51
|
Effect of cryopreservation on acetylation patterns of lysine 12 of histone H4 (acH4K12) in mouse oocytes and zygotes. J Assist Reprod Genet 2010; 27:735-41. [PMID: 20838874 DOI: 10.1007/s10815-010-9469-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022] Open
Abstract
PURPOSE to determine the effect of cryopreservation on acH4K12 in oocytes and their respective zygotes. METHODS AcH4K12 in fresh or vitrified-warmed oocytes and their respective zygotes at 70 min-12 h post-fertilization were assessed using fluorescent staining. RESULTS 1. AcH4K12 levels increased significantly in vitrified oocytes compared to controls. 2. Respective zygotes derived from vitrified oocytes had abnormal chromatin distribution or acH4K12 patterns before and after pronuclear formation. CONCLUSION Cryopreservation alters AcH4K12 patterns in oocytes, which subsequently affect the chromatin distribution and acH4K12 in fertilized oocytes.
Collapse
|
52
|
Berbenetz NM, Nislow C, Brown GW. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 2010; 6:e1001092. [PMID: 20824081 PMCID: PMC2932696 DOI: 10.1371/journal.pgen.1001092] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 07/26/2010] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers) positions nucleosomes adjacent to the origin to promote replication origin function.
Collapse
|
53
|
Gay S, Lachages AM, Millot GA, Courbet S, Letessier A, Debatisse M, Brison O. Nucleotide supply, not local histone acetylation, sets replication origin usage in transcribed regions. EMBO Rep 2010; 11:698-704. [PMID: 20671737 DOI: 10.1038/embor.2010.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, only a fraction of replication origins fire at each S phase. Local histone acetylation was proposed to control firing efficiency of origins, but conflicting results were obtained. We report that local histone acetylation does not reflect origin efficiencies along the adenosine monophosphate deaminase 2 locus in mammalian fibroblasts. Reciprocally, modulation of origin efficiency does not affect acetylation. However, treatment with a deacetylase inhibitor changes the initiation pattern. We demonstrate that this treatment alters pyrimidine biosynthesis and decreases fork speed, which recruits latent origins. Our findings reconcile results that seemed inconsistent and reveal an unsuspected effect of deacetylase inhibitors on replication dynamics.
Collapse
Affiliation(s)
- Sophie Gay
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | | | | | |
Collapse
|
54
|
Koprinarova M, Markovska P, Iliev I, Anachkova B, Russev G. Sodium butyrate enhances the cytotoxic effect of cisplatin by abrogating the cisplatin imposed cell cycle arrest. BMC Mol Biol 2010; 11:49. [PMID: 20576112 PMCID: PMC2906439 DOI: 10.1186/1471-2199-11-49] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 06/24/2010] [Indexed: 01/29/2023] Open
Abstract
Background Histone deacetylase inhibitors have been proposed as potential enhancers of the cytotoxic effect of cisplatin and other anticancer drugs. Their application would permit the use of lower therapeutic doses and reduction of the adverse side effects of the drugs. However, the molecular mechanisms by which they sensitize the cells towards anticancer drugs are not known in details, which is an obstacle in developing effective therapeutic protocols. Results In the present work, we studied the molecular mechanisms by which sodium butyrate sensitizes cancer cells towards cisplatin. HeLa cells were treated with 5 mM butyrate, with 8 μM cis-diaminedichloroplatinum II (cisplatin), or with both. Cells treated with both agents showed approximately two-fold increase of the mortality rate in comparison with cells treated with cisplatin only. Accordingly, the life span of albino mice transfected with Ehrlich ascites tumor was prolonged almost two-fold by treatment with cisplatin and butyrate in comparison with cisplatin alone. This showed that the observed synergism of cisplatin and butyrate was not limited to specific cell lines or in vitro protocols, but was also expressed in vivo during the process of tumor development. DNA labeling and fluorescence activated cell sorting experiments showed that cisplatin treatment inhibited DNA synthesis and arrested HeLa cells at the G1/S transition and early S phase of the cell cycle. Western blotting and chromatin immunoprecipitation revealed that this effect was accompanied with a decrease of histone H4 acetylation levels. Butyrate treatment initially reversed the effect of cisplatin by increasing the levels of histone H4 acetylation in euchromatin regions responsible for the G1/S phase transition and initiation of DNA synthesis. This abrogated the cisplatin imposed cell cycle arrest and the cells traversed S phase with damaged DNA. However, this effect was transient and continued only a few hours. The long-term effect of butyrate was a massive histone acetylation in both eu- and heterochromatin, inhibition of DNA replication and apoptosis. Conclusion The study presents evidence that cell sensitization towards cisplatin by sodium butyrate is due to hyperacetylation of histone H4 in specific chromatin regions, which temporarily abrogates the cisplatin imposed cell cycle arrest.
Collapse
Affiliation(s)
- Miglena Koprinarova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, block 21, 1113 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
55
|
Schepers A, Papior P. Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-approaches. Chromosome Res 2010; 18:63-77. [PMID: 19904620 DOI: 10.1007/s10577-009-9087-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA replication initiates from origins of replication following a strict sequential activation programme and a conserved temporal order of activation. The number of replication initiation sites varies between species, according to the complexity of the genomes, with an average spacing of 100,000 bp. In contrast to yeast genomes, the location and definition of origins in mammalian genomes has been elusive. Historically, mammalian replication initiation sites have been mapped in situ by systematically searching specific genomic loci for sites that preferentially initiated DNA replication, potential origins by start-site mapping and autonomously replicating sequence experiments, and potential ORC and pre-replicative complex (pre-RC) sites by chromatin immunoprecipitation (ChIP) using antibodies for pre-RC proteins. In the past decade, ChIP has become an important method for analyzing protein/DNA interactions. Classically, ChIP is combined with Southern blotting or PCR. Recently, whole genome-ChIP methods have been very successful in unicellular eukaryotes to understand molecular mechanisms coordinating replication initiation and its flexibility in response to environmental changes. However, in mammalian systems, ChIP with pre-RC antibodies has often been challenging and genome-wide studies are scarce. In this review, we will appraise the progress that has been made in understanding replication origin organization using immunoprecipitation of the ORC and Mcm2-7 complexes. A special focus will be on the advantages and disadvantages of genome-wide ChIP-technologies and their potential impact on understanding metazoan replicators.
Collapse
Affiliation(s)
- Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München-German Research Center for Environmental Health, Marchioninistrasse 25, 81377, München, Germany.
| | | |
Collapse
|
56
|
Bui HT, Wakayama S, Kishigami S, Park KK, Kim JH, Thuan NV, Wakayama T. Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biol Reprod 2010; 83:454-63. [PMID: 20505166 DOI: 10.1095/biolreprod.109.083337] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our group and others have found that the treatment of embryos with trichostatin A (TSA) after cloning by somatic cell nuclear transfer (SCNT) results in a significant improvement in efficiency. We believe that TSA treatment improves nuclear remodeling via histone modifications, which are important in the epigenetic regulation of gene silencing and expression. Some studies found that treatment of SCNT-generated embryos with TSA improved lysine acetylation of core histones in a manner similar to that seen in normally fertilized embryos. However, how histone methylation is modified in TSA-treated cloned embryos is not completely understood. In the present study, we found that TSA treatment caused an increase in chromosome decondensation and nuclear volume in SCNT-generated embryos similar to that in embryos produced by intracytoplasmic sperm injection. Histone acetylation increased in parallel with chromosome decondensation. This was associated with a more effective formation of DNA replication complexes in treated embryos. We also found a differential effect of TSA on the methylation of histone H3 at positions K4 and K9 in SCNT-generated embryos that could contribute to genomic reprogramming of the somatic cell nuclei. In addition, using 5-bromouridine 5'-triphosphate-labeled RNA, we showed that TSA enhanced the levels of newly synthesized RNA in 2-cell embryos. Interestingly, the amount of SCNT-generated embryos showing asymmetric expression of nascent RNA was reduced significantly in the TSA-treated group compared with the nontreated group at the 2-cell stage. We conclude that the incomplete and inaccurate genomic reprogramming of SCNT-generated embryos was improved by TSA treatment. This could enhance the reprogramming of somatic nuclei in terms of chromatin remodeling, histone modifications, DNA replication, and transcriptional activity.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience & Biotechnology/Animal Resources Research Center, Konkuk University, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
57
|
Miotto B, Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 2010; 37:57-66. [PMID: 20129055 DOI: 10.1016/j.molcel.2009.12.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/16/2009] [Accepted: 11/16/2009] [Indexed: 12/15/2022]
Abstract
HBO1, an H4-specific histone acetylase, is a coactivator of the DNA replication licensing factor Cdt1. HBO1 acetylase activity is required for licensing, because a histone acetylase (HAT)-defective mutant of HBO1 bound at origins is unable to load the MCM complex. H4 acetylation at origins is cell-cycle regulated, with maximal activity at the G1/S transition, and coexpression of HBO1 and Jade-1 increases histone acetylation and MCM complex loading. Overexpression of the Set8 histone H4 tail-binding domain specifically inhibits MCM loading, suggesting that histones are a physiologically relevant target for licensing. Lastly, Geminin inhibits HBO1 acetylase activity in the context of a Cdt1-HBO1 complex, and it associates with origins and inhibits H4 acetylation and licensing in vivo. Thus, H4 acetylation at origins by HBO1 is critical for replication licensing by Cdt1, and negative regulation of licensing by Geminin is likely to involve inhibition of HBO1 histone acetylase activity.
Collapse
Affiliation(s)
- Benoit Miotto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
58
|
Moralli D, Monaco ZL. Simultaneous visualization of FISH signals and bromo-deoxyuridine incorporation by formamide-free DNA denaturation. Methods Mol Biol 2010; 659:203-218. [PMID: 20809313 DOI: 10.1007/978-1-60761-789-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The replication timing of different DNA sequences in the mammalian cell nucleus is a tightly regulated system, which affects important cellular processes such as genes expression, chromatin epigenetic marking, and maintenance of chromosome structure. For this reason, it is important to study the replication properties of specific sequences, to determine for example, if the replication timing varies in different tissues, or in the presence of specific reagents, such as hormones, or other biologically active molecules. In this chapter, we present a technique, which allows identification of specific DNA sequences by fluorescence in situ hybridization (FISH) and simultaneously analyses the incorporation of a thymidine analogue, 5-bromo-2-deoxyuridine (BrdU), to mark DNA replication. First, tissue culture cells are synchronized at the beginning of the S-phase. BrdU is then added, either at specific time-points during S-phase or during the whole of the cell cycle. After harvesting the cells, the chromosomal DNA is hybridized to FISH probes that identify specific DNA sequences; this is performed without the teratogen formamide normally used in FISH. Finally, the cell preparations are analysed with an epifluorescence microscope to determine if the sequence of interest incorporates BrdU and in which point of the S-phase.
Collapse
Affiliation(s)
- Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
59
|
Rampakakis E, Di Paola D, Chan MK, Zannis-Hadjopoulos M. Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation. J Cell Biochem 2009; 108:400-7. [PMID: 19585526 DOI: 10.1002/jcb.22266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome duplication relies on the timely activation of multiple replication origins throughout the genome during S phase. Each origin is marked by the assembly of a multiprotein pre-replication complex (pre-RC) and the recruitment of the replicative machinery, which can gain access to replication origins on the DNA through the barrier of specific chromatin structures. Inheritance of the genetic information is further accompanied by maintenance and inheritance of the epigenetic marks, which are accomplished by the activity of histone and DNA modifying enzymes traveling with the replisome. Here, we studied the changes in the chromatin structure at the loci of three replication origins, the early activated human lamin B2 (LB2) and monkey Ors8 (mOrs8) origins and the late-activated human homologue of the latter (hOrs8), during their activation, by measuring the abundance of post-translationally modified histone H3. The data show that dynamic changes in the levels of acetylated, methylated and phosphorylated histone H3 occur during the initiation of DNA replication at these three origin loci, which differ between early- and late-firing origins as well as between human- and monkey-derived cell lines. These results suggest that specific histone modifications are associated with origin firing, temporal activation and replication fork progression and underscore the importance of species specificity.
Collapse
Affiliation(s)
- E Rampakakis
- Rosalind and Morris Goodman Cancer Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | | | | | |
Collapse
|
60
|
Jiang Y, Lucas I, Young DJ, Davis EM, Karrison T, Rest JS, Le Beau MM. Common fragile sites are characterized by histone hypoacetylation. Hum Mol Genet 2009; 18:4501-12. [PMID: 19717471 PMCID: PMC2773265 DOI: 10.1093/hmg/ddp410] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Common fragile sites (CFSs) represent large, highly unstable regions of the human genome. CFS sequences are sensitive to perturbation of replication; however, the molecular basis for the instability at CFSs is poorly understood. We hypothesized that a unique epigenetic pattern may underlie the unusual sensitivity of CFSs to replication interference. To examine this hypothesis, we analyzed chromatin modification patterns within the six human CFSs with the highest levels of breakage, and their surrounding non-fragile regions (NCFSs). Chromatin at most of the CFSs analyzed has significantly less histone acetylation than that of their surrounding NCFSs. Trichostatin A and/or 5-azadeoxycytidine treatment reduced chromosome breakage at CFSs. Furthermore, chromatin at the most commonly expressed CFS, the FRA3B, is more resistant to micrococcal nuclease than that of the flanking non-fragile sequences. These results demonstrate that histone hypoacetylation is a characteristic epigenetic pattern of CFSs, and chromatin within CFSs might be relatively more compact than that of the NCFSs, indicating a role for chromatin conformation in genomic instability at CFSs. Moreover, lack of histone acetylation at CFSs may contribute to the defective response to replication stress characteristic of CFSs, leading to the genetic instability characteristic of this regions.
Collapse
Affiliation(s)
- Yanwen Jiang
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem 2009; 106:512-20. [PMID: 19173303 DOI: 10.1002/jcb.22070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein-protein and protein-DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis-acting sequences that serve as replication origins and the trans-acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed.
Collapse
Affiliation(s)
- E Rampakakis
- Department of Biochemistry, Goodman Cancer Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
62
|
The ATTCT repeats of spinocerebellar ataxia type 10 display strong nucleosome assembly which is enhanced by repeat interruptions. Gene 2009; 434:29-34. [DOI: 10.1016/j.gene.2008.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/07/2008] [Accepted: 12/15/2008] [Indexed: 12/19/2022]
|
63
|
Glozak MA, Seto E. Acetylation/deacetylation modulates the stability of DNA replication licensing factor Cdt1. J Biol Chem 2009; 284:11446-53. [PMID: 19276081 DOI: 10.1074/jbc.m809394200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Proper expression of the replication licensing factor Cdt1 is primarily regulated post-translationally by ubiquitylation and proteasome degradation. In a screen to identify novel non-histone targets of histone deacetylases (HDACs), we found Cdt1 as a binding partner for HDAC11. Cdt1 associates specifically and directly with HDAC11. We show that Cdt1 undergoes acetylation and is reversibly deacetylated by HDAC11. In vitro, Cdt1 can be acetylated at its N terminus by the lysine acetyltransferases KAT2B and KAT3B. Acetylation protects Cdt1 from ubiquitylation and subsequent proteasomal degradation. These results extend the list of non-histone acetylated proteins to include a critical DNA replication factor and provide an additional level of complexity to the regulation of Cdt1.
Collapse
Affiliation(s)
- Michele A Glozak
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | |
Collapse
|
64
|
Miotto B, Struhl K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 2008; 22:2633-8. [PMID: 18832067 DOI: 10.1101/gad.1674108] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
HBO1 histone acetylase is important for DNA replication licensing. In human cells, HBO1 associates with replication origins specifically during the G1 phase of the cell cycle in a manner that depends on the replication licensing factor Cdt1, but is independent of the Cdt1 repressor Geminin. HBO1 directly interacts with Cdt1, and it enhances Cdt1-dependent rereplication. Thus, HBO1 plays a direct role at replication origins as a coactivator of the Cdt1 licensing factor. As HBO1 is also a transcriptional coactivator, it has the potential to integrate internal and external stimuli to coordinate transcriptional responses with initiation of DNA replication.
Collapse
Affiliation(s)
- Benoit Miotto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
65
|
Kunoh T, Habu T, Matsumoto T. Involvement of fission yeast Clr6-HDAC in regulation of the checkpoint kinase Cds1. Nucleic Acids Res 2008; 36:3311-9. [PMID: 18440981 PMCID: PMC2425474 DOI: 10.1093/nar/gkn203] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of the N-terminal tail of histones is required for various nuclear processes. Here, we show that fission yeast Clr6-HDAC (histone deacetylase) regulates the checkpoint kinase Cds1 when DNA replication encounters a stressful condition. We found that the global level of acetylation of histone H4 was constant throughout the normal cell cycle, but was reduced significantly when the cell recovered from the HU-induced cell cycle arrest (or slow DNA replication). We identified the Clr6-HDAC as a component responsible for the reduction in the level of the H4 acetylation. Although DNA replication was completed, the HU-induced cell cycle arrest could not be released even after removal of HU in the clr6-1 mutant. Under this experimental condition, Cds1 kinase was maintained active and remained bound tightly to chromatin. We also demonstrated that Cds1 was active even after treatment with caffeine, an inhibitor for ATM/ATR that is an activator of Cds1. These results indicate that inactivation of Cds1 requires functional Clr6-HDAC independently of the conventional DNA replication checkpoint. When DNA replication is impeded, Clr6-HDAC activity may monitor damage on chromatin structure/environment, which is required for inactivation of Cds1.
Collapse
Affiliation(s)
- Tatsuki Kunoh
- Radiation Biology Center and Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan 606-8501
| | | | | |
Collapse
|
66
|
Yang J, Chen L, Sun L, Yu J, Jin Q. VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 2007; 36:D539-42. [PMID: 17984080 PMCID: PMC2238871 DOI: 10.1093/nar/gkm951] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Virulence factor database (VFDB) was set up in 2004 dedicated for providing current knowledge of virulence factors (VFs) from various medical significant bacterial pathogens to facilitate pathogenomic research. Nowadays, complete genome sequences of almost all the major pathogenic microbes have been determined, which makes comparative genomics a powerful approach for uncovering novel virulence determinants and hidden aspects of pathogenesis. VFDB was therefore upgraded to present the enormous diversity of bacterial genomes in terms of virulence genes and their organization. The VFDB 2008 release includes the following new features; (i) detailed tabular comparison of virulence composition of a given genome with other genomes of the same genus, (ii) multiple alignments and statistical analysis of homologous VFs and (iii) graphical comparison of genomic organizations of virulence genes. Comparative analysis of the numerous VFs will improve our understanding of the nature and evolution of virulence, as well as the development of new therapeutic and preventive strategies. VFDB 2008 release offers more user-friendly tools for comparative pathogenomics and it is publicly accessible at http://www.mgc.ac.cn/VFs/.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100176, China
| | | | | | | | | |
Collapse
|
67
|
Liu G, Bissler JJ, Sinden RR, Leffak M. Unstable spinocerebellar ataxia type 10 (ATTCT*(AGAAT) repeats are associated with aberrant replication at the ATX10 locus and replication origin-dependent expansion at an ectopic site in human cells. Mol Cell Biol 2007; 27:7828-38. [PMID: 17846122 PMCID: PMC2169150 DOI: 10.1128/mcb.01276-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is associated with expansion of (ATTCT)n repeats (where n is the number of repeats) within the ataxin 10 (ATX10/E46L) gene. The demonstration that (ATTCT)n tracts can act as DNA unwinding elements (DUEs) in vitro has suggested that aberrant replication origin activity occurs at expanded (ATTCT)n tracts and may lead to their instability. Here, we confirm these predictions. The wild-type ATX10 locus displays inefficient origin activity, but origin activity is elevated at the expanded ATX10 loci in patient-derived cells. To test whether (ATTCT)n tracts can potentiate origin activity, cell lines were constructed that contain ectopic copies of the c-myc replicator in which the essential DUE was replaced by ATX10 DUEs with (ATTCT)n. ATX10 DUEs containing (ATTCT)27 or (ATTCT)48, but not (ATTCT)8 or (ATTCT)13, could substitute functionally for the c-myc DUE, but (ATTCT)48 could not act as an autonomous replicator. Significantly, chimeric c-myc replicators containing ATX10 DUEs displayed length-dependent (ATTCT)n instability. By 250 population doublings, dramatic two- and fourfold length expansions were observed for (ATTCT)27 and (ATTCT)48 but not for (ATTCT)8 or (ATTCT)13. These results implicate replication origin activity as one molecular mechanism associated with the instability of (ATTCT)n tracts that are longer than normal length.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | |
Collapse
|
68
|
Kemp M, Bae B, Yu JP, Ghosh M, Leffak M, Nair SK. Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B. J Biol Chem 2007; 282:10441-8. [PMID: 17264083 DOI: 10.1074/jbc.m609632200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Local zones of easily unwound DNA are characteristic of prokaryotic and eukaryotic replication origins. The DNA-unwinding element of the human c-myc replication origin is essential for replicator activity and is a target of the DNA-unwinding element-binding protein DUE-B in vivo. We present here the 2.0A crystal structure of DUE-B and complementary biochemical characterization of its biological activity. The structure corresponds to a dimer of the N-terminal domain of the full-length protein and contains many of the structural elements of the nucleotide binding fold. A single magnesium ion resides in the putative active site cavity, which could serve to facilitate ATP hydrolytic activity of this protein. The structure also demonstrates a notable similarity to those of tRNA-editing enzymes. Consistent with this structural homology, the N-terminal core of DUE-B is shown to display both D-aminoacyl-tRNA deacylase activity and ATPase activity. We further demonstrate that the C-terminal portion of the enzyme is disordered and not essential for dimerization. However, this region is essential for DNA binding in vitro and becomes ordered in the presence of DNA.
Collapse
Affiliation(s)
- Michael Kemp
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
69
|
Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV. Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol 2007; 27:2037-47. [PMID: 17210643 PMCID: PMC1820486 DOI: 10.1128/mcb.02297-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of "anaerobic" genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression.
Collapse
Affiliation(s)
- Odeniel Sertil
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
70
|
Gray SJ, Gerhardt J, Doerfler W, Small LE, Fanning E. An origin of DNA replication in the promoter region of the human fragile X mental retardation (FMR1) gene. Mol Cell Biol 2006; 27:426-37. [PMID: 17101793 PMCID: PMC1800797 DOI: 10.1128/mcb.01382-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.
Collapse
Affiliation(s)
- Steven J Gray
- Department of Biological Sciences and Vanderbilt-Ingram Cancer Center, , Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | | | |
Collapse
|
71
|
Norio P. DNA replication: the unbearable lightness of origins. EMBO Rep 2006; 7:779-81. [PMID: 16880822 PMCID: PMC1525147 DOI: 10.1038/sj.embor.7400766] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 06/29/2006] [Indexed: 11/08/2022] Open
Affiliation(s)
- Paolo Norio
- Department of Cell Biology, CH416, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
72
|
Ghosh M, Kemp M, Liu G, Ritzi M, Schepers A, Leffak M. Differential binding of replication proteins across the human c-myc replicator. Mol Cell Biol 2006; 26:5270-83. [PMID: 16809765 PMCID: PMC1592723 DOI: 10.1128/mcb.02137-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The binding of the prereplication complex proteins Orc1, Orc2, Mcm3, Mcm7, and Cdc6 and the novel DNA unwinding element (DUE) binding protein DUE-B to the endogenous human c-myc replicator was studied by chromatin immunoprecipitation. In G(1)-arrested HeLa cells, Mcm3, Mcm7, and DUE-B were prominent near the DUE, while Orc1 and Orc2 were least abundant near the DUE and more abundant at flanking sites. Cdc6 binding mirrored that of Orc2 in G(1)-arrested cells but decreased in asynchronous or M-phase cells. Similarly, the signals from Orc1, Mcm3, and Mcm7 were at background levels in cells arrested in M phase, whereas Orc2 retained the distribution seen in G(1)-phase cells. Previously shown to cause histone hyperacetylation and delocalization of replication initiation, trichostatin A treatment of cells led to a parallel qualitative change in the distribution of Mcm3, but not Orc2, across the c-myc replicator. Orc2, Mcm3, and DUE-B were also bound at an ectopic c-myc replicator, where deletion of sequences essential for origin activity was associated with the loss of DUE-B binding or the alteration of chromatin structure and loss of Mcm3 binding. These results show that proteins implicated in replication initiation are selectively and differentially bound across the c-myc replicator, dependent on discrete structural elements in DNA or chromatin.
Collapse
Affiliation(s)
- Maloy Ghosh
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
73
|
van der Heijden GW, Derijck AAHA, Ramos L, Giele M, van der Vlag J, de Boer P. Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 2006; 298:458-69. [PMID: 16887113 DOI: 10.1016/j.ydbio.2006.06.051] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/27/2006] [Accepted: 06/30/2006] [Indexed: 11/22/2022]
Abstract
Rapidly after gamete fusion, the sperm nucleus loses its specific chromatin conformation and the DNA is repopulated with maternally derived nucleosomes. We evaluated the nature of paternally derived nucleosomes and the dynamics of sperm chromatin remodeling in the zygote directly after gamete fusion. We observed histone H4 acetylated at K8 or K12 already prior to full decondensation of the sperm nucleus, suggesting that these marks are transmitted by the spermatozoon. Tracking down the origin of H4K8ac and H4K12ac during spermiogenesis revealed the retention of nucleosomes with these modifications in the chromocenter of elongating spermatids. We show that sperm constitutive heterochromatin is enriched for nucleosomes carrying specific histone modifications which are transmitted to the zygote. Our results suggest an epigenetic mechanism for inheritance of chromosomal architecture. Furthermore, up to pronucleus formation, histone acetylation and phosphorylation build up in a cascade-like fashion in the paternal chromatin. After formation of the pronucleus, a subset of these marks is removed from the heterochromatin, which suggests a reestablishment of the euchromatin-heterochromatin partition.
Collapse
Affiliation(s)
- G W van der Heijden
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
74
|
Morrison TL, Yakisich JS, Cassidy-Hanley D, Kapler GM. TIF1 Represses rDNA replication initiation, but promotes normal S phase progression and chromosome transmission in Tetrahymena. Mol Biol Cell 2005; 16:2624-35. [PMID: 15772155 PMCID: PMC1142411 DOI: 10.1091/mbc.e05-02-0107] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 03/07/2005] [Indexed: 02/03/2023] Open
Abstract
The non-ORC protein, TIF1, recognizes sequences in the Tetrahymena thermophila ribosomal DNA (rDNA) minichromosome that are required for origin activation. We show here that TIF1 represses rDNA origin firing, but is required for proper macronuclear S phase progression and division. TIF1 mutants exhibit an elongated macronuclear S phase and diminished rate of DNA replication. Despite this, replication of the rDNA minichromosome initiates precociously. Because rDNA copy number is unaffected in the polyploid macronucleus, mechanisms that prevent reinitiation appear intact. Although mutants exit macronuclear S with a wild-type DNA content, division of the amitotic macronucleus is both delayed and abnormal. Nuclear defects are also observed in the diploid mitotic micronucleus, as TIF1 mutants lose a significant fraction of their micronuclear DNA. Hence, TIF1 is required for the propagation and subsequent transmission of germline chromosomes. The broad phenotypes associated with a TIF1-deficiency suggest that this origin binding protein is required globally for the proper execution and/or monitoring of key chromosomal events during S phase and possibly at later stages of the cell cycle. We propose that micro- and macronuclear defects result from exiting the respective nuclear S phases with physically compromised chromosomes.
Collapse
Affiliation(s)
- Tara L Morrison
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|