51
|
Steinmetz EJ, Conrad NK, Brow DA, Corden JL. RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. Nature 2001; 413:327-31. [PMID: 11565036 DOI: 10.1038/35095090] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A eukaryotic chromosome contains many genes, each transcribed separately by RNA polymerase (pol) I, II or III. Transcription termination between genes prevents the formation of polycistronic RNAs and anti-sense RNAs, which are generally detrimental to the correct expression of genes. Terminating the transcription of protein-coding genes by pol II requires a group of proteins that also direct cleavage and polyadenylation of the messenger RNA in response to a specific sequence element, and are associated with the carboxyl-terminal domain of the largest subunit of pol II (refs 1, 2, 3, 4, 5, 6). By contrast, the cis-acting elements and trans-acting factors that direct termination of non-polyadenylated transcripts made by pol II, including small nucleolar and small nuclear RNAs, are not known. Here we show that read-through transcription from yeast small nucleolar RNA and small nuclear RNA genes into adjacent genes is prevented by a cis-acting element that is recognized, in part, by the essential RNA-binding protein Nrd1. The RNA-binding protein Nab3, the putative RNA helicase Sen1, and the intact C-terminal domain of pol II are also required for efficient response to the element. The same proteins are required for maintaining normal levels of Nrd1 mRNA, indicating that these proteins may control elongation of a subset of mRNA transcripts.
Collapse
Affiliation(s)
- E J Steinmetz
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706-1532, USA
| | | | | | | |
Collapse
|
52
|
Abstract
Significant advances have been made in elucidating the biogenesis pathway and three-dimensional structure of the UsnRNPs, the building blocks of the spliceosome. U2 and U4/U6*U5 tri-snRNPs functionally associate with the pre-mRNA at an earlier stage of spliceosome assembly than previously thought, and additional evidence supporting UsnRNA-mediated catalysis of pre-mRNA splicing has been presented.
Collapse
MESH Headings
- Animals
- Crystallography
- Humans
- Macromolecular Substances
- Protein Structure, Tertiary/physiology
- Protein Transport/physiology
- RNA Splicing/genetics
- RNA Splicing/physiology
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U1 Small Nuclear/biosynthesis
- Ribonucleoprotein, U1 Small Nuclear/chemistry
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/biosynthesis
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- C L Will
- Max Planck Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
53
|
Wu H, Xu H, Miraglia LJ, Crooke ST. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 2000; 275:36957-65. [PMID: 10948199 DOI: 10.1074/jbc.m005494200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human RNase III gene encodes a protein of 160 kDa with multiple domains, a proline-rich, a serine- and arginine-rich, and an RNase III domain. The expressed purified RNase III domain cleaves double-strand RNA and does not cleave single-strand RNA. The gene is ubiquitously expressed in human tissues and cell lines, and the protein is localized in the nucleus of the cell. The levels of transcription and translation of the protein do not change during different phases of the cell cycle. However, a significant fraction of the protein in the nucleus is translocated to the nucleolus during the S phase of the cell cycle. That this human RNase III is involved in processing of pre-rRNA, but might cleave at sites different from those described for yeast RNase III, is shown by antisense inhibition of RNase III expression. Inhibition of human RNase III expression causes cell death, suggesting an essential role for human RNase III in the cell. The antisense inhibition technique used in this study provides an effective method for functional analysis of newly identified human genes.
Collapse
Affiliation(s)
- H Wu
- Department of Structural Biology, Isis Pharmaceuticals, Carlsbad, California 92008, USA
| | | | | | | |
Collapse
|
54
|
Nagel R, Ares M. Substrate recognition by a eukaryotic RNase III: the double-stranded RNA-binding domain of Rnt1p selectively binds RNA containing a 5'-AGNN-3' tetraloop. RNA (NEW YORK, N.Y.) 2000; 6:1142-56. [PMID: 10943893 PMCID: PMC1369988 DOI: 10.1017/s1355838200000431] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rnt1p is an RNase III homolog from budding yeast, required for processing snRNAs, snoRNAs, and rRNA. Numerous Rnt1p RNA substrates share potential to form a duplex structure with a terminal four-base loop with the sequence AGNN. Using a synthetic RNA modeled after the 25S rRNA 3' ETS cleavage site we find that the AGNN loop is an important determinant of substrate selectivity. When this loop sequence is altered, the rate of Rnt1p cleavage is reduced. The reduction in cleavage rate can be attributed to reduced binding of the mutant substrate as measured by a gel-shift assay. Deletion of the nonconserved N-terminal domain of Rnt1p does not affect cleavage site choice or the ability of the enzyme to distinguish substrates that contain the AGNN loop, indicating that this region is not required for selective cleavage. Strikingly, a recombinant fragment of Rnt1p containing little more than the dsRBD is able to discriminate between wild-type and mutant loop sequences in a binding assay. We propose that a major determinant of AGNN loop recognition by Rnt1p is present in its dsRBD.
Collapse
Affiliation(s)
- R Nagel
- Center for the Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
55
|
Kufel J, Allmang C, Chanfreau G, Petfalski E, Lafontaine DL, Tollervey D. Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding. Mol Cell Biol 2000; 20:5415-24. [PMID: 10891482 PMCID: PMC85993 DOI: 10.1128/mcb.20.15.5415-5424.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Almost all small eukaryotic RNAs are processed from transiently stabilized 3'-extended forms. A key question is how and why such intermediates are stabilized and how they can then be processed to the mature RNA. Here we report that yeast U3 is also processed from a 3'-extended precursor. The major 3'-extended forms of U3 (U3-3'I and -II) lack the cap trimethylation present in mature U3 and are not associated with small nucleolar RNP (snoRNP) proteins that bind mature U3, i.e., Nop1p, Nop56p, and Nop58p. Depletion of Nop58p leads to the loss of mature U3 but increases the level of U3-3'I and -II, indicating a requirement for the snoRNP proteins for final maturation. Pre-U3 is cleaved by the endonuclease Rnt1p, but U3-3'I and -II do not extend to the Rnt1p cleavage sites. Rather, they terminate at poly(U) tracts, suggesting that they might be bound by Lhp1p (the yeast homologue of La). Immunoprecipitation of Lhp1p fused to Staphylococcus aureus protein A resulted in coprecipitation of both U3-3'I and -II. Deletion of LHP1, which is nonessential, led to the loss of U3-3'I and -II. We conclude that pre-U3 is cleaved by Rnt1p, followed by exonuclease digestion to U3-3'I and -II. These species are stabilized against continued degradation by binding of Lhp1p. Displacement of Lhp1p by binding of the snoRNP proteins allows final maturation, which involves the exosome complex of 3'-->5' exonucleases.
Collapse
Affiliation(s)
- J Kufel
- Wellcome Trust Centre for Cell Biology, ICMB, The University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
In all eukaryotic nuclei, the La autoantigen binds nascent RNA polymerase III transcripts, stabilizing these RNAs against exonucleases. Here we report that the La protein also functions in the assembly of certain RNA polymerase II-transcribed RNAs into RNPs. A mutation in a core protein of the spliceosomal snRNPs, Smd1p, causes yeast cells to require the La protein Lhp1p for growth at low temperatures. Precursors to U1, U2, U4 and U5 RNAs are bound by Lhp1p in both wild-type and mutant cells. At the permissive temperature, smd1-1 cells contain higher levels of stable U1 and U5 snRNPs when Lhp1p is present. At low temperatures, Lhp1p becomes essential for the accumulation of U4/U6 snRNPs and for cell viability. When U4 RNA is added to extracts, the pre-U4 RNA, but not the mature RNA, is bound by Smd1p. These results suggest that, by stabilizing a 3'-extended form of U4 RNA, Lhp1p facilitates efficient Sm protein binding, thus assisting formation of the U4/U6 snRNP.
Collapse
Affiliation(s)
- D Xue
- Departments of Cell Biology and Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | | | | | |
Collapse
|
57
|
Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III. Proc Natl Acad Sci U S A 2000. [PMID: 10716739 PMCID: PMC16206 DOI: 10.1073/pnas.070043997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleases III are double-stranded RNA (dsRNA) endonucleases required for the processing of a large number of prokaryotic and eukaryotic transcripts. Although the specificity of bacterial RNase III cleavage relies on antideterminants in the dsRNA, the molecular basis of eukaryotic RNase III specificity is unknown. All substrates of yeast RNase III (Rnt1p) are capped by terminal tetraloops showing the consensus AGNN and located within 13-16 bp to Rnt1p cleavage sites. We show that these tetraloops are essential for Rnt1p cleavage and that the distance to the tetraloop is the primary determinant of cleavage site selection. The presence of AGNN tetraloops also enhances Rnt1p binding, as shown by surface plasmon resonance monitoring and modification interference studies. These results define a paradigm of RNA loops and show that yeast RNase III behaves as a helical RNA ruler that recognizes these tetraloops and cleaves the dsRNA at a fixed distance to this RNA structure. These results also indicate that proteins belonging to the same class of RNA endonucleases require different structural elements for RNA cleavage.
Collapse
|
58
|
Chanfreau G, Buckle M, Jacquier A. Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III. Proc Natl Acad Sci U S A 2000; 97:3142-7. [PMID: 10716739 PMCID: PMC16206 DOI: 10.1073/pnas.97.7.3142] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleases III are double-stranded RNA (dsRNA) endonucleases required for the processing of a large number of prokaryotic and eukaryotic transcripts. Although the specificity of bacterial RNase III cleavage relies on antideterminants in the dsRNA, the molecular basis of eukaryotic RNase III specificity is unknown. All substrates of yeast RNase III (Rnt1p) are capped by terminal tetraloops showing the consensus AGNN and located within 13-16 bp to Rnt1p cleavage sites. We show that these tetraloops are essential for Rnt1p cleavage and that the distance to the tetraloop is the primary determinant of cleavage site selection. The presence of AGNN tetraloops also enhances Rnt1p binding, as shown by surface plasmon resonance monitoring and modification interference studies. These results define a paradigm of RNA loops and show that yeast RNase III behaves as a helical RNA ruler that recognizes these tetraloops and cleaves the dsRNA at a fixed distance to this RNA structure. These results also indicate that proteins belonging to the same class of RNA endonucleases require different structural elements for RNA cleavage.
Collapse
Affiliation(s)
- G Chanfreau
- Unité de Génétique des Interactions Macromoléculaires, URA1300 Centre National de la Recherche Scientifique, Département des Biotechnologies, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
59
|
Abstract
The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
60
|
Lamontagne B, Tremblay A, Abou Elela S. The N-terminal domain that distinguishes yeast from bacterial RNase III contains a dimerization signal required for efficient double-stranded RNA cleavage. Mol Cell Biol 2000; 20:1104-15. [PMID: 10648595 PMCID: PMC85228 DOI: 10.1128/mcb.20.4.1104-1115.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1999] [Accepted: 11/17/1999] [Indexed: 11/20/2022] Open
Abstract
Yeast Rnt1 is a member of the double-stranded RNA (dsRNA)-specific RNase III family identified by conserved dsRNA binding (dsRBD) and nuclease domains. Comparative sequence analyses have revealed an additional N-terminal domain unique to the eukaryotic homologues of RNase III. The deletion of this domain from Rnt1 slowed growth and led to mild accumulation of unprocessed 25S pre-rRNA. In vitro, deletion of the N-terminal domain reduced the rate of RNA cleavage under physiological salt concentration. Size exclusion chromatography and cross-linking assays indicated that the N-terminal domain and the dsRBD self-interact to stabilize the Rnt1 homodimer. In addition, an interaction between the N-terminal domain and the dsRBD was identified by a two-hybrid assay. The results suggest that the eukaryotic N-terminal domain of Rnt1 ensures efficient dsRNA cleavage by mediating the assembly of optimum Rnt1-RNA ribonucleoprotein complex.
Collapse
Affiliation(s)
- B Lamontagne
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | |
Collapse
|
61
|
Seto AG, Zaug AJ, Sobel SG, Wolin SL, Cech TR. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 1999; 401:177-80. [PMID: 10490028 DOI: 10.1038/43694] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of the chromosome end-replicating enzyme telomerase can greatly extend the lifespan of normal human cells and is associated with most human cancers. In all eukaryotes examined, telomerase has an RNA subunit, a conserved reverse transcriptase subunit and additional proteins, but little is known about the assembly of these components. Here we show that the Saccharomyces cerevisiae telomerase RNA has a 5'-2,2,7-trimethylguanosine (TMG) cap and a binding site for the Sm proteins, both hallmarks of small nuclear ribonucleoprotein particles (snRNPs) that are involved in nuclear messenger RNA splicing. Immunoprecipitation of telomerase from yeast extracts shows that Sm proteins are assembled on the RNA and that most or all of the telomerase activity is associated with the Sm-containing complex. These data support a model in which telomerase RNA is transcribed by RNA polymerase II and 7-methylguanosine-capped, binds the seven Sm proteins, becomes TMG-capped and picks up the other protein subunits. We conclude that the functions of snRNPs assembled by this pathway are not restricted to RNA processing, but also include chromosome telomere replication.
Collapse
Affiliation(s)
- A G Seto
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215, USA
| | | | | | | | | |
Collapse
|
62
|
Zhou D, Frendewey D, Lobo Ruppert SM. Pac1p, an RNase III homolog, is required for formation of the 3' end of U2 snRNA in Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 1999; 5:1083-1098. [PMID: 10445882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Like its homologs in higher eukaryotes, the U2 snRNA in Schizosaccharomyces pombe is transcribed by RNA polymerase II and is not polyadenylated. Instead, an RNA stem-loop structure located downstream of the U2 snRNA coding sequence and transcribed as part of a 3' extended precursor serves as a signal for 3'-end formation. We have identified three mutants that have temperature-sensitive defects in U2 snRNA 3'-end formation. In these mutants, the synthesis of the major snRNAs is also affected and unprocessed rRNA precursors accumulate at the restrictive temperature. Two of these mutants contain the same G-to-A transition within the pac1 gene, whereas the third contains a lesion outside the pac1 locus, indicating that at least two genes are involved. The pac1+ gene is codominant with the mutant allele and can rescue the temperature-sensitive phenotype and the defects in snRNA and rRNA synthesis, if overexpressed. In vitro, Pac1p, an RNase III homolog, can cleave a synthetic U2 precursor within the signal for 3'-end formation, generating a product that is a few nucleotides longer than mature U2 snRNA. In addition, U2 precursors are cleaved and trimmed to the mature size in extracts made from wild-type S. pombe cells. However, extracts made from pac1 mutant cells are unable to do so unless they are supplemented with purified recombinant Pac1p. Thus, the 3' end of S. pombe U2 snRNA is generated by a processing reaction that requires Pac1p and an additional component, and can be dissociated from transcription in vitro.
Collapse
Affiliation(s)
- D Zhou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
63
|
Zhou D, Frendewey D, Lobo Ruppert SM. Pac1p, an RNase III homolog, is required for formation of the 3' end of U2 snRNA in Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 1999; 5:1083-1098. [PMID: 10445882 PMCID: PMC1369831 DOI: 10.1017/s1355838299990726] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Like its homologs in higher eukaryotes, the U2 snRNA in Schizosaccharomyces pombe is transcribed by RNA polymerase II and is not polyadenylated. Instead, an RNA stem-loop structure located downstream of the U2 snRNA coding sequence and transcribed as part of a 3' extended precursor serves as a signal for 3'-end formation. We have identified three mutants that have temperature-sensitive defects in U2 snRNA 3'-end formation. In these mutants, the synthesis of the major snRNAs is also affected and unprocessed rRNA precursors accumulate at the restrictive temperature. Two of these mutants contain the same G-to-A transition within the pac1 gene, whereas the third contains a lesion outside the pac1 locus, indicating that at least two genes are involved. The pac1+ gene is codominant with the mutant allele and can rescue the temperature-sensitive phenotype and the defects in snRNA and rRNA synthesis, if overexpressed. In vitro, Pac1p, an RNase III homolog, can cleave a synthetic U2 precursor within the signal for 3'-end formation, generating a product that is a few nucleotides longer than mature U2 snRNA. In addition, U2 precursors are cleaved and trimmed to the mature size in extracts made from wild-type S. pombe cells. However, extracts made from pac1 mutant cells are unable to do so unless they are supplemented with purified recombinant Pac1p. Thus, the 3' end of S. pombe U2 snRNA is generated by a processing reaction that requires Pac1p and an additional component, and can be dissociated from transcription in vitro.
Collapse
Affiliation(s)
- D Zhou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
64
|
Kufel J, Dichtl B, Tollervey D. Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS. RNA (NEW YORK, N.Y.) 1999; 5:909-17. [PMID: 10411134 PMCID: PMC1369815 DOI: 10.1017/s135583829999026x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We have reexamined the role of yeast RNase III (Rnt1p) in ribosome synthesis. Analysis of pre-rRNA processing in a strain carrying a complete deletion of the RNT1 gene demonstrated that the absence of Rnt1p does not block cleavage at site A0 in the 5' external transcribed spacers (ETS), although the early pre-rRNA cleavages at sites A0, A1, and A2 are kinetically delayed. In contrast, cleavage in the 3' ETS is completely inhibited in the absence of Rnt1p, leading to the synthesis of a reduced level of a 3' extended form of the 25S rRNA. The 3' extended forms of the pre-rRNAs are consistent with the major termination at site T2 (+210). We conclude that Rnt1p is required for cleavage in the 3' ETS but not for cleavage at site A0. The sites of in vivo cleavage in the 3' ETS were mapped by primer extension. Two sites of Rnt1p-dependent cleavage were identified that lie on opposite sides of a predicted stem loop structure, at +14 and +49. These are in good agreement with the consensus Rnt1p cleavage site. Processing of the 3' end of the mature 25S rRNA sequence in wild-type cells was found to occur concomitantly with processing of the 5' end of the 5.8S rRNA, supporting previous proposals that processing in ITS1 and the 3' ETS is coupled.
Collapse
Affiliation(s)
- J Kufel
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom
| | | | | |
Collapse
|
65
|
Cuello P, Boyd DC, Dye MJ, Proudfoot NJ, Murphy S. Transcription of the human U2 snRNA genes continues beyond the 3' box in vivo. EMBO J 1999; 18:2867-77. [PMID: 10329632 PMCID: PMC1171367 DOI: 10.1093/emboj/18.10.2867] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 3' box of the human class II snRNA genes is required for proper 3' processing of transcripts, but how it functions is unclear. Several lines of evidence suggest that termination of transcription occurs at the 3' box and the terminated transcript is then a substrate for processing. However, using nuclear run-on analysis of endogenous genes, we demonstrate that transcription continues for at least 250 nucleotides beyond the 3' box of the U2 genes. Although in vivo footprinting analysis of both the U1 and U2 genes detects no protein-DNA contacts directly over the 3' box, a series of G residues immediately downstream from the 3' box of the U1 gene are clearly protected from methylation by dimethylsulfate. In conjunction with the 3' box of the U1 gene, this in vivo footprinted region causes termination of transcription of transiently transfected U2 constructs, whereas a 3' box alone does not. Taken together, these results indicate that the 3' box is not an efficient transcriptional terminator but may act as a processing element that is functional in the nascent RNA.
Collapse
Affiliation(s)
- P Cuello
- Chemical Pathology Unit, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|