51
|
Laqqan M, Tierling S, Alkhaled Y, Lo Porto C, Solomayer EF, Hammadeh M. Spermatozoa from males with reduced fecundity exhibit differential DNA methylation patterns. Andrology 2017; 5:971-978. [DOI: 10.1111/andr.12362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/30/2023]
Affiliation(s)
- M. Laqqan
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg/Saar Germany
| | - S. Tierling
- Life Science; Department of Genetics & Epigenetics; Saarland University; Saarbrücken Germany
| | - Y. Alkhaled
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg/Saar Germany
| | - C. Lo Porto
- Life Science; Department of Genetics & Epigenetics; Saarland University; Saarbrücken Germany
| | - E. F. Solomayer
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg/Saar Germany
| | - M. Hammadeh
- Department of Obstetrics & Gynecology; Assisted Reproduction Laboratory; Saarland University; Homburg/Saar Germany
| |
Collapse
|
52
|
Al Khaled Y, Tierling S, Laqqan M, Lo Porto C, Hammadeh ME. Cigarette smoking induces only marginal changes in sperm DNA methylation levels of patients undergoing intracytoplasmic sperm injection treatment. Andrologia 2017; 50. [DOI: 10.1111/and.12818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Y. Al Khaled
- Gynecology & Assisted Reproduction Laboratory; Department of Obstetrics; University of Saarland; Homburg Germany
| | - S. Tierling
- FR8.3 Life Science; Department of Genetics & Epigenetics; Saarland University; Saarbrücken Germany
| | - M. Laqqan
- Gynecology & Assisted Reproduction Laboratory; Department of Obstetrics; University of Saarland; Homburg Germany
| | - C. Lo Porto
- FR8.3 Life Science; Department of Genetics & Epigenetics; Saarland University; Saarbrücken Germany
| | - M. E. Hammadeh
- Gynecology & Assisted Reproduction Laboratory; Department of Obstetrics; University of Saarland; Homburg Germany
| |
Collapse
|
53
|
Bhat S, Kabekkodu SP, Varghese VK, Chakrabarty S, Mallya SP, Rotti H, Pandey D, Kushtagi P, Satyamoorthy K. Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumour Biol 2017; 39:1010428317694573. [PMID: 28351298 DOI: 10.1177/1010428317694573] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Multicomponent molecular modifications such as DNA methylation may offer sensitive and specific cervical intraepithelial neoplasia and cervical cancer biomarkers. In this study, we tested cervical tissues at various stages of tumor progression for 5-methylcytosine and 5-hydroxymethylcytosine levels and also DNA promoter methylation profile of a panel of genes for its diagnostic potential. In total, 5-methylcytosine, 5-hydroxymethylcytosine, and promoter methylation of 33 genes were evaluated by reversed-phase high-performance liquid chromatography, enzyme-linked immunosorbent assay based technique, and bisulfate-based next generation sequencing. The 5-methylcytosine and 5-hydroxymethylcytosine contents were significantly reduced in squamous cell carcinoma and receiver operating characteristic curve analysis showed a significant difference in (1) 5-methylcytosine between normal and squamous cell carcinoma tissues (area under the curve = 0.946) and (2) 5-hydroxymethylcytosine levels among normal, squamous intraepithelial lesions and squamous cell carcinoma. Analyses of our next generation sequencing results and data from five independent published studies consisting of 191 normal, 10 low-grade squamous intraepithelial lesions, 21 high-grade squamous intraepithelial lesions, and 335 malignant tissues identified a panel of nine genes ( ARHGAP6, DAPK1, HAND2, NKX2-2, NNAT, PCDH10, PROX1, PITX2, and RAB6C) which could effectively discriminate among the various groups with sensitivity and specificity of 80%-100% (p < 0.05). Furthermore, 12 gene promoters (ARHGAP6, HAND2, LHX9, HEY2, NKX2-2, PCDH10, PITX2, PROX1, TBX3, IKBKG, RAB6C, and DAPK1) were also methylated in one or more of the cervical cancer cell lines tested. The global and gene-specific methylation of the panel of genes identified in our study may serve as useful biomarkers for the early detection and clinical management of cervical cancer.
Collapse
Affiliation(s)
- Samatha Bhat
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Shama Prasada Kabekkodu
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Vinay Koshy Varghese
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sanjiban Chakrabarty
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sandeep P Mallya
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Harish Rotti
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Deeksha Pandey
- 2 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pralhad Kushtagi
- 3 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Kapaettu Satyamoorthy
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| |
Collapse
|
54
|
Magalhães M, Rivals I, Claustres M, Varilh J, Thomasset M, Bergougnoux A, Mely L, Leroy S, Corvol H, Guillot L, Murris M, Beyne E, Caimmi D, Vachier I, Chiron R, De Sario A. DNA methylation at modifier genes of lung disease severity is altered in cystic fibrosis. Clin Epigenetics 2017; 9:19. [PMID: 28289476 PMCID: PMC5310067 DOI: 10.1186/s13148-016-0300-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022] Open
Abstract
Background Lung disease progression is variable among cystic fibrosis (CF) patients and depends on DNA mutations in the CFTR gene, polymorphic variations in disease modifier genes, and environmental exposure. The contribution of genetic factors has been extensively investigated, whereas the mechanism whereby environmental factors modulate the lung disease is unknown. In this project, we hypothesized that (i) reiterative stress alters the epigenome in CF-affected tissues and (ii) DNA methylation variations at disease modifier genes modulate the lung function in CF patients. Results We profiled DNA methylation at CFTR, the disease-causing gene, and at 13 lung modifier genes in nasal epithelial cells and whole blood samples from 48 CF patients and 24 healthy controls. CF patients homozygous for the p.Phe508del mutation and ≥18-year-old were stratified according to the lung disease severity. DNA methylation was measured by bisulfite and next-generation sequencing. The DNA methylation profile allowed us to correctly classify 75% of the subjects, thus providing a CF-specific molecular signature. Moreover, in CF patients, DNA methylation at specific genes was highly correlated in the same tissue sample. We suggest that gene methylation in CF cells may be co-regulated by disease-specific trans-factors. Three genes were differentially methylated in CF patients compared with controls and/or in groups of pulmonary severity: HMOX1 and GSTM3 in nasal epithelial samples; HMOX1 and EDNRA in blood samples. The association between pulmonary severity and DNA methylation at EDNRA was confirmed in blood samples from an independent set of CF patients. Also, lower DNA methylation levels at GSTM3 were associated with the GSTM3*B allele, a polymorphic 3-bp deletion that has a protective effect in cystic fibrosis. Conclusions DNA methylation levels are altered in nasal epithelial and blood cell samples from CF patients. Analysis of CFTR and 13 lung disease modifier genes shows DNA methylation changes of small magnitude: some of them are a consequence of the disease; other changes may result in small expression variations that collectively modulate the lung disease severity. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0300-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milena Magalhães
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée-ESPCI ParisTech, PSL Research University-UMRS1158, Paris, France
| | - Mireille Claustres
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France.,Laboratoire de Génétique Moléculaire-CHU Montpellier, Montpellier, France
| | - Jessica Varilh
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France.,Laboratoire de Génétique Moléculaire-CHU Montpellier, Montpellier, France
| | - Mélodie Thomasset
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France
| | - Anne Bergougnoux
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France.,Laboratoire de Génétique Moléculaire-CHU Montpellier, Montpellier, France
| | - Laurent Mely
- CRCM, Renée Sabran Hospital-CHU Lyon, Hyères, France
| | | | - Harriet Corvol
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U938-CRSA, Paris, France.,APHP, Trousseau Hospital, Paris, France
| | - Loïc Guillot
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U938-CRSA, Paris, France
| | | | - Emmanuelle Beyne
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France.,Laboratoire de Génétique Moléculaire-CHU Montpellier, Montpellier, France
| | - Davide Caimmi
- CRCM, Arnaud de Villeneuve Hospital-CHU Montpellier, Montpellier, France
| | - Isabelle Vachier
- CRCM, Arnaud de Villeneuve Hospital-CHU Montpellier, Montpellier, France
| | - Raphaël Chiron
- CRCM, Arnaud de Villeneuve Hospital-CHU Montpellier, Montpellier, France
| | - Albertina De Sario
- Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier University, Montpellier, France
| |
Collapse
|
55
|
Bretz CL, Langohr IM, Lee S, Kim J. Epigenetic instability at imprinting control regions in a Kras(G12D)-induced T-cell neoplasm. Epigenetics 2016; 10:1111-20. [PMID: 26507119 DOI: 10.1080/15592294.2015.1110672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Although aberrant DNA methylation within imprinted domains has been reported in a variety of neoplastic diseases, it remains largely uncharacterized in the context of carcinogenesis. In this study, we induced T-cell lymphoma in mice by employing a breeding scheme involving mouse strains, LSL-Kras(G12D) and MMTV-Cre. We then systematically surveyed imprinted domains for DNA methylation changes during tumor progression using combined bisulfite restriction analysis and NGS-based bisulfite sequencing. We detected hyper- or hypo-methylation at the imprinting control regions (ICRs) of the Dlk1, Peg10, Peg3, Grb10, and Gnas domains. These DNA methylation changes at ICRs were more prevalent and consistent than those observed at the promoter regions of well-known tumor suppressors, such as Mgmt, Fhit, and Mlh1. Thus, the changes observed at these imprinted domains are the outcome of isolated incidents affecting DNA methylation settings. Within imprinted domains, DNA methylation changes tend to be restricted to ICRs as nearby somatic differentially methylated regions and promoter regions experience no change. Furthermore, detailed analyses revealed that small cis-regulatory elements within ICRs tend to be resistant to DNA methylation changes, suggesting potential protection by unknown trans-factors. Overall, this study demonstrates that DNA methylation changes at ICRs are dynamic during carcinogenesis and advocates that detection of aberrant DNA methylation at ICRs may serve as a biomarker to enhance diagnostic procedures.
Collapse
Affiliation(s)
- Corey L Bretz
- a Department of Biological Sciences ; Louisiana State University ; Baton Rouge ; LA , USA
| | - Ingeborg M Langohr
- b Louisiana State University School of Veterinary Medicine ; Department of Pathobiological Sciences ; Baton Rouge ; LA , USA
| | - Suman Lee
- a Department of Biological Sciences ; Louisiana State University ; Baton Rouge ; LA , USA
| | - Joomyeong Kim
- a Department of Biological Sciences ; Louisiana State University ; Baton Rouge ; LA , USA
| |
Collapse
|
56
|
Bhat S, Mallya S, Varghese VK, Jayaram P, Chakrabarty S, Joshi KS, Nesari TM, Satyamoorthy K. DNA methylation detection at single base resolution using targeted next generation bisulfite sequencing and cross validation using capillary sequencing. Gene 2016; 594:259-267. [PMID: 27637516 DOI: 10.1016/j.gene.2016.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 01/10/2023]
Abstract
With a purpose of accurate and simultaneous determination of DNA methylation from multiple loci in multiple samples, here, we are demonstrating a method to aid rapid DNA methylation detection of genomic sequences. Using genomic DNA of peripheral blood from 14 healthy individuals, DNA methylation in 465 CpG sites from 12 loci of genes (ADAM22, ATF2, BCR, CD83, CREBBP, IL12B, IL17RA, MAP2K2, RBM38, TGFBR2, TGFBR3, and WNT5A) was analysed by targeted next generation bisulfite sequencing. Analysed region for three genes, BCR, IL17RA and RBM38 showed an absolute mean DNA methylation of 25.6%, 89.2% and 38.9% respectively. Other nine gene loci were unmethylated and exhibited <10% absolute mean DNA methylation. Two genes, IL17RA and RBM38 were technically validated using direct capillary sequencing and results were comparable with positive correlation (P=0.0088 & P<0.0001 respectively) in the CpG sites for DNA methylation. All CpG sites analysed from RBM38 genes locus displayed 95% limits of agreement for DNA methylation measurements from the two methods. The present approach provides a fast and reliable DNA methylation quantitative data at single base resolution with good coverage of the CpG sites under analysis in multiple loci and samples simultaneously. Use of targeted next generation bisulfite sequencing may provide an opportunity to explore genes in the discovery panel for biomarker identification and facilitate functional validation.
Collapse
Affiliation(s)
- Smitha Bhat
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Pradyumna Jayaram
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - Kalpana S Joshi
- Department of Biotechnology, Sinhgad College of Engineering, S. P. University of Pune, Pune, Maharashtra, India
| | - Tanuja M Nesari
- Department of Dravyaguna, Tilak Ayurved Mahavidyalaya, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576104, Karnataka, India.
| |
Collapse
|
57
|
Pink M, Ratsch BA, Mardahl M, Durek P, Polansky JK, Karl M, Baumgrass R, Wallner S, Cadenas C, Gianmoena K, Floess S, Chen W, Nordstroem K, Tierling S, Olek S, Walter J, Hamann A, Syrbe U. Imprinting of Skin/Inflammation Homing in CD4+ T Cells Is Controlled by DNA Methylation within the Fucosyltransferase 7 Gene. THE JOURNAL OF IMMUNOLOGY 2016; 197:3406-3414. [PMID: 27591321 DOI: 10.4049/jimmunol.1502434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 08/08/2016] [Indexed: 11/19/2022]
Abstract
E- and P-selectin ligands (E- and P-ligs) guide effector memory T cells into skin and inflamed regions, mediate the inflammatory recruitment of leukocytes, and contribute to the localization of hematopoietic precursor cells. A better understanding of their molecular regulation is therefore of significant interest with regard to therapeutic approaches targeting these pathways. In this study, we examined the transcriptional regulation of fucosyltransferase 7 (FUT7), an enzyme crucial for generation of the glycosylated E- and P-ligs. We found that high expression of the coding gene fut7 in murine CD4+ T cells correlates with DNA demethylation within a minimal promoter in skin/inflammation-seeking effector memory T cells. Retinoic acid, a known inducer of the gut-homing phenotype, abrogated the activation-induced demethylation of this region, which contains a cAMP responsive element. Methylation of the promoter or mutation of the cAMP responsive element abolished promoter activity and the binding of CREB, confirming the importance of this region and of its demethylation for fut7 transcription in T cells. Furthermore, studies on human CD4+ effector memory T cells confirmed demethylation within FUT7 corresponding to high FUT7 expression. Monocytes showed an even more extensive demethylation of the FUT7 gene whereas hepatocytes, which lack selectin ligand expression, exhibited extensive methylation. In conclusion, we show that DNA demethylation within the fut7 gene controls selectin ligand expression in mice and humans, including the inducible topographic commitment of T cells for skin and inflamed sites.
Collapse
Affiliation(s)
- Matthias Pink
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Boris A Ratsch
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Maibritt Mardahl
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Pawel Durek
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Julia K Polansky
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Martin Karl
- Signal Transduction, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Ria Baumgrass
- Signal Transduction, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Stefan Wallner
- Institute of Clinical and Laboratory Medicine, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Cristina Cadenas
- Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
| | - Kathrin Gianmoena
- Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholz Center for Infection Research, 38124 Braunschweig, Germany
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Karl Nordstroem
- Laboratory of Epigenetics, Saarland University, 66123 Saarbrücken, Germany
| | - Sascha Tierling
- Laboratory of Epigenetics, Saarland University, 66123 Saarbrücken, Germany
| | - Sven Olek
- Epiontis GmbH, 12489 Berlin, Germany; and
| | - Jörn Walter
- Laboratory of Epigenetics, Saarland University, 66123 Saarbrücken, Germany
| | - Alf Hamann
- Experimental Rheumatology, German Rheumatism Research Center, 10117 Berlin, Germany
| | - Uta Syrbe
- Medical Clinic for Gastroenterology, Infectious Diseases, and Rheumatology, Charité University Hospital, 12200 Berlin, Germany
| |
Collapse
|
58
|
Marandel L, Lepais O, Arbenoits E, Véron V, Dias K, Zion M, Panserat S. Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus mykiss) by nutritional status and dietary carbohydrates. Sci Rep 2016; 6:32187. [PMID: 27561320 PMCID: PMC4999891 DOI: 10.1038/srep32187] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022] Open
Abstract
The rainbow trout, a carnivorous fish, displays a 'glucose-intolerant' phenotype revealed by persistent hyperglycaemia when fed a high carbohydrate diet (HighCHO). Epigenetics refers to heritable changes in gene activity and is closely related to environmental changes and thus to metabolism adjustments governed by nutrition. In this study we first assessed in the trout liver whether and how nutritional status affects global epigenome modifications by targeting DNA methylation and histone marks previously reported to be affected in metabolic diseases. We then examined whether dietary carbohydrates could affect the epigenetic landscape of duplicated gluconeogenic genes previously reported to display changes in mRNA levels in trout fed a high carbohydrate diet. We specifically highlighted global hypomethylation of DNA and hypoacetylation of H3K9 in trout fed a HighCHO diet, a well-described phenotype in diabetes. g6pcb2 ohnologs were also hypomethylated at specific CpG sites in these animals according to their up-regulation. Our findings demonstrated that the hepatic epigenetic landscape can be affected by both nutritional status and dietary carbohydrates in trout. The mechanism underlying the setting up of these epigenetic modifications has now to be explored in order to improve understanding of its impact on the glucose intolerant phenotype in carnivorous teleosts.
Collapse
Affiliation(s)
- Lucie Marandel
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Olivier Lepais
- INRA, UMR 1224, Ecologie Comportementale et Biologie des Populations de Poissons, Saint Pée sur Nivelle, F-64310, France.,Univ Pau &Pays Adour, UMR 1224, Ecologie Comportementale et Biologie des Populations de Poissons, UFR Sciences et Techniques de la Côte Basque, Anglet, F-64600, France, Anglet, F-64600, France
| | - Eva Arbenoits
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Vincent Véron
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Karine Dias
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Marie Zion
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Stéphane Panserat
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| |
Collapse
|
59
|
Abstract
We have developed an NGS-based deep bisulfite sequencing protocol for the DNA methylation analysis of genomes. This approach allows the rapid and efficient construction of NGS-ready libraries with a large number of PCR products that have been individually amplified from bisulfite-converted DNA. This approach also employs a bioinformatics strategy to sort the raw sequence reads generated from NGS platforms and subsequently to derive DNA methylation levels for individual loci. The results demonstrated that this NGS-based deep bisulfite sequencing approach provide not only DNA methylation levels but also informative DNA methylation patterns that have not been seen through other existing methods.This protocol provides an efficient method generating NGS-ready libraries from individually amplified PCR products. This protocol provides a bioinformatics strategy sorting NGS-derived raw sequence reads. This protocol provides deep bisulfite sequencing results that can measure DNA methylation levels and patterns of individual loci.
Collapse
Affiliation(s)
- Suman Lee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
60
|
Blanch M, Mosquera JL, Ansoleaga B, Ferrer I, Barrachina M. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:385-97. [PMID: 26776077 DOI: 10.1016/j.ajpath.2015.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states.
Collapse
Affiliation(s)
- Marta Blanch
- Institute of Neuropathology, Bellvitge University Hospital (Bellvitge Biomedical Research Institute) IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | - Belén Ansoleaga
- Institute of Neuropathology, Bellvitge University Hospital (Bellvitge Biomedical Research Institute) IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital (Bellvitge Biomedical Research Institute) IDIBELL, L'Hospitalet de Llobregat, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Madrid, Spain; Departament of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Marta Barrachina
- Institute of Neuropathology, Bellvitge University Hospital (Bellvitge Biomedical Research Institute) IDIBELL, L'Hospitalet de Llobregat, Spain; Networked Biomedical Research Centre for NeuroDegenerative Disorders (CIBERNED), Madrid, Spain.
| |
Collapse
|
61
|
Pietrzak M, Rempala GA, Nelson PT, Hetman M. Non-random distribution of methyl-CpG sites and non-CpG methylation in the human rDNA promoter identified by next generation bisulfite sequencing. Gene 2016; 585:35-43. [PMID: 27008990 DOI: 10.1016/j.gene.2016.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
A next generation bisulfite sequencing (NGBS) was used to study rDNA promoter methylation in human brain using postmortem samples of the parietal cortex. Qualitative analysis of patterns of CpG methylation was performed at the individual rDNA unit level. CpG site-specific differences in methylation frequency were observed with the core promoter harboring three out of four most methylated CpGs. Moreover, there was an overall trend towards co-methylation for all possible pairs of 26 CpG sites. The hypermethylated CpGs from the core promoter were also most likely to be co-methylated. Finally, although rare, non-CpG (CpH) methylation was detected at several sites with one of them confirmed using the PspGI-qPCR assay. Similar trends were observed in samples from control individuals as well as patients suffering of Alzheimer's disease (AD), mild cognitive impairment (MCI) or ataxia telangiectasia (AT). Taken together, while some methyl-CpG sites including those in the core promoter may have relatively greater inhibitory effect on rRNA transcription, co-methylation at multiple sites may be required for full and/or long lasting silencing of human rDNA.
Collapse
Affiliation(s)
- Maciej Pietrzak
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, United States; Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, United States
| | - Grzegorz A Rempala
- Division of Biostatistics and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, United States; Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, United States; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, United States.
| |
Collapse
|
62
|
Wong NC, Pope BJ, Candiloro IL, Korbie D, Trau M, Wong SQ, Mikeska T, Zhang X, Pitman M, Eggers S, Doyle SR, Dobrovic A. MethPat: a tool for the analysis and visualisation of complex methylation patterns obtained by massively parallel sequencing. BMC Bioinformatics 2016; 17:98. [PMID: 26911705 PMCID: PMC4765133 DOI: 10.1186/s12859-016-0950-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/15/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND DNA methylation at a gene promoter region has the potential to regulate gene transcription. Patterns of methylation over multiple CpG sites in a region are often complex and cell type specific, with the region showing multiple allelic patterns in a sample. This complexity is commonly obscured when DNA methylation data is summarised as an average percentage value for each CpG site (or aggregated across CpG sites). True representation of methylation patterns can only be fully characterised by clonal analysis. Deep sequencing provides the ability to investigate clonal DNA methylation patterns in unprecedented detail and scale, enabling the proper characterisation of the heterogeneity of methylation patterns. However, the sheer amount and complexity of sequencing data requires new synoptic approaches to visualise the distribution of allelic patterns. RESULTS We have developed a new analysis and visualisation software tool "Methpat", that extracts and displays clonal DNA methylation patterns from massively parallel sequencing data aligned using Bismark. Methpat was used to analyse multiplex bisulfite amplicon sequencing on a range of CpG island targets across a panel of human cell lines and primary tissues. Methpat was able to represent the clonal diversity of epialleles analysed at specific gene promoter regions. We also used Methpat to describe epiallelic DNA methylation within the mitochondrial genome. CONCLUSIONS Methpat can summarise and visualise epiallelic DNA methylation results from targeted amplicon, massively parallel sequencing of bisulfite converted DNA in a compact and interpretable format. Unlike currently available tools, Methpat can visualise the diversity of epiallelic DNA methylation patterns in a sample.
Collapse
Affiliation(s)
- Nicholas C Wong
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, 3084, Australia. .,Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia. .,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3052, Australia. .,Present Address: Pacific Edge Biotechnology Ltd, Dunedin, Otago, 9016, New Zealand.
| | - Bernard J Pope
- Victorian Life Sciences Computation Initiative (VLSCI), The University of Melbourne, Parkville, Victoria, 3052, Australia. .,Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ida L Candiloro
- Department of Pathology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Darren Korbie
- Centre for Personalised NanoMedicine, Australian Institute of Nanotechnology and Bioengineering, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Matt Trau
- Centre for Personalised NanoMedicine, Australian Institute of Nanotechnology and Bioengineering, The University of Queensland, Brisbane, Queensland, 4072, Australia. .,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Stephen Q Wong
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia. .,Present Address: Translational Research Laboratory, Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia.
| | - Thomas Mikeska
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, 3084, Australia.
| | | | - Mark Pitman
- BioResearch Software Consultants, Battle Ground, WA, USA.
| | - Stefanie Eggers
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia.
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, 3086, Australia.
| | - Alexander Dobrovic
- Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, 3084, Australia. .,Department of Pathology, The University of Melbourne, Parkville, Victoria, 3010, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, 3084, Australia.
| |
Collapse
|
63
|
Bakshi A, Herke SW, Batzer MA, Kim J. DNA methylation variation of human-specific Alu repeats. Epigenetics 2016; 11:163-73. [PMID: 26890526 DOI: 10.1080/15592294.2015.1130518] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
DNA methylation is the major repression mechanism for human retrotransposons, such as the Alu family. Here, we have determined the methylation levels associated with 5238 loci belonging to 2 Alu subfamilies, AluYa5 and AluYb8, using high-throughput targeted repeat element bisulfite sequencing (HT-TREBS). The results indicate that ∼90% of loci are repressed by high methylation levels. Of the remaining loci, many of the hypomethylated elements are found near gene promoters and show high levels of DNA methylation variation. We have characterized this variation in the context of tumorigenesis and interindividual differences. Comparison of a primary breast tumor and its matched normal tissue revealed early DNA methylation changes in ∼1% of AluYb8 elements in response to tumorigenesis. Simultaneously, AluYa5/Yb8 elements proximal to promoters also showed differences in methylation of up to one order of magnitude, even between normal individuals. Overall, the current study demonstrates that early loss of methylation occurs during tumorigenesis in a subset of young Alu elements, suggesting their potential clinical relevance. However, approaches such as deep-bisulfite-sequencing of individual loci using HT-TREBS are required to distinguish clinically relevant loci from the background observed for AluYa5/Yb8 elements in general with regard to high levels of interindividual variation in DNA methylation.
Collapse
Affiliation(s)
- Arundhati Bakshi
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Scott W Herke
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Mark A Batzer
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Joomyeong Kim
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
64
|
Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:343-430. [DOI: 10.1007/978-3-319-43624-1_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
65
|
Chaplin A, Palou A, Serra F. Methylation analysis in fatty-acid-related genes reveals their plasticity associated with conjugated linoleic acid and calcium supplementation in adult mice. Eur J Nutr 2015; 56:879-891. [PMID: 26700221 DOI: 10.1007/s00394-015-1135-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE DNA methylation is one of the most extensively studied mechanisms within epigenetics, and it is suggested that diet-induced changes in methylation status could be involved in energy metabolism regulation. Conjugated linoleic acid (CLA) and calcium supplementation counteract body weight gain, particularly under a high-fat (HF) diet, in adult mice. The aim was to determine whether the modulation of DNA methylation pattern in target genes and tissues could be an underlying mechanism of action. METHODS Mice (C57BL/6J) were divided into five groups according to diet and treatment: normal fat as the control group (12 % kJ content as fat), HF group (43 % kJ content as fat), HF + CLA (6 mg CLA/day), HF + calcium (12 g/kg of calcium) and HF with both compounds. Gene expression and methylation degree of CpG sites in promoter sequences of genes involved in fatty acid metabolism, including adiponectin (Adipoq), stearoyl-CoA desaturase (Scd1) and fatty acid synthase (Fasn), were determined by bisulphite sequencing in liver and epididymal white adipose tissue. RESULTS Results showed that the methylation profile of promoters was significantly altered by dietary supplementation in a gene- and tissue-specific manner, whereas only slight changes were observed in the HF group. Furthermore, changes in specific CpG sites were also associated with an overall healthier metabolic profile, in particular for calcium-receiving groups. CONCLUSIONS Both CLA and calcium were able to modify the methylation pattern of genes involved in energy balance in adulthood, which opens a novel area for increasing efficiency in body weight management strategies.
Collapse
Affiliation(s)
- Alice Chaplin
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
66
|
Kim J, Bretz CL, Lee S. Epigenetic instability of imprinted genes in human cancers. Nucleic Acids Res 2015; 43:10689-99. [PMID: 26338779 PMCID: PMC4678850 DOI: 10.1093/nar/gkv867] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
Many imprinted genes are often epigenetically affected in human cancers due to their functional linkage to insulin and insulin-like growth factor signaling pathways. Thus, the current study systematically characterized the epigenetic instability of imprinted genes in multiple human cancers. First, the survey results from TCGA (The Cancer Genome Atlas) revealed that the expression levels of the majority of imprinted genes are downregulated in primary tumors compared to normal cells. These changes are also accompanied by DNA methylation level changes in several imprinted domains, such as the PEG3, MEST and GNAS domains. Second, these DNA methylation level changes were further confirmed manually using several sets of cancer DNA. According to the results, the Imprinting Control Regions of the PEG3, MEST and GNAS domains are indeed affected in breast, lung and ovarian cancers. This DNA methylation survey also revealed that evolutionarily conserved cis-regulatory elements within these imprinted domains are very variable in both normal and cancer cells. Overall, this study highlights the epigenetic instability of imprinted domains in human cancers and further suggests its potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Corey L Bretz
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Suman Lee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
67
|
Häfner N, Steinbach D, Jansen L, Diebolder H, Dürst M, Runnebaum IB. RUNX3 and CAMK2N1 hypermethylation as prognostic marker for epithelial ovarian cancer. Int J Cancer 2015; 138:217-28. [DOI: 10.1002/ijc.29690] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/15/2015] [Accepted: 07/02/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Norman Häfner
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Daniel Steinbach
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Lars Jansen
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Herbert Diebolder
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Matthias Dürst
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Ingo B. Runnebaum
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| |
Collapse
|
68
|
Hu K, Ting AH, Li J. BSPAT: a fast online tool for DNA methylation co-occurrence pattern analysis based on high-throughput bisulfite sequencing data. BMC Bioinformatics 2015; 16:220. [PMID: 26163275 PMCID: PMC4499179 DOI: 10.1186/s12859-015-0649-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/06/2015] [Indexed: 01/26/2023] Open
Abstract
Background Bisulfite sequencing is one of the most widely used technologies in analyzing DNA methylation patterns, which are important in understanding and characterizing the mechanism of DNA methylation and its functions in disease development. Efficient and user-friendly tools are critical in carrying out such analysis on high-throughput bisulfite sequencing data. However, existing tools are either not scalable well, or inadequate in providing visualization and other desirable functionalities. Results In order to handle ultra large sequencing data and to provide additional functions and features, we have developed BSPAT, a fast online tool for bisulfite sequencing pattern analysis. With a user-friendly web interface, BSPAT seamlessly integrates read mapping/quality control/methylation calling with methylation pattern generation and visualization. BSPAT has the following important features: 1) instead of using multiple/pairwise sequence alignment methods, BSPAT adopts an efficient and widely used sequence mapping tool to provide fast alignment of sequence reads; 2) BSPAT summarizes and visualizes DNA methylation co-occurrence patterns at a single nucleotide level, which provide valuable information in understanding the mechanism and regulation of DNA methylation; 3) based on methylation co-occurrence patterns, BSPAT can automatically detect potential allele-specific methylation (ASM) patterns, which can greatly enhance the detection and analysis of ASM patterns; 4) by linking directly with other popular databases and tools, BSPAT allows users to perform integrative analysis of methylation patterns with other genomic features together within regions of interest. Conclusion By utilizing a real bisulfite sequencing dataset generated from prostate cancer cell lines, we have shown that BSPAT is highly efficient. It has also reported some interesting methylation co-occurrence patterns and a potential allele-specific methylation case. In conclusion, BSPAT is an efficient and convenient tool for high-throughput bisulfite sequencing data analysis that can be broadly used.
Collapse
Affiliation(s)
- Ke Hu
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, 44106, Ohio, USA.
| | - Angela H Ting
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, 44195, Ohio, USA.
| | - Jing Li
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, 44106, Ohio, USA.
| |
Collapse
|
69
|
Lin P, Forêt S, Wilson SR, Burden CJ. Estimation of the methylation pattern distribution from deep sequencing data. BMC Bioinformatics 2015; 16:145. [PMID: 25943746 PMCID: PMC4428226 DOI: 10.1186/s12859-015-0600-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bisulphite sequencing enables the detection of cytosine methylation. The sequence of the methylation states of cytosines on any given read forms a methylation pattern that carries substantially more information than merely studying the average methylation level at individual positions. In order to understand better the complexity of DNA methylation landscapes in biological samples, it is important to study the diversity of these methylation patterns. However, the accurate quantification of methylation patterns is subject to sequencing errors and spurious signals due to incomplete bisulphite conversion of cytosines. RESULTS A statistical model is developed which accounts for the distribution of DNA methylation patterns at any given locus. The model incorporates the effects of sequencing errors and spurious reads, and enables estimation of the true underlying distribution of methylation patterns. CONCLUSIONS Calculation of the estimated distribution over methylation patterns is implemented in the R Bioconductor package MPFE. Source code and documentation of the package are also available for download at http://bioconductor.org/packages/3.0/bioc/html/MPFE.html .
Collapse
Affiliation(s)
- Peijie Lin
- Mathematical Sciences Institute, Australian National University, Canberra, ACT 2601, Australia.
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| | - Susan R Wilson
- Mathematical Sciences Institute, Australian National University, Canberra, ACT 2601, Australia. .,School of Mathematics and Statistics, University of New South Wales, 2052, NSW, Sydney, Australia.
| | - Conrad J Burden
- Mathematical Sciences Institute, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
70
|
Locus-specific DNA methylation analysis of retrotransposons in ES, somatic and cancer cells using High-Throughput Targeted Repeat Element Bisulfite Sequencing. GENOMICS DATA 2015; 3:87-89. [PMID: 25554740 PMCID: PMC4278373 DOI: 10.1016/j.gdata.2014.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA methylation is a major epigenetic mark associated with multiple aspects of retrotransposons within the mammalian genome. In order to study DNA methylation of a large number of retrotransposons on an individual-locus basis, we have developed a new protocol termed High-Throughput Targeted Repeat Element Bisulfite Sequencing (HT-TREBS) (Ekram and Kim, 2014 [1]). We have used this technique to characterize the locus-specific patterns of DNA methylation of 4799 members of the mouse IAP LTR (Intracisternal A Particle Long Terminal Repeat) retrotransposon family in embryonic stem, somatic and Neuro2A cells (Bakshi and Kim, 2014 [2]). Here we describe in detail the sample preparation and bioinformatics analyses used for these studies. The somatic cell data may be accessed under GEO accession number GSE49222. The ES and Neuro2A data are deposited under GEO accession number GSE60007.
Collapse
|
71
|
Wu X, Sun MA, Zhu H, Xie H. Nonparametric Bayesian clustering to detect bipolar methylated genomic loci. BMC Bioinformatics 2015; 16:11. [PMID: 25592753 PMCID: PMC4302125 DOI: 10.1186/s12859-014-0439-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023] Open
Abstract
Background With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Results Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Conclusions Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0439-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Statistics, Virginia Tech, 250 Drillfield Drive, Blacksburg, 24061, VA, USA.
| | - Ming-An Sun
- Virginia Bioinformatics Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, 24061, VA, USA.
| | - Hongxiao Zhu
- Department of Statistics, Virginia Tech, 250 Drillfield Drive, Blacksburg, 24061, VA, USA.
| | - Hehuang Xie
- Virginia Bioinformatics Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, 24061, VA, USA. .,Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, 24061, VA, USA.
| |
Collapse
|
72
|
Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 2014; 15:797-813. [DOI: 10.1038/nrg3748] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
73
|
Bakshi A, Kim J. Retrotransposon-based profiling of mammalian epigenomes: DNA methylation of IAP LTRs in embryonic stem, somatic and cancer cells. Genomics 2014; 104:538-44. [PMID: 25277721 DOI: 10.1016/j.ygeno.2014.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 11/24/2022]
Abstract
In the current study, we have used HT-TREBS to individually analyze the DNA methylation pattern of 4799 IAP LTR retrotransposons in embryonic stem, somatic and Neuro2A cells. According to the results, half of the loci within this family show constant methylation patterns between the three cell types whereas the remaining half display variable levels of methylation. About half of the variably methylated IAP LTRs tend to be hypomethylated in ES cells, and nearly all in this group are hypomethylated in Neuro2A cells. The observed hypomethylation in both cell types occur in a non-uniform, locus-specific manner and to various degrees of severity, with some of them being easily detectible by COBRA. Overall, this study demonstrates the feasibility of HT-TREBS to study DNA methylation changes at retrotransposons in a locus-specific manner in multiple cell types and further suggests the potential utility of this technique in developing epigenetic biomarkers for tracking disease progression.
Collapse
Affiliation(s)
- Arundhati Bakshi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
74
|
Sagie S, Ellran E, Katzir H, Shaked R, Yehezkel S, Laevsky I, Ghanayim A, Geiger D, Tzukerman M, Selig S. Induced pluripotent stem cells as a model for telomeric abnormalities in ICF type I syndrome. Hum Mol Genet 2014; 23:3629-40. [PMID: 24549038 DOI: 10.1093/hmg/ddu071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Human telomeric regions are packaged as constitutive heterochromatin, characterized by extensive subtelomeric DNA methylation and specific histone modifications. ICF (immunodeficiency, centromeric instability, facial anomalies) type I patients carry mutations in DNA methyltransferase 3B (DNMT3B) that methylates de novo repetitive sequences during early embryonic development. ICF type I patient fibroblasts display hypomethylated subtelomeres, abnormally short telomeres and premature senescence. In order to study the molecular mechanism by which the failure to de novo methylate subtelomeres results in accelerated telomere shortening, we generated induced pluripotent stem cells (iPSCs) from 3 ICF type I patients. Telomeres were elongated in ICF-iPSCs during reprogramming, and the senescence phenotype was abolished despite sustained subtelomeric hypomethylation and high TERRA levels. Fibroblast-like cells (FLs) isolated from differentiated ICF-iPSCs maintained abnormally high TERRA levels, and telomeres in these cells shortened at an accelerated rate, leading to early senescence, thus recapitulating the telomeric phenotype of the parental fibroblasts. These findings demonstrate that the abnormal telomere phenotype associated with subtelomeric hypomethylation is overridden in cells expressing telomerase, therefore excluding telomerase inhibition by TERRA as a central mechanism responsible for telomere shortening in ICF syndrome. The data in the current study lend support to the use of ICF-iPSCs for modeling of phenotypic and molecular defects in ICF syndrome and for unraveling the mechanism whereby subtelomeric hypomethylation is linked to accelerated telomeric loss in this syndrome.
Collapse
Affiliation(s)
- Shira Sagie
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Erika Ellran
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Hagar Katzir
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Rony Shaked
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Shiran Yehezkel
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Ilana Laevsky
- The Sohnis and Forman Families Stem Cell Center, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Alaa Ghanayim
- Computer Science Department, Technion, Haifa 32000, Israel
| | - Dan Geiger
- Computer Science Department, Technion, Haifa 32000, Israel
| | - Maty Tzukerman
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Sara Selig
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel,
| |
Collapse
|
75
|
Ekram MB, Kim J. High-throughput targeted repeat element bisulfite sequencing (HT-TREBS): genome-wide DNA methylation analysis of IAP LTR retrotransposon. PLoS One 2014; 9:e101683. [PMID: 25003790 PMCID: PMC4086960 DOI: 10.1371/journal.pone.0101683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/10/2014] [Indexed: 01/23/2023] Open
Abstract
In vertebrates, DNA methylation-mediated repression of retrotransposons is essential for the maintenance of genomic integrity. In the current study, we developed a technique termed HT-TREBS (High-Throughput Targeted Repeat Element Bisulfite Sequencing). This technique is designed to measure the DNA methylation levels of individual loci of any repeat families with next-generation sequencing approaches. To test the feasibility of HT-TREBS, we analyzed the DNA methylation levels of the IAP LTR family using a set of 12 different genomic DNA isolated from the brain, liver and kidney of 4 one-week-old littermates of the mouse strain C57BL/6N. This technique has successfully generated the CpG methylation data of 5,233 loci common in all the samples, representing more than 80% of the individual loci of the five targeted subtypes of the IAP LTR family. According to the results, approximately 5% of the IAP LTR loci have less than 80% CpG methylation levels with no genomic position preference. Further analyses of the IAP LTR loci also revealed the presence of extensive DNA methylation variations between different tissues and individuals. Overall, these data demonstrate the efficiency and robustness of the new technique, HT-TREBS, and also provide new insights regarding the genome-wide DNA methylation patterns of the IAP LTR repeat elements.
Collapse
Affiliation(s)
- Muhammad B. Ekram
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
76
|
Methylation plotter: a web tool for dynamic visualization of DNA methylation data. SOURCE CODE FOR BIOLOGY AND MEDICINE 2014; 9:11. [PMID: 25260021 PMCID: PMC4066318 DOI: 10.1186/1751-0473-9-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023]
Abstract
Methylation plotter is a Web tool that allows the visualization of methylation data in a user-friendly manner and with publication-ready quality. The user is asked to introduce a file containing the methylation status of a genomic region. This file can contain up to 100 samples and 100 CpGs. Optionally, the user can assign a group for each sample (i.e. whether a sample is a tumoral or normal tissue). After the data upload, the tool produces different graphical representations of the results following the most commonly used styles to display this type of data. They include an interactive plot that summarizes the status of every CpG site and for every sample in lollipop or grid styles. Methylation values ranging from 0 (unmethylated) to 1 (fully methylated) are represented using a gray color gradient. A practical feature of the tool allows the user to choose from different types of arrangement of the samples in the display: for instance, sorting by overall methylation level, by group, by unsupervised clustering or just following the order in which data were entered. In addition to the detailed plot, Methylation plotter produces a methylation profile plot that summarizes the status of the scrutinized region, a boxplot that sums up the differences between groups (if any) and a dendrogram that classifies the data by unsupervised clustering. Coupled with this analysis, descriptive statistics and testing for differences at both CpG and group levels are provided. The implementation is based in R/shiny, providing a highly dynamic user interface that generates quality graphics without the need of writing R code. Methylation plotter is freely available at http://gattaca.imppc.org:3838/methylation_plotter/.
Collapse
|
77
|
Becker D, Lutsik P, Ebert P, Bock C, Lengauer T, Walter J. BiQ Analyzer HiMod: an interactive software tool for high-throughput locus-specific analysis of 5-methylcytosine and its oxidized derivatives. Nucleic Acids Res 2014; 42:W501-7. [PMID: 24875479 PMCID: PMC4086109 DOI: 10.1093/nar/gku457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent data suggest important biological roles for oxidative modifications of methylated cytosines, specifically hydroxymethylation, formylation and carboxylation. Several assays are now available for profiling these DNA modifications genome-wide as well as in targeted, locus-specific settings. Here we present BiQ Analyzer HiMod, a user-friendly software tool for sequence alignment, quality control and initial analysis of locus-specific DNA modification data. The software supports four different assay types, and it leads the user from raw sequence reads to DNA modification statistics and publication-quality plots. BiQ Analyzer HiMod combines well-established graphical user interface of its predecessor tool, BiQ Analyzer HT, with new and extended analysis modes. BiQ Analyzer HiMod also includes updates of the analysis workspace, an intuitive interface, a custom vector graphics engine and support of additional input and output data formats. The tool is freely available as a stand-alone installation package from http://biq-analyzer-himod.bioinf.mpi-inf.mpg.de/.
Collapse
Affiliation(s)
- Daniel Becker
- Department of Genetics, Saarland University, Saarbrücken 66123, Germany Department of Computational Biology and Applied Algorithms, Max-Planck Institute for Informatics, Saarbrücken 66123, Germany
| | - Pavlo Lutsik
- Department of Genetics, Saarland University, Saarbrücken 66123, Germany
| | - Peter Ebert
- Department of Computational Biology and Applied Algorithms, Max-Planck Institute for Informatics, Saarbrücken 66123, Germany
| | - Christoph Bock
- Department of Computational Biology and Applied Algorithms, Max-Planck Institute for Informatics, Saarbrücken 66123, Germany CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Lengauer
- Department of Computational Biology and Applied Algorithms, Max-Planck Institute for Informatics, Saarbrücken 66123, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
78
|
Bergougnoux A, Rivals I, Liquori A, Raynal C, Varilh J, Magalhães M, Perez MJ, Bigi N, Des Georges M, Chiron R, Squalli-Houssaini AS, Claustres M, De Sario A. A balance between activating and repressive histone modifications regulates cystic fibrosis transmembrane conductance regulator (CFTR) expression in vivo. Epigenetics 2014; 9:1007-17. [PMID: 24782114 DOI: 10.4161/epi.28967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The genetic mechanisms that regulate CFTR, the gene responsible for cystic fibrosis, have been widely investigated in cultured cells. However, mechanisms responsible for tissue-specific and time-specific expression are not completely elucidated in vivo. Through the survey of public databases, we found that the promoter of CFTR was associated with bivalent chromatin in human embryonic stem (ES) cells. In this work, we analyzed fetal (at different stages of pregnancy) and adult tissues and showed that, in digestive and lung tissues, which expressed CFTR, H3K4me3 was maintained in the promoter. Histone acetylation was high in the promoter and in two intronic enhancers, especially in fetal tissues. In contrast, in blood cells, which did not express CFTR, the bivalent chromatin was resolved (the promoter was labeled by the silencing mark H3K27me3). Cis-regulatory sequences were associated with lowly acetylated histones. We also provide evidence that the tissue-specific expression of CFTR is not regulated by dynamic changes of DNA methylation in the promoter. Overall, this work shows that a balance between activating and repressive histone modifications in the promoter and intronic enhancers results in the fine regulation of CFTR expression during development, thereby ensuring tissue specificity.
Collapse
Affiliation(s)
- Anne Bergougnoux
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée; ESPCI ParisTech; Paris, France
| | - Alessandro Liquori
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France
| | - Caroline Raynal
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | - Jessica Varilh
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | - Milena Magalhães
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France
| | | | | | - Marie Des Georges
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | | | | | - Mireille Claustres
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France; CHU Montpellier; Montpellier, France
| | - Albertina De Sario
- INSERM U827; Montpellier, France; Université Montpellier 1; Montpellier, France
| |
Collapse
|
79
|
Ferraresso S, Bresolin S, Aricò A, Comazzi S, Gelain ME, Riondato F, Bargelloni L, Marconato L, te Kronnie G, Aresu L. Epigenetic silencing of TFPI-2 in canine diffuse large B-cell lymphoma. PLoS One 2014; 9:e92707. [PMID: 24695110 PMCID: PMC3973630 DOI: 10.1371/journal.pone.0092707] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications are important early events during carcinogenesis. In particular, hypermethylation of CpG islands in the promoter region of tumor suppressor genes is a well-known mechanism of gene silencing that contributes to cancer development and progression. Tissue factor pathway inhibitor 2 (TFPI-2) is a tumor suppressor involved in invasiveness inhibition. Although TFPI-2 transcriptional silencing, through promoter hypermethylation, has been widely reported in several human malignancies, it has never been explored in lymphoma. In the present study TFPI-2 methylation and gene expression have been investigated in canine Diffuse Large B-cell lymphomas (cDLBCL). The methylation level of 23 CpGs located within the TFPI-2 promoter was investigated by bisulfite-specific PCR and next generation amplicon deep sequencing (GS Junior 454, Roche) in 22 cDLBCLs and 9 controls. For the same specimens, TFPI-2 gene expression was assessed by means of Real-time RT-PCR. Sequence analysis clearly demonstrated that TFPI2 is frequently hypermethylated in cDLBCL. Hypermethylation of the TFPI-2 promoter was found in 77% of DLBCLs (17 out of 22) and in one normal lymph node. Globally, dogs with DLBCL showed a mean methylation level significantly increased compared to controls (p<0.01) and analysis of hypermethylation by site identified 19 loci out of 23 (82%) with mean methylation levels from 2- to 120-fold higher in cDLBCL. Gene expression analysis confirmed a significant down-regulation of TFPI-2 (p<0.05) in DLBCLs compared with normal lymph nodes, suggesting that TFPI-2 hypermethylation negatively regulates its transcription. In addition, a significant positive correlation (p<0.01) was found between TFPI-2 methylation levels and age providing the first indication of age-associated epigenetic modifications in canine DLBCL. To conclude, our findings demonstrated that epigenetic dysregulation of TFPI-2, leading to its reduced expression, is frequently detected in canine DLBCL. In the next future, the aberrant TFPI-2 promoter hypermethylation may be considered in association with prognosis and therapy.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Arianna Aricò
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Stefano Comazzi
- Department of Animal Pathology Hygiene and Veterinary Public Health, University of Milano, Milano, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Fulvio Riondato
- Department Veterinary Science, University of Torino, Torino, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | - Geertruy te Kronnie
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Luca Aresu
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| |
Collapse
|
80
|
Bhavsar-Jog YP, Van Dornshuld E, Brooks TA, Tschumper GS, Wadkins RM. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry 2014; 53:1586-94. [PMID: 24564458 PMCID: PMC3985701 DOI: 10.1021/bi401523b] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA
sequences with the potential to form secondary structures such
as i-motifs (iMs) and G-quadruplexes (G4s) are abundant in the promoters
of several oncogenes and, in some instances, are known to regulate
gene expression. Recently, iM-forming DNA strands have also been employed
as functional units in nanodevices, ranging from drug delivery systems
to nanocircuitry. To understand both the mechanism of gene regulation
by iMs and how to use them more efficiently in nanotechnological applications,
it is essential to have a thorough knowledge of factors that govern
their conformational states and stabilities. Most of the prior work
to characterize the conformational dynamics of iMs have been done
with iM-forming synthetic constructs like tandem (CCT)n repeats and in standard dilute buffer systems. Here,
we present a systematic study on the consequences of epigenetic modifications,
molecular crowding, and degree of hydration on the stabilities of
an iM-forming sequence from the promoter of the c-myc gene. Our results indicate that 5-hydroxymethylation of cytosines
destabilized the iMs against thermal and pH-dependent melting; contrarily,
5-methylcytosine modification stabilized the iMs. Under molecular
crowding conditions (PEG-300, 40% w/v), the thermal stability of iMs
increased by ∼10 °C, and the pKa was raised from 6.1 ± 0.1 to 7.0 ± 0.1. Lastly, the iM’s
stability at varying degrees of hydration in 1,2-dimethoxyethane,
2-methoxyethanol, ethylene glycol, 1,3-propanediol, and glycerol cosolvents
indicated that the iMs are stabilized by dehydration because of the
release of water molecules when folded. Our results highlight the
importance of considering the effects of epigenetic modifications,
molecular crowding, and the degree of hydration on iM structural dynamics.
For example, the incorporation of 5-methylycytosines and 5-hydroxymethlycytosines
in iMs could be useful for fine-tuning the pH- or temperature-dependent
folding/unfolding of an iM. Variations in the degree of hydration
of iMs may also provide an additional control of the folded/unfolded
state of iMs without having to change the pH of the surrounding matrix.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Mississippi , University, Mississippi 38677, United States
| | | | | | | | | |
Collapse
|
81
|
Beygo J, Ammerpohl O, Gritzan D, Heitmann M, Rademacher K, Richter J, Caliebe A, Siebert R, Horsthemke B, Buiting K. Deep bisulfite sequencing of aberrantly methylated loci in a patient with multiple methylation defects. PLoS One 2013; 8:e76953. [PMID: 24130816 PMCID: PMC3793946 DOI: 10.1371/journal.pone.0076953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/28/2013] [Indexed: 12/17/2022] Open
Abstract
NLRP7 is a maternal effect gene as maternal mutations in this gene cause recurrent hydatidiform moles, spontaneous abortions and stillbirths, whereas live births are very rare. We have studied a patient with multiple anomalies born to a mother with a heterozygous NLRP7 mutation. By array-based CpG methylation analysis of blood DNA from the patient, his parents and 18 normal controls on Illumina Infinium HumanMethylation27 BeadChips we found that the patient had methylation changes (delta ß ≥ 0.3) at many imprinted loci as well as at 87 CpGs associated with 85 genes of unknown imprinting status. Using a pseudoproband (permutation) approach, we found methylation changes at only 7-24 CpGs (mean 15; standard deviation 4.84) in the controls. Thus, the number of abberantly methylated CpGs in the patient is more than 14 standard deviations higher. In order to identify novel imprinted genes among the 85 conspicuous genes in the patient, we selected 19 (mainly hypomethylated) genes for deep bisulfite amplicon sequencing on the ROCHE/454 Genome Sequencer in the patient and at least two additional controls. These controls had not been included in the array analysis and were heterozygous for a single nucleotide polymorphism at the test locus, so that allele-specific DNA methylation patterns could be determined. Apart from FAM50B, which we proved to be imprinted in blood, we did not observe allele-specific DNA methylation at the other 18 loci. We conclude that the patient does not only have methylation defects at imprinted loci but (at least in blood) also an excess of methylation changes at apparently non-imprinted loci.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniela Gritzan
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Melanie Heitmann
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Katrin Rademacher
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
82
|
Steenpass L, Kanber D, Hiber M, Buiting K, Horsthemke B, Lohmann D. Human PPP1R26P1 functions as cis-repressive element in mouse Rb1. PLoS One 2013; 8:e74159. [PMID: 24019952 PMCID: PMC3760807 DOI: 10.1371/journal.pone.0074159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023] Open
Abstract
The human retinoblastoma gene (RB1) is imprinted; the mouse Rb1 gene is not. Imprinted expression of RB1 is due to differential methylation of a CpG island (CpG85), which is located in the pseudogene PPP1R26P1 in intron 2 of RB1. CpG85 serves as promoter for an alternative RB1 transcript, which is expressed from the unmethylated paternal allele only and is thought to suppress expression of the full-length RB1 transcript in cis. PPP1R26P1 contains another CpG island (CpG42), which is biallelically methylated. To determine the influence of PPP1R26P1 on RB1 expression, we generated an in vitro murine embryonic stem cell model by introducing human PPP1R26P1 into mouse Rb1. Next generation bisulfite sequencing of CpG85 and CpG42 revealed differences in their susceptibility to DNA methylation, gaining methylation at a median level of 4% and 18%, respectively. We showed binding of RNA polymerase II at and transcription from the unmethylated CpG85 in PPP1R26P1 and observed reduced expression of full-length Rb1 from the targeted allele. Our results identify human PPP1R26P1 as a cis-repressive element and support a connection between retrotransposition of PPP1R26P1 into human RB1 and the reduced expression of RB1 on the paternal allele.
Collapse
Affiliation(s)
- Laura Steenpass
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Michaela Hiber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Dietmar Lohmann
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
83
|
Liu Y, Zheng W, Song Y, Ma W, Yin H. Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis. PLoS One 2013; 8:e68442. [PMID: 23894305 PMCID: PMC3716876 DOI: 10.1371/journal.pone.0068442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/29/2013] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) can function as tumor suppressors or oncogene promoters during tumor development. In this study, low levels of expression of miR-196b were detected in patients with chronic myeloid leukemia. Bisulfite genomic sequencing PCR and methylation-specific PCR were used to examine the methylation status of the CpG islands in the miR-196b promoter in K562 cells, patients with leukemia and healthy individuals. The CpG islands showed more methylation in patients with chronic myeloid leukemia compared with healthy individuals (P<0.05), which indicated that low expression of miR-196b may be associated with an increase in the methylation of CpG islands. The dual-luciferase reporter assay system demonstrated that BCR-ABL1 and HOXA9 are the target genes of miR-196b, which was consistent with predictions from bioinformatics software analyses. Further examination of cell function indicated that miR-196b acts to reduce BCR-ABL1 and HOXA9 protein levels, decrease cell proliferation rate and retard the cell cycle. A low level of expression of miR-196b can cause up-regulation of BCR-ABL1 and HOXA9 expression, which leads to the development of chronic myeloid leukemia. MiR-196b may represent an effective target for chronic myeloid leukemia therapy.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Wenling Zheng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Yanbin Song
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
- * E-mail: (YS); (WM)
| | - Wenli Ma
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
- * E-mail: (YS); (WM)
| | - Hong Yin
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|
84
|
Gries J, Schumacher D, Arand J, Lutsik P, Markelova MR, Fichtner I, Walter J, Sers C, Tierling S. Bi-PROF: bisulfite profiling of target regions using 454 GS FLX Titanium technology. Epigenetics 2013; 8:765-71. [PMID: 23803588 DOI: 10.4161/epi.25242] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The use of next generation sequencing has expanded our view on whole mammalian methylome patterns. In particular, it provides a genome-wide insight of local DNA methylation diversity at single nucleotide level and enables the examination of single chromosome sequence sections at a sufficient statistical power. We describe a bisulfite-based sequence profiling pipeline, Bi-PROF, which is based on the 454 GS-FLX Titanium technology that allows to obtain up to one million sequence stretches at single base pair resolution without laborious subcloning. To illustrate the performance of the experimental workflow connected to a bioinformatics program pipeline (BiQ Analyzer HT) we present a test analysis set of 68 different epigenetic marker regions (amplicons) in five individual patient-derived xenograft tissue samples of colorectal cancer and one healthy colon epithelium sample as a control. After the 454 GS-FLX Titanium run, sequence read processing and sample decoding, the obtained alignments are quality controlled and statistically evaluated. Comprehensive methylation pattern interpretation (profiling) assessed by analyzing 10 (2)-10 (4) sequence reads per amplicon allows an unprecedented deep view on pattern formation and methylation marker heterogeneity in tissues concerned by complex diseases like cancer.
Collapse
Affiliation(s)
- Jasmin Gries
- Department of Genetics/Epigenetics, FR8.3 Life Sciences, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
SUMMARY DMEAS is the first user-friendly tool dedicated to analyze the distribution of DNA methylation patterns for the quantification of epigenetic heterogeneity. It supports the analysis of both locus-specific and genome-wide bisulfite sequencing data. DMEAS progressively scans the mapping results of bisulfite sequencing reads to extract DNA methylation patterns for contiguous CpG dinucleotides. It determines the DNA methylation level and calculates methylation entropy for genomic segments to enable the quantitative assessment of DNA methylation variations observed in cell populations. AVAILABILITY AND IMPLEMENTATION DMEAS program, user guide and all the testing data are freely available from http://sourceforge.net/projects/dmeas/files/
Collapse
Affiliation(s)
- Jianlin He
- Center in Computation Biology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
86
|
Li MW, Qi X, Ni M, Lam HM. Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 2013; 14:11444-83. [PMID: 23759993 PMCID: PMC3709742 DOI: 10.3390/ijms140611444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 01/25/2023] Open
Abstract
Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the "-omics" studies, with an emphasis on their possible impacts on crop stress research and crop improvement.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Xinpeng Qi
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Meng Ni
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| |
Collapse
|
87
|
Souren NYP, Lutsik P, Gasparoni G, Tierling S, Gries J, Riemenschneider M, Fryns JP, Derom C, Zeegers MP, Walter J. Adult monozygotic twins discordant for intra-uterine growth have indistinguishable genome-wide DNA methylation profiles. Genome Biol 2013; 14:R44. [PMID: 23706164 PMCID: PMC4054831 DOI: 10.1186/gb-2013-14-5-r44] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/26/2013] [Indexed: 01/21/2023] Open
Abstract
Background Low birth weight is associated with an increased adult metabolic disease risk. It is widely discussed that poor intra-uterine conditions could induce long-lasting epigenetic modifications, leading to systemic changes in regulation of metabolic genes. To address this, we acquire genome-wide DNA methylation profiles from saliva DNA in a unique cohort of 17 monozygotic monochorionic female twins very discordant for birth weight. We examine if adverse prenatal growth conditions experienced by the smaller co-twins lead to long-lasting DNA methylation changes. Results Overall, co-twins show very similar genome-wide DNA methylation profiles. Since observed differences are almost exclusively caused by variable cellular composition, an original marker-based adjustment strategy was developed to eliminate such variation at affected CpGs. Among adjusted and unchanged CpGs 3,153 are differentially methylated between the heavy and light co-twins at nominal significance, of which 45 show sensible absolute mean β-value differences. Deep bisulfite sequencing of eight such loci reveals that differences remain in the range of technical variation, arguing against a reproducible biological effect. Analysis of methylation in repetitive elements using methylation-dependent primer extension assays also indicates no significant intra-pair differences. Conclusions Severe intra-uterine growth differences observed within these monozygotic twins are not associated with long-lasting DNA methylation differences in cells composing saliva, detectable with up-to-date technologies. Additionally, our results indicate that uneven cell type composition can lead to spurious results and should be addressed in epigenomic studies.
Collapse
|
88
|
Hebestreit K, Dugas M, Klein HU. Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics 2013; 29:1647-53. [PMID: 23658421 DOI: 10.1093/bioinformatics/btt263] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Bisulfite sequencing is currently the gold standard to obtain genome-wide DNA methylation profiles in eukaryotes. In contrast to the rapid development of appropriate pre-processing and alignment software, methods for analyzing the resulting methylation profiles are relatively limited so far. For instance, an appropriate pipeline to detect DNA methylation differences between cancer and control samples is still required. RESULTS We propose an algorithm that detects significantly differentially methylated regions in data obtained by targeted bisulfite sequencing approaches, such as reduced representation bisulfite sequencing. In a first step, this approach tests all target regions for methylation differences by taking spatial dependence into account. A false discovery rate procedure controls the expected proportion of incorrectly rejected regions. In a second step, the significant target regions are trimmed to the actually differentially methylated regions. This hierarchical procedure detects differentially methylated regions with increased power compared with existing methods. AVAILABILITY R/Bioconductor package BiSeq. SUPPLEMENTARY INFORMATION Supplementary Data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Katja Hebestreit
- Institute of Medical Informatics, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| | | | | |
Collapse
|
89
|
Evidence for anticipation in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2013; 21:1344-8. [PMID: 23572028 PMCID: PMC3831082 DOI: 10.1038/ejhg.2013.71] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/02/2013] [Accepted: 03/12/2013] [Indexed: 12/16/2022] Open
Abstract
Classical Beckwith-Wiedemann syndrome (BWS) was diagnosed in two sisters and their male cousin. The children's mothers and a third sister were tall statured (178, 185 and 187 cm) and one had mild BWS features as a child. Their parents had average heights of 173 cm (mother) and 180 cm (father). This second generation tall stature and third generation BWS correlated with increased methylation of the maternal H19/IGF2-locus. The results were obtained by bisulphite treatment and subclone Sanger sequencing or next generation sequencing to quantitate the degree of CpG-methylation on three locations: the H19 promoter region and two CTCF binding sites in the H19 imprinting control region (ICR1), specifically in ICR1 repeats B1 and B7. Upon ICR1 copy number analysis and sequencing, the same maternal point variant NCBI36:11:g.1979595T>C that had been described previously as a cause of BWS in three brothers, was found. As expected, this point variant was on the paternal allele in the non-affected grandmother. This nucleotide variant has been shown to affect OCTamer-binding transcription factor-4 (OCT4) binding, which may be necessary for maintaining the unmethylated state of the maternal allele. Our data extend these findings by showing that the OCT4 binding site mutation caused incomplete switching from paternal to maternal ICR1 methylation imprint, and that upon further maternal transmission, methylation of the incompletely demethylated variant ICR1 allele was further increased. This suggests that maternal and paternal ICR1 alleles are treated differentially in the female germline, and only the paternal allele appears to be capable of demethylation.
Collapse
|
90
|
Schmidt A, Wöhrmann HJP, Raissig MT, Arand J, Gheyselinck J, Gagliardini V, Heichinger C, Walter J, Grossniklaus U. The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:776-87. [PMID: 23146178 DOI: 10.1111/tpj.12070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 05/14/2023]
Abstract
In flowering plants, double fertilization of the female gametes, the egg and the central cell, initiates seed development to give rise to a diploid embryo and the triploid endosperm. In the absence of fertilization, the FERTILIZATION-INDEPENDENT SEED Polycomb Repressive Complex 2 (FIS-PRC2) represses this developmental process by histone methylation of certain target genes. The FERTILIZATION-INDEPENDENT SEED (FIS) class genes MEDEA (MEA) and FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) encode two of the core components of this complex. In addition, DNA methylation establishes and maintains the repression of gene activity, for instance via DNA METHYLTRANSFERASE1 (MET1), which maintains methylation of symmetric CpG residues. Here, we demonstrate that Arabidopsis MET1 interacts with MEA in vitro and in a yeast two-hybrid assay, similar to the previously identified interaction of the mammalian homologues DNMT1 and EZH2. MET1 and MEA share overlapping expression patterns in reproductive tissues before and after fertilization, a prerequisite for an interaction in vivo. Importantly, a much higher percentage of central cells initiate endosperm development in the absence of fertilization in mea-1/MEA; met1-3/MET1 as compared to mea-1/MEA mutant plants. In addition, DNA methylation at the PHERES1 and MEA loci, imprinted target genes of the FIS-PRC2, was affected in the mea-1 mutant compared with wild-type embryos. In conclusion, our data suggest a mechanistic link between two major epigenetic pathways involved in histone and DNA methylation in plants by physical interaction of MET1 with the FIS-PRC2 core component MEA. This concerted action is relevant for the repression of seed development in the absence of fertilization.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, CH-8008, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Benoukraf T, Wongphayak S, Hadi LHA, Wu M, Soong R. GBSA: a comprehensive software for analysing whole genome bisulfite sequencing data. Nucleic Acids Res 2012; 41:e55. [PMID: 23268441 PMCID: PMC3575794 DOI: 10.1093/nar/gks1281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High-throughput sequencing is increasingly being used in combination with bisulfite (BS) assays to study DNA methylation at nucleotide resolution. Although several programmes provide genome-wide alignment of BS-treated reads, the resulting information is not readily interpretable and often requires further bioinformatic steps for meaningful analysis. Current post-alignment BS-sequencing programmes are generally focused on the gene-specific level, a restrictive feature when analysis in the non-coding regions, such as enhancers and intergenic microRNAs, is required. Here, we present Genome Bisulfite Sequencing Analyser (GBSA—http://ctrad-csi.nus.edu.sg/gbsa), a free open-source software capable of analysing whole-genome bisulfite sequencing data with either a gene-centric or gene-independent focus. Through analysis of the largest published data sets to date, we demonstrate GBSA’s features in providing sequencing quality assessment, methylation scoring, functional data management and visualization of genomic methylation at nucleotide resolution. Additionally, we show that GBSA’s output can be easily integrated with other high-throughput sequencing data, such as RNA-Seq or ChIP-seq, to elucidate the role of methylated intergenic regions in gene regulation. In essence, GBSA allows an investigator to explore not only known loci but also all the genomic regions, for which methylation studies could lead to the discovery of new regulatory mechanisms.
Collapse
Affiliation(s)
- Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | | | | | | | | |
Collapse
|
92
|
Mikeska T, Bock C, Do H, Dobrovic A. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert Rev Mol Diagn 2012; 12:473-87. [PMID: 22702364 DOI: 10.1586/erm.12.45] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Altered DNA methylation is ubiquitous in human cancers and specific methylation changes are often correlated with clinical features. DNA methylation biomarkers, which use those specific methylation changes, provide a range of opportunities for early detection, diagnosis, prognosis, therapeutic stratification and post-therapeutic monitoring. Here we review current approaches to developing and applying DNA methylation biomarkers in cancer therapy. We discuss the obstacles that have so far limited the routine use of DNA methylation biomarkers in clinical settings and describe ways in which these obstacles can be overcome. Finally, we summarize the current state of clinical implementation for some of the most widely studied and well-validated DNA methylation biomarkers, including SEPT9, VIM, SHOX2, PITX2 and MGMT.
Collapse
Affiliation(s)
- Thomas Mikeska
- Molecular Pathology Research & Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
| | | | | | | |
Collapse
|
93
|
Abstract
DNA methylation is an epigenetic mark that has suspected regulatory roles in a broad range of biological processes and diseases. The technology is now available for studying DNA methylation genome-wide, at a high resolution and in a large number of samples. This Review discusses relevant concepts, computational methods and software tools for analysing and interpreting DNA methylation data. It focuses not only on the bioinformatic challenges of large epigenome-mapping projects and epigenome-wide association studies but also highlights software tools that make genome-wide DNA methylation mapping more accessible for laboratories with limited bioinformatics experience.
Collapse
Affiliation(s)
- Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
94
|
Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, Heitmann M, Rademacher K, Guala A, Enklaar T, Anichini C, Cirillo Silengo M, Graf N, Prawitt D, Cubellis MV, Horsthemke B, Buiting K, Riccio A. The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Hum Mol Genet 2012; 22:544-57. [PMID: 23118352 PMCID: PMC3542864 DOI: 10.1093/hmg/dds465] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At chromosome 11p15.5, the imprinting centre 1 (IC1) controls the parent of origin-specific expression of the IGF2 and H19 genes. The 5 kb IC1 region contains multiple target sites (CTS) for the zinc-finger protein CTCF, whose binding on the maternal chromosome prevents the activation of IGF2 and allows that of H19 by common enhancers. CTCF binding helps maintaining the maternal IC1 methylation-free, whereas on the paternal chromosome gamete-inherited DNA methylation inhibits CTCF interaction and enhancer-blocking activity resulting in IGF2 activation and H19 silencing. Maternally inherited 1.4–2.2 kb deletions are associated with methylation of the residual CTSs and Beckwith–Wiedemann syndrome, although with different penetrance and expressivity. We explored the relationship between IC1 microdeletions and phenotype by analysing a number of previously described and novel mutant alleles. We used a highly quantitative assay based on next generation sequencing to measure DNA methylation in affected families and analysed enhancer-blocking activity and CTCF binding in cultured cells. We demonstrate that the microdeletions mostly affect IC1 function and CTCF binding by changing CTS spacing. Thus, the extent of IC1 inactivation and the clinical phenotype are influenced by the arrangement of the residual CTSs. A CTS spacing similar to the wild-type allele results in moderate IC1 inactivation and is associated with stochastic DNA methylation of the maternal IC1 and incomplete penetrance. Microdeletions with different CTS spacing display severe IC1 inactivation and are associated with IC1 hypermethylation and complete penetrance. Careful characterization of the IC1 microdeletions is therefore needed to predict recurrence risks and phenotypical outcomes.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
|
96
|
Woellmer A, Arteaga-Salas JM, Hammerschmidt W. BZLF1 governs CpG-methylated chromatin of Epstein-Barr Virus reversing epigenetic repression. PLoS Pathog 2012; 8:e1002902. [PMID: 22969425 PMCID: PMC3435241 DOI: 10.1371/journal.ppat.1002902] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/28/2012] [Indexed: 11/26/2022] Open
Abstract
Epigenetic mechanisms are essential for the regulation of all genes in mammalian cells but transcriptional repression including DNA methylation are also major epigenetic mechanisms of defense inactivating potentially harmful pathogens. Epstein-Barr Virus (EBV), however, has evolved to take advantage of CpG methylated DNA to regulate its own biphasic life cycle. We show here that latent EBV DNA has an extreme composition of methylated CpG dinucleotides with a bimodal distribution of unmethylated or fully methylated DNA at active latent genes or completely repressed lytic promoters, respectively. We find this scenario confirmed in primary EBV-infected memory B cells in vivo. Extensive CpG methylation of EBV's DNA argues for a very restricted gene expression during latency. Above-average nucleosomal occupancy, repressive histone marks, and Polycomb-mediated epigenetic silencing further shield early lytic promoters from activation during latency. The very tight repression of viral lytic genes must be overcome when latent EBV enters its lytic phase and supports de novo virus synthesis in infected cells. The EBV-encoded and AP-1 related transcription factor BZLF1 overturns latency and initiates virus synthesis in latently infected cells. Paradoxically, BZLF1 preferentially binds to CpG-methylated motifs in key viral promoters for their activation. Upon BZLF1 binding, we find nucleosomes removed, Polycomb repression lost, and RNA polymerase II recruited to the activated early promoters promoting efficient lytic viral gene expression. Surprisingly, DNA methylation is maintained throughout this phase of viral reactivation and is no hindrance to active transcription of extensively CpG methylated viral genes as thought previously. Thus, we identify BZLF1 as a pioneer factor that reverses epigenetic silencing of viral DNA to allow escape from latency and report on a new paradigm of gene regulation. Latency is a fundamental molecular mechanism that is observed in many viruses. We reveal that the human herpes virus Epstein-Barr virus (EBV) uses cellular functions of epigenetic repression to establish latency in infected B cells and a previously unknown mechanism to escape from it. We show that the herpesviral DNA genome is transcriptionally silenced by cellular mechanisms during viral latency, which includes excessive methylation of EBV DNA in vitro and in its human host in vivo. Epigenetic modifications like high nucleosome density and repressive histone marks shield and inactivate lytic viral genes during latency. EBV's genuinely repressed chromatin poses the problem of efficient reactivation to support virus synthesis. BZLF1 is the viral switch gene that induces the lytic phase of EBV's life cycle. We show here that this viral transcription factor erases static, repressive chromatin marks reversing epigenetic silencing. DNA methylation is preserved but no hindrance to lytic gene activation because BZLF1 directly binds to methylated viral DNA and overcomes heavily repressed chromatin without the need for active DNA demethylation. DNA demethylation has been thought to be a prerequisite for gene transcription but this virus falsifies this hypothesis and provides a new model for epigenetic gene regulation.
Collapse
Affiliation(s)
- Anne Woellmer
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | | |
Collapse
|
97
|
Su J, Yan H, Wei Y, Liu H, Liu H, Wang F, Lv J, Wu Q, Zhang Y. CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res 2012; 41:e4. [PMID: 22941633 PMCID: PMC3592415 DOI: 10.1093/nar/gks829] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High-throughput bisulfite sequencing is widely used to measure cytosine methylation at single-base resolution in eukaryotes. It permits systems-level analysis of genomic methylation patterns associated with gene expression and chromatin structure. However, methods for large-scale identification of methylation patterns from bisulfite sequencing are lacking. We developed a comprehensive tool, CpG_MPs, for identification and analysis of the methylation patterns of genomic regions from bisulfite sequencing data. CpG_MPs first normalizes bisulfite sequencing reads into methylation level of CpGs. Then it identifies unmethylated and methylated regions using the methylation status of neighboring CpGs by hotspot extension algorithm without knowledge of pre-defined regions. Furthermore, the conservatively and differentially methylated regions across paired or multiple samples (cells or tissues) are identified by combining a combinatorial algorithm with Shannon entropy. CpG_MPs identified large amounts of genomic regions with different methylation patterns across five human bisulfite sequencing data during cellular differentiation. Different sequence features and significantly cell-specific methylation patterns were observed. These potentially functional regions form candidate regions for functional analysis of DNA methylation during cellular differentiation. CpG_MPs is the first user-friendly tool for identifying methylation patterns of genomic regions from bisulfite sequencing data, permitting further investigation of the biological functions of genome-scale methylation patterns.
Collapse
Affiliation(s)
- Jianzhong Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Paulsen M. Computational studies of imprinted genes. Methods Mol Biol 2012; 925:251-62. [PMID: 22907503 DOI: 10.1007/978-1-62703-011-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Computational studies on imprinted genes can have very different purposes: one major aim of these studies is the identification of DNA elements that distinguish imprinted genes from biallelically expressed genes. Comparative studies may help to identify imprinting regulatory elements and to understand common mechanisms of imprinted gene regulation in mammalian species. To date, the continuously growing number of genomic and epigenetic data sets makes detailed, genome-wide analyses on imprinted genes feasible. However, imprinted genes are characterized by genomic features that can influence statistics and can make such studies difficult. Hence, comparative computational studies can get very complex and require a tight interaction between bioinformaticians and biologists. Furthermore, analyses of raw data that are generated by micro-array hybridization and high-throughput sequencing technologies require computational approaches that have been designed especially for the epigenetic field. This chapter gives an overview about databases and software that is suitable for analyses of imprinted genes. Furthermore, possible difficulties that are typical for computational and statistical analyses of imprinted genes are described.
Collapse
|
99
|
Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V, Walter J. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 2012; 8:e1002750. [PMID: 22761581 PMCID: PMC3386304 DOI: 10.1371/journal.pgen.1002750] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.
Collapse
Affiliation(s)
- Julia Arand
- Department of Biological Sciences, Institute of Genetics/Epigenetics, University of Saarland, Saarbrücken, Germany
| | - David Spieler
- Department of Computer Science, University of Saarland, Saarbrücken, Germany
| | - Tommy Karius
- Department of Biological Sciences, Institute of Genetics/Epigenetics, University of Saarland, Saarbrücken, Germany
| | - Miguel R. Branco
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Daniela Meilinger
- Department of Biology II, LMU München, Biozentrum Martinsried, Martinsried, Germany
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Heinrich Leonhardt
- Department of Biology II, LMU München, Biozentrum Martinsried, Martinsried, Germany
| | - Verena Wolf
- Department of Computer Science, University of Saarland, Saarbrücken, Germany
| | - Jörn Walter
- Department of Biological Sciences, Institute of Genetics/Epigenetics, University of Saarland, Saarbrücken, Germany
| |
Collapse
|
100
|
Xi Y, Bock C, Müller F, Sun D, Meissner A, Li W. RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. ACTA ACUST UNITED AC 2011; 28:430-2. [PMID: 22155871 DOI: 10.1093/bioinformatics/btr668] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SUMMARY Reduced representation bisulfite sequencing (RRBS) is a powerful yet cost-efficient method for studying DNA methylation on a genomic scale. RRBS involves restriction-enzyme digestion, bisulfite conversion and size selection, resulting in DNA sequencing data that require special bioinformatic handling. Here, we describe RRBSMAP, a short-read alignment tool that is designed for handling RRBS data in a user-friendly and scalable way. RRBSMAP uses wildcard alignment, and avoids the need for any preprocessing or post-processing steps. We benchmarked RRBSMAP against a well-validated MAQ-based pipeline for RRBS read alignment and observed similar accuracy but much improved runtime performance, easier handling and better scaling to large sample sets. In summary, RRBSMAP removes bioinformatic hurdles and reduces the computational burden of large-scale epigenome association studies performed with RRBS. AVAILABILITY http://rrbsmap.computational-epigenetics.org/ http://code.google.com/p/bsmap/ CONTACT wl1@bcm.tmc.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuanxin Xi
- Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|