ligation assay that detects nine common p53 gene mutations. Deletions within the BAT26 locus were detected by a modified solid-phase minisequencing method. Mutations in codons 12 and 13 of K-RAS were detected with a digital polymerase chain reaction-based method. RESULTS TP53 gene mutations were detected in the tumor DNA of 30 patients, all of whom had the identical TP53 mutation in their stools. Tumors from three patients contained a noninherited deletion at the BAT26 locus, and the same alterations were identified in these patients' stool specimens. Nineteen of 50 tumors tested had a K-RAS mutation; identical mutations were detected in the paired stool DNA samples from eight patients. In no case was a mutation found in stool that was not also present in the primary tumor. Thus, the three genetic markers together detected 36 (71%) of 51 patients (95% confidence interval [CI] = 56% to 83%) with colorectal cancer and 36 (92%) of 39 patients (95% CI = 79% to 98%) whose tumors had an alteration. CONCLUSION We were able to detect the majority of colorectal cancers by analyzing stool DNA for just three genetic markers. Additional work is needed to determine the specificity of these genetic tests for detecting colorectal neoplasia in asymptomatic patients and to more precisely estimate the prevalence of the mutations and sensitivity of the assay.
Collapse
Affiliation(s)
- S M Dong
- Division of Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical School, The Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Banér J, Nilsson M, Isaksson A, Mendel-Hartvig M, Antson DO, Landegren U. More keys to padlock probes: mechanisms for high-throughput nucleic acid analysis. Curr Opin Biotechnol 2001; 12:11-5. [PMID: 11167066 DOI: 10.1016/s0958-1669(00)00174-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the impending availability of total information about nucleic acid sequences in humans and other organisms, tools to investigate these sequences on a large scale assume increasing importance. Methods currently in use, however, cannot offer the required combination of high-throughput, sensitivity and specificity of detection. Padlock probes, circularizing oligonucleotides, may provide a means to detect, distinguish, quantitate and also locate very large numbers of DNA or RNA sequences. Recent developments in areas such as the biochemistry of ligation and characterization of ligases, methods to replicate circularized probes and the development of assays based on these principles augment the potential of padlock probes.
Collapse
Affiliation(s)
- J Banér
- The Beijer Laboratory, Department of Genetics and Pathology, Rudbeck Laboratory, Se-751 85, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
87
|
Zhang BP, Egholm M, Paul N, Pingle M, Bergstrom DE. Peptide nucleic acid-DNA duplexes containing the universal base 3-nitropyrrole. Methods 2001; 23:132-40. [PMID: 11181032 DOI: 10.1006/meth.2000.1114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A peptide nucleic acid (PNA) monomer containing the universal base 3-nitropyrrole was synthesized by coupling 1-carboxymethyl-3-nitropyrrole to ethyl N-[2-(tert-butoxycarbonylamino)ethyl]glycinate. The PNA sequence H-TGTACGTXACAACTA-NH2 (X = 3-nitropyrrole and C) and DNA sequence 5'-TGTACGTXACAACTA-3' were synthesized and thermal melting studies with the complementary DNA sequence 5'-TAGTTGTYACGTACA-3' (Y = A,C, G, T) compared. The T(m) data show that 3-nitropyrrole pairs indiscriminately with all four natural nucleobases as a constituent of either DNA or PNA. However, 3-nitropyrrole-containing PNA-DNA (average T(m) value = 51.1 degrees C) is significantly more thermally stable than 3-nitropyrrole-containing DNA-DNA (average T(m) value = 39.6 degrees C). From circular dichroism measurements, it is apparent that 3-nitropyrrole in the PNA strand causes a significant change in duplex structure.
Collapse
Affiliation(s)
- B P Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
88
|
Abstract
DNA ligases are critical enzymes of DNA metabolism. The reaction they catalyse (the joining of nicked DNA) is required in DNA replication and in DNA repair pathways that require the re-synthesis of DNA. Most organisms express DNA ligases powered by ATP, but eubacteria appear to be unique in having ligases driven by NAD(+). Interestingly, despite protein sequence and biochemical differences between the two classes of ligase, the structure of the adenylation domain is remarkably similar. Higher organisms express a variety of different ligases, which appear to be targetted to specific functions. DNA ligase I is required for Okazaki fragment joining and some repair pathways; DNA ligase II appears to be a degradation product of ligase III; DNA ligase III has several isoforms, which are involved in repair and recombination and DNA ligase IV is necessary for V(D)J recombination and non-homologous end-joining. Sequence and structural analysis of DNA ligases has shown that these enzymes are built around a common catalytic core, which is likely to be similar in three-dimensional structure to that of T7-bacteriophage ligase. The differences between the various ligases are likely to be mediated by regions outside of this common core, the structures of which are not known. Therefore, the determination of these structures, along with the structures of ligases bound to substrate DNAs and partner proteins ought to be seen as a priority.
Collapse
Affiliation(s)
- D J Timson
- Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| | | | | |
Collapse
|
89
|
Georlette D, Jónsson ZO, Van Petegem F, Chessa J, Van Beeumen J, Hübscher U, Gerday C. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3502-12. [PMID: 10848966 DOI: 10.1046/j.1432-1327.2000.01377.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cloning, overexpression and characterization of a cold-adapted DNA ligase from the Antarctic sea water bacterium Pseudoalteromonas haloplanktis are described. Protein sequence analysis revealed that the cold-adapted Ph DNA ligase shows a significant level of sequence similarity to other NAD+-dependent DNA ligases and contains several previously described sequence motifs. Also, a decreased level of arginine and proline residues in Ph DNA ligase could be involved in the cold-adaptation strategy. Moreover, 3D modelling of the N-terminal domain of Ph DNA ligase clearly indicates that this domain is destabilized compared with its thermophilic homologue. The recombinant Ph DNA ligase was overexpressed in Escherichia coli and purified to homogeneity. Mass spectroscopy experiments indicated that the purified enzyme is mainly in an adenylated form with a molecular mass of 74 593 Da. Ph DNA ligase shows similar overall catalytic properties to other NAD+-dependent DNA ligases but is a cold-adapted enzyme as its catalytic efficiency (kcat/Km) at low and moderate temperatures is higher than that of its mesophilic counterpart E. coli DNA ligase. A kinetic comparison of three enzymes adapted to different temperatures (P. haloplanktis, E. coli and Thermus scotoductus DNA ligases) indicated that an increased kcat is the most important adaptive parameter for enzymatic activity at low temperatures, whereas a decreased Km for the nicked DNA substrate seems to allow T. scotoductus DNA ligase to work efficiently at high temperatures. Besides being useful for investigation of the adaptation of enzymes to extreme temperatures, P. haloplanktis DNA ligase, which is very efficient at low temperatures, offers a novel tool for biotechnology.
Collapse
Affiliation(s)
- D Georlette
- Laboratory of Biochemistry, Institute of Chemistry, B6a Université de Liège, Sart-Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
90
|
Sriskanda V, Kelman Z, Hurwitz J, Shuman S. Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum. Nucleic Acids Res 2000; 28:2221-8. [PMID: 10871342 PMCID: PMC102631 DOI: 10.1093/nar/28.11.2221] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2000] [Revised: 04/05/2000] [Accepted: 04/05/2000] [Indexed: 11/12/2022] Open
Abstract
We report the production, purification and characterization of a DNA ligase encoded by the thermophilic archaeon Methanobacterium thermoautotrophicum. The 561 amino acid MTH: ligase catalyzed strand-joining on a singly nicked DNA in the presence of a divalent cation (magnesium, manganese or cobalt) and ATP (K(m) 1.1 microM). dATP can substitute for ATP, but CTP, GTP, UTP and NAD(+) cannot. MTH: ligase activity is thermophilic in vitro, with optimal nick-joining at 60 degrees C. Mutational analysis of the conserved active site motif I (KxDG) illuminated essential roles for Lys251 and Asp253 at different steps of the ligation reaction. Mutant K251A is unable to form the covalent ligase-adenylate intermediate (step 1) and hence cannot seal a 3'-OH/5'-PO(4) nick. Yet, K251A catalyzes phosphodiester bond formation at a pre-adenylated nick (step 3). Mutant D253A is active in ligase-adenylate formation, but defective in activating the nick via formation of the DNA-adenylate intermediate (step 2). D253A is also impaired in phosphodiester bond formation at a pre-adenylated nick. A profound step 3 arrest, with accumulation of high levels of DNA-adenylate, could be elicited for the wild-type MTH: ligase by inclusion of calcium as the divalent cation cofactor. MTH: ligase sediments as a monomer in a glycerol gradient. Structure probing by limited proteolysis suggested that MTH: ligase is a tightly folded protein punctuated by a surface-accessible loop between nucleotidyl transferase motifs III and IIIa.
Collapse
Affiliation(s)
- V Sriskanda
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
91
|
Tong J, Barany F, Cao W. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus. Nucleic Acids Res 2000; 28:1447-54. [PMID: 10684941 PMCID: PMC111035 DOI: 10.1093/nar/28.6.1447] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An NAD(+)-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg(2+)or Mn(2+)as the metal cofactor. Ca(2+)and Ni(2+)mainly support formation of DNA-adenylate intermediates. The catalytic cycle is characterized by a low k (cat)value of 2 min(-1)with concomitant accumulation of the DNA - adenylate intermediate when Mg(2+)is used as the metal cofactor. The ligation rates of matched substrates vary by up to 4-fold, but exhibit a general trend of T/A < or = G/C < C/G < A/T on both the 3'- and 5'-side of the nick. Consistent with previous studies on Thermus ligases, this Aquifex ligase exhibits greater discrimination against a mismatched base pair on the 3'-side of the nick junction. The requirement of 3' complementarity for a ligation reaction is reaffirmed by results from 1 nt insertions on either the 3'- or 5'-side of the nick. Furthermore, most of the unligatable 3' mismatched base pairs prohibit formation of the DNA-adenylate intermediate, indicating that the substrate adenylation step is also a control point for ligation fidelity. Unlike previously studied ATP ligases, gapped substrates cannot be ligated and intermediate accumulation is minimal, suggesting that complete elimination of base pair complementarity on one side of the nick affects substrate adenylation on the 5'-side of the nick junction. Relationships among metal cofactors, ligation products and intermediate, and ligation fidelity are discussed.
Collapse
Affiliation(s)
- J Tong
- Department of Microbiology and Immunology, Hearst Microbiology Research Center and Strang Cancer Prevention Center, The Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
92
|
Lee JY, Chang C, Song HK, Moon J, Yang JK, Kim HK, Kwon ST, Suh SW. Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications. EMBO J 2000; 19:1119-29. [PMID: 10698952 PMCID: PMC305650 DOI: 10.1093/emboj/19.5.1119] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA ligases catalyze the crucial step of joining the breaks in duplex DNA during DNA replication, repair and recombination, utilizing either ATP or NAD(+) as a cofactor. Despite the difference in cofactor specificity and limited overall sequence similarity, the two classes of DNA ligase share basically the same catalytic mechanism. In this study, the crystal structure of an NAD(+)-dependent DNA ligase from Thermus filiformis, a 667 residue multidomain protein, has been determined by the multiwavelength anomalous diffraction (MAD) method. It reveals highly modular architecture and a unique circular arrangement of its four distinct domains. It also provides clues for protein flexibility and DNA-binding sites. A model for the multidomain ligase action involving large conformational changes is proposed.
Collapse
Affiliation(s)
- J Y Lee
- Center for Molecular Catalysis, Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Housby JN, Thorbjarnardóttir SH, Jónsson ZO, Southern EM. Optimised ligation of oligonucleotides by thermal ligases: comparison of Thermus scotoductus and Rhodothermus marinus DNA ligases to other thermophilic ligases. Nucleic Acids Res 2000; 28:E10. [PMID: 10637340 PMCID: PMC102565 DOI: 10.1093/nar/28.3.e10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe the characterisation of four thermo-stable NAD(+)-dependent DNA ligases, from Thermus thermophilus (Tth), Thermus scotoductus (Ts), Rhodothermus marinus (Rm) and Thermus aquaticus (Taq), by an assay which measures ligation rate and mismatch discrimination. Complete libraries of octa-, nona- and decanucleotides were used as substrates. The assay comprised the polymerisation of oligo-nucleotides initiated from a 17 base 'primer', using M13mp18 ssDNA as template. Polymers of ligation products were analysed by polyacrylamide gel electro-phoresis. Under optimum conditions, the enzymes produced polymers ranging from 8 to 16 additions; there was variation between enzymes and the length of the oligonucleotides had a strong effect. The optimal total oligonucleotide concentration for each library was approximately 4 nmol. We compared the rates of ligation between the four ligases using an octanucleotide library as substrate. By this criterion, the Ts and Rm ligases are far more active compared to the more commonly available thermostable ligases.
Collapse
Affiliation(s)
- J N Housby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
94
|
Abstract
DNA computing is a novel method of computing proposed by Adleman (1994), in which the data is encoded in the sequences of oligonucleotides. Massively parallel reactions between oligonucleotides are expected to make it possible to solve huge problems. In this study, reliability of the ligation process employed in the DNA computing is tested by estimating the error rate at which wrong oligonucleotides are ligated. Ligation of wrong oligonucleotides would result in a wrong answer in the DNA computing. The dependence of the error rate on the number of mismatches between oligonucleotides and on the combination of bases is investigated.
Collapse
Affiliation(s)
- Y Aoi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
95
|
Brinson EC, Adriano T, Bloch W, Brown CL, Chang CC, Chen J, Eggerding FA, Grossman PD, Iovannisci DM, Madonik AM, Sherman DG, Tam RW, Winn-Deen ES, Woo SL, Fung S, Iovannisci DA. Introduction to PCR/OLA/SCS, a multiplex DNA test, and its application to cystic fibrosis. GENETIC TESTING 1999; 1:61-8. [PMID: 10464627 DOI: 10.1089/gte.1997.1.61] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The field of medical, molecular diagnostics has grown rapidly over the last few years, becoming increasingly informative to both clinician and patient. As genes associated with specific diseases have been discovered and sequenced, many genotype-phenotype relationships have been defined. For those genetic diseases with associated, defined, gene mutations, sophisticated DNA diagnostic tests are being developed. As an example, the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, is associated with Cystic Fibrosis (CF). We have developed a new molecular diagnostic technology, PCR/OLA/SCS, and applied it first to the diagnosis of CF. Test design in the field of molecular diagnostics must consider such characteristics as specificity, sensitivity, ease and speed of protocol, multiplex capacity, and cost. PCR/OLA/SCS addresses these requirements. Polymerase Chain Reaction (PCR) is widely used in both diagnostics and research. We have combined well established PCR technology with Oligonucleotide Ligation Assay (OLA) and Sequence-Coded Separation (SCS), two relatively new technologies.
Collapse
Affiliation(s)
- E C Brinson
- PE Applied Biosystems Foster City, CA 94404, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Khanna M, Cao W, Zirvi M, Paty P, Barany F. Ligase detection reaction for identification of low abundance mutations. Clin Biochem 1999; 32:287-90. [PMID: 10463822 DOI: 10.1016/s0009-9120(99)00020-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M Khanna
- Department of Microbiology, Strang Cancer Prevention Center, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
97
|
Day JP, Hammer RP, Bergstrom D, Barany F. Nucleotide analogs and new buffers improve a generalized method to enrich for low abundance mutations. Nucleic Acids Res 1999; 27:1819-27. [PMID: 10101189 PMCID: PMC148389 DOI: 10.1093/nar/27.8.1819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A high sensitivity method for detecting low level mutations is under development. A PCR reaction is performed in which a restriction site is introduced in wild-type DNA by alteration of specific bases. Digestion of wild-type DNA by the cognate restriction endonuclease (RE) enriches for products with mutations within the recognition site. After reamplification, mutations are identified by a ligation detection reaction (LDR). This PCR/RE/LDR assay was initially used to detect PCR error in known wild-type samples. PCR error was measured in low |Deltap K a| buffers containing tricine, EPPS and citrate, as well as otherwise identical buffers containing Tris. PCR conditions were optimized to minimize PCR error using perfect match primers at the Msp I site in the p53 tumor suppressor gene at codon 248. However, since mutations do not always occur within pre-existing restriction sites, a generalized PCR/RE/LDR method requires the introduction of a new restriction site. In principle, PCR with mismatch primers can alter specific bases in a sequence and generate a new restriction site. However, extension from 3' mismatch primers may generate misextension products. We tested conversion of the Msp I (CCGG) site to a Taq I site (TCGA). Conversion was unsuccessful using a natural base T mismatch primer set. Conversion was successful when modified primers containing the 6 H,8 H -3, 4-dihydropyrimido[4,5- c ][1,2]oxazine-7-one (Q6) base at 3'-ends were used in three cycles of preconversion PCR prior to conversion PCR using the 3' natural base T primers. The ability of the pyrimidine analog Q6 to access both a T-like and C-like tautomer appears to greatly facilitate the conversion.
Collapse
Affiliation(s)
- J P Day
- Department of Microbiology, Box 62, Hearst Microbiology Research Center, Strang Cancer Prevention Center,Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
98
|
Tong J, Cao W, Barany F. Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D. Nucleic Acids Res 1999; 27:788-94. [PMID: 9889274 PMCID: PMC148248 DOI: 10.1093/nar/27.3.788] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
NAD+-dependent DNA ligases from thermophilic bacteria Thermus species are highly homologous with amino acid sequence identities ranging from 85 to 98%. Thermus species AK16D ligase, the most divergent of the seven Thermus isolates collected worldwide, was cloned, expressed in Escherichia coli and purified to homogeneity. This Thermus ligase is similar to Thermus thermophilus HB8 ligase with respect to pH, salt, NAD+, divalent cation profiles and steady-state kinetics.However, the former is more discriminative toward T/G mismatches at the 3'-side of the ligation junction, as judged by the ratios of initial ligation rates of matched and mismatched substrates. The two wild-type Thermus ligases and a Tth ligase mutant (K294R) demonstrate 1-2 orders of magnitude higher fidelity than viral T4 DNA ligase. Both Thermus ligases are active with either the metal cofactor Mg2+, Mn2+or Ca2+but not with Co2+, Ni2+, Cu2+or Zn2+. While the nick closure step with Ca2+becomes rate-limiting which results in the accumulation of DNA-adenylate intermediate, Ni2+only supports intermediate formation to a limited extent. Both Thermus ligases exhibit enhanced mismatch ligation when Mn2+is substituted for Mg2+, but the Tsp. AK16D ligase remains more specific toward perfectly matched substrate.
Collapse
Affiliation(s)
- J Tong
- Department of Microbiology, Hearst Microbiology Research Center, Strang Cancer Prevention Center, The Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, Box 62, New York, NY 10021, USA
| | | | | |
Collapse
|
99
|
Abstract
The success of oligonucleotide ligation assays in probing specific sequences of DNA arises in large part from high enzymatic selectivity against base mismatches at the ligation junction. We describe here a study of the effect of mismatches on a new non-enzymatic, reagent-free method for ligation of oligonucleotides. In this approach, two oligonucleotides bound at adjacent sites on a complementary strand undergo autoligation by displacement of a 5'-end iodide with a 3'-phosphorothioate group. The data show that this ligation proceeds somewhat more slowly than ligation by T4 ligase, but with substantial discrimination against single base mismatches both at either side of the junction and a few nucleotides away within one of the oligonucleotide binding sites. Selectivities of >100-fold against a single mismatch are observed in the latter case. Experiments at varied concentrations and temperatures are carried out both with the autoligation of two adjacent linear oligonucleotides and with intramolecular autoligation to yield circular 'padlock' DNAs. Application of optimized conditions to discrim-ination of an H- ras codon 12 point mutation is demonstrated with a single-stranded short DNA target.
Collapse
Affiliation(s)
- Y Xu
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
100
|
Abstract
Limited proteolysis of the NAD+-dependent DNA ligase from Bacillus stearothermophilus with thermolysin results in two fragments which were resistant to further proteolysis. These fragments were characterised by N-terminal protein sequencing and electrospray mass spectrometry. The larger, N-terminal fragment consists of the first 318 residues and the smaller, C-terminal fragment begins at residue 397 and runs to the C terminus. Both fragments were over-expressed in Escherichia coli and purified to homogeneity from this source. The large fragment retains the full self-adenylation activity of the intact enzyme, has minimal DNA binding activity and vastly reduced ligation activity. The small fragment lacks adenylation activity but binds to nicked DNA with a similar affinity to that of the intact enzyme. It is unable to stimulate the ligation activity of the large fragment. Atomic absorption spectroscopy showed that the intact protein and the small fragment bind a zinc ion but the large fragment does not. No evidence of any interaction between the two fragments could be obtained. Thus, we conclude that NAD+-dependent DNA ligases consist of at least two discrete functional domains: an N-terminal domain which is responsible for cofactor binding and self adenylation, and a C-terminal DNA-binding domain which contains a zinc binding site.
Collapse
Affiliation(s)
- D J Timson
- Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|