51
|
Rodríguez EG. Nonviral DNA vectors for immunization and therapy: design and methods for their obtention. J Mol Med (Berl) 2004; 82:500-9. [PMID: 15175860 DOI: 10.1007/s00109-004-0548-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 03/22/2004] [Indexed: 01/28/2023]
Abstract
The use of plasmid DNA for vaccination and therapy is a relatively novel technology, with advantages and limitations as with other gene transfer techniques. The technology is based on DNA vectors designed for administering genes coding for relevant proteins into a given organism, fulfilling requirements of the regulatory agencies that once properly formulated and delivered the desired vaccine/therapeutic effect can be achieved. Starting from conventional plasmid DNA vectors currently tested in clinical trials, improvement resulted in bacterial element-less vectors, increasing the complexity of the developmental process. The present review focuses on systems described for generating these nonviral DNA vectors for immunization and therapy from bacterial hosts (conventional and conditionally replicating plasmids, nonreplicating minicircles, and linear dumbbell-shaped expression cassettes) in vivo or in vitro. Additionally, nontherapeutic genetic sequences with a negative or positive effect according to the specific application are described, bringing a better comprehension of the technology's state of the art.
Collapse
Affiliation(s)
- Ernesto G Rodríguez
- Vaccine Division, Center for Genetic Engineering and Biotechnology of Havana, P.O. Box 6162, Havana 10600, Cuba.
| |
Collapse
|
52
|
Mwau M, Cebere I, Sutton J, Chikoti P, Winstone N, Wee EGT, Beattie T, Chen YH, Dorrell L, McShane H, Schmidt C, Brooks M, Patel S, Roberts J, Conlon C, Rowland-Jones SL, Bwayo JJ, McMichael AJ, Hanke T. A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J Gen Virol 2004; 85:911-919. [PMID: 15039533 DOI: 10.1099/vir.0.19701-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The immunogenicities of candidate DNA- and modified vaccinia virus Ankara (MVA)-vectored human immunodeficiency virus (HIV) vaccines were evaluated on their own and in a prime-boost regimen in phase I clinical trials in healthy uninfected individuals in the United Kingdom. Given the current lack of approaches capable of inducing broad HIV-neutralizing antibodies, the pTHr.HIVA DNA and MVA.HIVA vaccines focus solely on the induction of cell-mediated immunity. The vaccines expressed a common immunogen, HIVA, which consists of consensus HIV-1 clade A Gag p24/p17 proteins fused to a string of clade A-derived epitopes recognized by cytotoxic T lymphocytes (CTLs). Volunteers' fresh peripheral blood mononuclear cells were tested for HIV-specific responses in a validated gamma interferon enzyme-linked immunospot (ELISPOT) assay using four overlapping peptide pools across the Gag domain and three pools of known CTL epitopes present in all of the HIVA protein. Both the DNA and the MVA vaccines alone and in a DNA prime-MVA boost combination were safe and induced HIV-specific responses in 14 out of 18, seven out of eight and eight out of nine volunteers, respectively. These results are very encouraging and justify further vaccine development.
Collapse
MESH Headings
- AIDS Vaccines/adverse effects
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- AIDS Vaccines/pharmacology
- Adolescent
- Adult
- Female
- Gene Products, gag
- HIV Antibodies/biosynthesis
- HIV Antigens
- HIV Core Protein p24
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Injections, Intradermal
- Injections, Intramuscular
- Male
- Middle Aged
- Safety
- T-Lymphocytes/immunology
- Vaccines, DNA/adverse effects
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Proteins
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Matilu Mwau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Inese Cebere
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Julian Sutton
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Priscilla Chikoti
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Nicola Winstone
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Edmund G-T Wee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Tara Beattie
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | | | - Lucy Dorrell
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Helen McShane
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Claudia Schmidt
- International AIDS Vaccine Initiative, 110 William Street, New York, NY 10038, USA
| | - Mary Brooks
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Sandip Patel
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Joanna Roberts
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Christopher Conlon
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sarah L Rowland-Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Job J Bwayo
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Andrew J McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| |
Collapse
|
53
|
Prather KJ, Sagar S, Murphy J, Chartrain M. Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00205-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
54
|
Rittner K, Benavente A, Jacobs E. Ligation of exogenous linear DNA after gene transfer in vitro and in vivo. J Gene Med 2003; 5:818-24. [PMID: 12950072 DOI: 10.1002/jgm.406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND We have analyzed the physical/topographical state of linear exogenous DNA after gene transfer in vitro and in vivo. METHODS AND RESULTS Linear DNA carrying a luciferase expression cassette, either intact or corrupted within the coding region, was tested in gene transfer experiments in vitro and in vivo. To this, a plasmid with a CMV-IE1 promoter-driven luciferase gene was rendered non-functional by the insertion of a 1.2 kb EcoRV-EcoRV fragment. After removal of the insert by digestion with EcoRV, the resulting linear DNA fragments were used to transfect HeLa cells. The recovery of luciferase activity from these cells indicated functional reconstitution of the expression cassette. Recovery of low molecular weight DNA from HeLa cells allowed amplification of an intact luciferase gene, confirming accurate ligation of free DNA ends. In the mouse, rapid intravenous injection of plasmid DNA, linearized within the luciferase gene, resulted in significant luciferase activities in liver and lung. Ligation products could be detected by PCR. CONCLUSIONS These data suggest that linear DNA is efficiently circularized after gene transfer in vitro and in vivo. Secondly, equally high luciferase activities were observed in the mouse after rapid intravenous injection of luciferase expression cassettes, either consisting of linear DNA produced by PCR, or carried by linearized plasmid DNA. These findings encourage the use of linear DNA elements for gene transfer applications in vivo.
Collapse
Affiliation(s)
- Karola Rittner
- TRANSGENE, S.A. 11, rue de Molsheim, 67000 Strasbourg, France.
| | | | | |
Collapse
|
55
|
Cooke GD, Cranenburgh RM, Hanak JAJ, Ward JM. A modified Escherichia coli protein production strain expressing staphylococcal nuclease, capable of auto-hydrolysing host nucleic acid. J Biotechnol 2003; 101:229-39. [PMID: 12615392 DOI: 10.1016/s0168-1656(02)00339-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The large-scale production of recombinant biotherapeutics, particularly recombinant proteins, provides significant process and regulatory challenges to the biotechnology industry in order to meet the regulatory agencies stringent requirements in a cost-effective manner. Host cell derived nucleic acid causes problems from both a process and a regulatory perspective, as high molecular weight chromosomal DNA is responsible both for the viscosity of cell lysates, and it is a source of heterologous DNA sequences whose inclusion in the final product must be prevented. We have constructed a modified Escherichia coli JM107 expression host (JMN), containing a staphylococcal nuclease expression cassette, integrated into the host chromosome at the dif locus. The nuclease is expressed as a fusion to the ompA signal peptide, and is translocated to the periplasm of the cell, protecting the cytoplasmic nucleic acid from any toxic activity. The nuclease is released during cell lysis, where it subsequently acts to hydrolyse host nucleic acid present in the lysate. Results with this strain show that sufficient levels of nuclease activity are produced to completely auto-hydrolyse the host's chromosomal DNA to a size non-visible on 1% agarose gel, generating a markedly lower lysate viscosity. This provides a suitable methodology to remove heterologous DNA sequences early in the product stream and decrease lysate viscosity, improving the efficiency of downstream processing and product yield, whilst avoiding the addition of exogenous nuclease and its prohibitive costs at large-scale.
Collapse
Affiliation(s)
- G D Cooke
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Torrington Place, UK
| | | | | | | |
Collapse
|
56
|
Hanke T, McMichael AJ, Samuel RV, Powell LAJ, McLoughlin L, Crome SJ, Edlin A. Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine 2002; 21:108-14. [PMID: 12443668 DOI: 10.1016/s0264-410x(02)00403-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Toxicity, biodistribution and persistence of candidate HIV vaccines pTHr.HIVA, a recombinant DNA, and MVA.HIVA, a recombinant modified vaccinia virus Ankara, were determined in the Balb/c mouse. The mice were injected with either two doses of intramuscular pTHr.HIVA DNA (50 microg each, separated by an interval of 14 days), two doses of intradermal MVA.HIVA (10(6) plaque-forming units each, separated by an interval of 14 days), or a combination of the two vaccines, each given in two doses, in a prime-boost regimen. The study showed no significant toxic effects, either local or systemic, under any of these employed dosing regimens. With the exception of the sites of delivery, the vaccine-derived HIVA DNA sequences were undetectable 5 weeks after the last dosing. Thus, both the vaccines alone and in a combination were considered safe and suitable for the use in phase I trials in humans.
Collapse
Affiliation(s)
- T Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | |
Collapse
|
57
|
Prazeres DM, Monteiro GA, Ferreira GN, Diogo MM, Ribeiro SC, Cabral JM. Purification of plasmids for gene therapy and DNA vaccination. BIOTECHNOLOGY ANNUAL REVIEW 2002; 7:1-30. [PMID: 11686041 DOI: 10.1016/s1387-2656(01)07031-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter covers the different aspects of the production and purification of plasmids for gene therapy and DNA vaccination. Process issues are extensively covered and complemented with information related to plasmid DNA structure, vector construction, product specifications and quality assurance and control.
Collapse
Affiliation(s)
- D M Prazeres
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Escherichia coli offers a means for the rapid and economical production of recombinant proteins. These advantages, coupled with a wealth of biochemical and genetic knowledge, have enabled the production of such economically sensitive products as insulin and bovine growth hormone. Although significant progress has been made in transcription, translation and secretion, one of the major challenges is obtaining the product in a soluble and bioactive form. Recent progress in oxidative cytoplasmic folding and cell-free protein synthesis offers attractive alternatives to standard expression methods.
Collapse
Affiliation(s)
- J R Swartz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.
| |
Collapse
|
59
|
DNA vaccination. Trends Biotechnol 2001. [DOI: 10.1016/s0167-7799(01)01575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
60
|
Cranenburgh RM, Hanak JA, Williams SG, Sherratt DJ. Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res 2001; 29:E26. [PMID: 11222777 PMCID: PMC29739 DOI: 10.1093/nar/29.5.e26] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the construction of two novel Escherichia coli strains (DH1lacdapD and DH1lacP2dapD) that facilitate the antibiotic-free selection and stable maintenance of recombinant plasmids in complex media. They contain the essential chromosomal gene, dapD, under the control of the lac operator/promoter. Unless supplemented with IPTG (which induces expression of dapD) or DAP, these cells lyse. However, when the strains are transformed with a multicopy plasmid containing the lac operator, the operator competitively titrates the LacI repressor and allows expression of dapD from the lac promoter. Thus transformants can be isolated and propagated simply by their ability to grow on any medium by repressor titration selection. No antibiotic resistance genes or other protein expressing sequences are required on the plasmid, and antibiotics are not necessary for plasmid selection, making these strains a valuable tool for therapeutic DNA and recombinant protein production. We describe the construction of these strains and demonstrate plasmid selection and maintenance by repressor titration, using the new pORT plasmid vectors designed to facilitate recombinant DNA exploitation.
Collapse
Affiliation(s)
- R M Cranenburgh
- Cobra Therapeutics Ltd, The Science Park, Keele, Staffordshire ST5 5SP, UK
| | | | | | | |
Collapse
|
61
|
Cooke GD, Cranenburgh RM, Hanak JA, Dunnill P, Thatcher DR, Ward JM. Purification of essentially RNA free plasmid DNA using a modified Escherichia coli host strain expressing ribonuclease A. J Biotechnol 2001; 85:297-304. [PMID: 11173096 DOI: 10.1016/s0168-1656(00)00378-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulatory agencies have stringent requirements for the large-scale production of biotherapeutics. One of the difficulties associated with the manufacture of plasmid DNA for gene therapy is the removal of the host cell-related impurity RNA following cell lysis. We have constructed a modified Escherichia coli JM107 plasmid host (JMRNaseA), containing a bovine pancreatic ribonuclease (RNaseA) expression cassette, integrated into the host chromosome at the dif locus. The expressed RNaseA is translocated to the periplasm of the cell, and is released during primary plasmid extraction by alkaline lysis. The RNaseA protein is stable throughout incubation at high pH ( approximately 12-12.5), and subsequently acts to hydrolyse host cell RNA present in the neutralised solution following alkaline lysis. Results with this strain harbouring pUC18, and a 2.4 kb pUC18DeltalacO, show that sufficient levels of ribonuclease (RNase) activity are produced to hydrolyse the bulk of the host RNA. This provides a suitable methodology for the removal of RNA, whilst avoiding the addition of exogenous animal sourced RNase and its associated regulatory requirements.
Collapse
Affiliation(s)
- G D Cooke
- The Advanced Centre For Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | | | |
Collapse
|
62
|
Irvine AS, Trinder PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, Haines AM, Amir A, Husain R, Doshi R, Young LS, Mountain A. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol 2000; 18:1273-8. [PMID: 11101806 DOI: 10.1038/82383] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunization with dendritic cells (DCs) transfected with genes encoding tumor-associated antigens (TAAs) is a highly promising approach to cancer immunotherapy. We have developed a system, using complexes of plasmid DNA expression constructs with the cationic peptide CL22, that transfects human monocyte-derived DCs much more efficiently than alternative nonviral agents. After CL22 transfection, DCs expressing antigens stimulated autologous T cells in vitro and elicited primary immune responses in syngeneic mice, in an antigen-specific manner. Injection of CL22-transfected DCs expressing a TAA, but not DCs pulsed with a TAA-derived peptide, protected mice from lethal challenge with tumor cells in an aggressive model of melanoma. The CL22 system is a fast and efficient alternative to viral vectors for engineering DCs for use in immunotherapy and research.
Collapse
Affiliation(s)
- A S Irvine
- Cobra Therapeutics, The Science Park, University of Keele, Keele, Staffordshire ST5 5SP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Hanke T, McMichael AJ. Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 2000; 6:951-5. [PMID: 10973301 DOI: 10.1038/79626] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T Hanke
- MRC Human Immunology Unit Institute of Molecular Medicine The John Radcliffe Oxford OX3 9DS, United Kingdom.
| | | |
Collapse
|
64
|
Scherman D, Bessodes M, Cameron B, Herscovici J, Hofland H, Pitard B, Soubrier F, Wils P, Crouzet J. Application of lipids and plasmid design for gene delivery to mammalian cells. Curr Opin Biotechnol 1998; 9:480-5. [PMID: 9821276 DOI: 10.1016/s0958-1669(98)80033-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cationic lipids are widely used for in vitro gene transfer due to their efficiency. The major challenges for the improvement of in vivo cationic lipid-mediated gene delivery reside in the design of more biocompatible lipoplexes mimicking viral-mediated gene delivery and in understanding the fate of the lipoplexes within the cells.
Collapse
Affiliation(s)
- D Scherman
- UMR 133 CNRS/Rhône-Poulenc Rorer, Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | |
Collapse
|