51
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Afaf El-Sagheer
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
- Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering; Suez Canal University; Suez 43721 Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Tom Brown
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| |
Collapse
|
52
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016; 55:13553-13557. [PMID: 27667506 DOI: 10.1002/anie.201606843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Indexed: 12/12/2022]
Abstract
RNA functionalization is challenging due to the instability of RNA and the limited range of available enzymatic reactions. We developed a strategy based on solid phase synthesis and post-functionalization to introduce an electrophilic site at the 3' end of tRNA analogues. The squarate diester used as an electrophile enabled sequential amidation and provided asymmetric squaramides with high selectivity. The squaramate-RNAs specifically reacted with the lysine of UDP-MurNAc-pentapeptide, a peptidoglycan precursor used by the aminoacyl-transferase FemXWv for synthesis of the bacterial cell wall. The peptidyl-RNA obtained with squaramate-RNA and unprotected UDP-MurNAc-pentapeptide efficiently inhibited FemXWv . The squaramate unit also promoted specific cross-linking of RNA to the catalytic Lys of FemXWv but not to related transferases recognizing different aminoacyl-tRNAs. Thus, squaramate-RNAs provide specificity for cross-linking with defined groups in complex biomolecules due to its unique reactivity.
Collapse
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Afaf El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, 43721, Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France.
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France. .,CNRS UMR 8601, Paris, F-75006, France.
| |
Collapse
|
53
|
Muttach F, Rentmeister A. One-pot modification of 5′-capped RNA based on methionine analogs. Methods 2016; 107:3-9. [DOI: 10.1016/j.ymeth.2016.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/12/2016] [Indexed: 12/29/2022] Open
|
54
|
Huber TD, Johnson BR, Zhang J, Thorson JS. AdoMet analog synthesis and utilization: current state of the art. Curr Opin Biotechnol 2016; 42:189-197. [PMID: 27506965 DOI: 10.1016/j.copbio.2016.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/25/2022]
Abstract
S-Adenosyl-l-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology with an expanding range of biocatalytic and therapeutic applications. In recent years, technologies enabling the synthesis and utilization of novel functional AdoMet surrogates have rapidly advanced. Developments highlighted within this brief review include improved syntheses of AdoMet analogs, unique S-adenosyl-l-methionine isosteres with enhanced stability, and corresponding applications in epigenetics, proteomics and natural product/small molecule diversification ('alkylrandomization').
Collapse
Affiliation(s)
- Tyler D Huber
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, United States
| | - Brooke R Johnson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, United States
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, United States
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, United States.
| |
Collapse
|
55
|
Sawant AA, Mukherjee PP, Jangid RK, Galande S, Srivatsan SG. A clickable UTP analog for the posttranscriptional chemical labeling and imaging of RNA. Org Biomol Chem 2016; 14:5832-42. [PMID: 27173127 DOI: 10.1039/c6ob00576d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of robust tools and practical RNA labeling strategies that would facilitate the biophysical analysis of RNA in both cell-free and cellular systems will have profound implications in the discovery of new RNA diagnostic tools and therapeutic strategies. In this context, we describe the development of a new alkyne-modified UTP analog, 5-(1,7-octadinyl)uridine triphosphate (ODUTP), which serves as an efficient substrate for the introduction of a clickable alkyne label into RNA transcripts by bacteriophage T7 RNA polymerase and mammalian cellular RNA polymerases. The ODU-labeled RNA is effectively used by reverse transcriptase to produce cDNA, a property which could be utilized in expanding the chemical space of a RNA library in the aptamer selection scheme. Further, the alkyne label on RNA provides a convenient tool for the posttranscriptional chemical functionalization with a variety of biophysical tags (fluorescent, affinity, amino acid and sugar) by using alkyne-azide cycloaddition reaction. Importantly, the ability of endogenous RNA polymerases to specifically incorporate ODUTP into cellular RNA transcripts enabled the visualization of newly transcribing RNA in cells by microscopy using click reactions. In addition to a clickable alkyne group, ODU contains a Raman scattering label (internal disubstituted alkyne), which exhibits characteristic Raman shifts that fall in the Raman-silent region of cells. Our results indicate that an ODU label could potentially facilitate two-channel visualization of RNA in cells by using click chemistry and Raman spectroscopy. Taken together, ODU represents a multipurpose ribonucleoside tool, which is expected to provide new avenues to study RNA in cell-free and cellular systems.
Collapse
Affiliation(s)
- Anupam A Sawant
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | | | | | | | | |
Collapse
|
56
|
Abstract
Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations.
Collapse
Affiliation(s)
- Lilith V.J.C. Mannack
- Department of Chemistry, Institute of Biochemistry, University of Münster, Münster, Germany
- Cells in Motion, Cluster of Excellence, Münster, Germany
| | - Sebastian Eising
- Department of Chemistry, Institute of Biochemistry, University of Münster, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Münster, Germany
- Cells in Motion, Cluster of Excellence, Münster, Germany
| |
Collapse
|
57
|
Masevičius V, Nainytė M, Klimašauskas S. Synthesis of S-Adenosyl-L-Methionine Analogs with Extended Transferable Groups for Methyltransferase-Directed Labeling of DNA and RNA. ACTA ACUST UNITED AC 2016; 64:1.36.1-1.36.13. [PMID: 26967468 DOI: 10.1002/0471142700.nc0136s64] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
S-Adenosyl-L-methionine (AdoMet) is a ubiquitous methyl donor for a variety of biological methylation reactions catalyzed by methyltransferases (MTases). AdoMet analogs with extended propargylic chains replacing the sulfonium-bound methyl group can serve as surrogate cofactors for many DNA and RNA MTases enabling covalent deposition of these linear chains to their cognate targets sites in DNA or RNA. Here we describe synthetic procedures for the preparation of two representative examples of AdoMet analogs with a transferable hex-2-ynyl group carrying a terminal azide or amine functionality. Our approach is based on direct chemoselective alkylation of S-adenosyl-L-homocysteine at sulfur with corresponding nosylates under acidic conditions. We also describe synthetic routes to 6-substituted hex-2-yn-1-ols and their conversion to the corresponding nosylates. Using these protocols, synthetic AdoMet analogs can be prepared within 1 to 2 weeks.
Collapse
Affiliation(s)
- Viktoras Masevičius
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania.,Faculty of Chemistry, Vilnius University, Vilnius, Lithuania
| | - Milda Nainytė
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania.,Faculty of Chemistry, Vilnius University, Vilnius, Lithuania
| | | |
Collapse
|
58
|
Struck AW, Bennett MR, Shepherd SA, Law BJC, Zhuo Y, Wong LS, Micklefield J. An Enzyme Cascade for Selective Modification of Tyrosine Residues in Structurally Diverse Peptides and Proteins. J Am Chem Soc 2016; 138:3038-45. [DOI: 10.1021/jacs.5b10928] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna-Winona Struck
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Matthew R. Bennett
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Sarah A. Shepherd
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Brian J. C. Law
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Ying Zhuo
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Lu Shin Wong
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
59
|
Tengg M, Stecher H, Offner L, Plasch K, Anderl F, Weber H, Schwab H, Gruber-Khadjawi M. Methyltransferases: Green Catalysts for Friedel-Crafts Alkylations. ChemCatChem 2016. [DOI: 10.1002/cctc.201501306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Tengg
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Petersgasse 14 8010 Graz Austria
| | - Harald Stecher
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Lisa Offner
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Katharina Plasch
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Felix Anderl
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Helmut Schwab
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Molecular Biotechnology; Graz University of Technology; Petersgasse 14 8010 Graz Austria
| | - Mandana Gruber-Khadjawi
- ACIB, Austrian Centre of Industrial Biotechnology GmbH; Petersgasse 14 8010 Graz Austria
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
60
|
Tomkuvienė M, Kriukienė E, Klimašauskas S. DNA Labeling Using DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:511-535. [PMID: 27826850 PMCID: PMC11032744 DOI: 10.1007/978-3-319-43624-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA methyltransferases (MTases) uniquely combine the ability to recognize and covalently modify specific target sequences in DNA using the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet). Although DNA methylation plays important roles in biological signaling, the transferred methyl group is a poor reporter and is highly inert to further biocompatible derivatization. To unlock the biotechnological power of these enzymes, two major types of cofactor AdoMet analogs were developed that permit targeted MTase-directed attachment of larger moieties containing functional or reporter groups onto DNA. One such approach (named sequence-specific methyltransferase-induced labeling, SMILing) uses reactive aziridine or N-mustard mimics of the cofactor AdoMet, which render targeted coupling of a whole cofactor molecule to the target DNA. The second approach (methyltransferase-directed transfer of activated groups, mTAG) uses AdoMet analogs with a sulfonium-bound extended side chain replacing the methyl group, which permits MTase-directed covalent transfer of the activated side chain alone. As the enlarged cofactors are not always compatible with the active sites of native MTases, steric engineering of the active site has been employed to optimize their alkyltransferase activity. In addition to the described cofactor analogs, recently discovered atypical reactions of DNA cytosine-5 MTases involving non-cofactor-like compounds can also be exploited for targeted derivatization and labeling of DNA. Altogether, these approaches offer new powerful tools for sequence-specific covalent DNA labeling, which not only pave the way to developing a variety of useful techniques in DNA research, diagnostics, and nanotechnologies but have already proven practical utility for optical DNA mapping and epigenome studies.
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Institute of Biotechnology, Vilnius University, Vilnius, LT-10222, Lithuania
| | - Edita Kriukienė
- Institute of Biotechnology, Vilnius University, Vilnius, LT-10222, Lithuania
| | | |
Collapse
|
61
|
Kath-Schorr S. Cycloadditions for Studying Nucleic Acids. Top Curr Chem (Cham) 2015; 374:4. [PMID: 27572987 DOI: 10.1007/s41061-015-0004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
Cycloaddition reactions for site-specific or global modification of nucleic acids have enabled the preparation of a plethora of previously inaccessible DNA and RNA constructs for structural and functional studies on naturally occurring nucleic acids, the assembly of nucleic acid nanostructures, therapeutic applications, and recently, the development of novel aptamers. In this chapter, recent progress in nucleic acid functionalization via a range of different cycloaddition (click) chemistries is presented. At first, cycloaddition/click chemistries already used for modifying nucleic acids are summarized, ranging from the well-established copper(I)-catalyzed alkyne-azide cycloaddition reaction to copper free methods, such as the strain-promoted azide-alkyne cycloaddition, tetrazole-based photoclick chemistry and the inverse electron demand Diels-Alder cycloaddition reaction between strained alkenes and tetrazine derivatives. The subsequent sections contain selected applications of nucleic acid functionalization via click chemistry; in particular, site-specific enzymatic labeling in vitro, either via DNA and RNA recognizing enzymes or by introducing unnatural base pairs modified for click reactions. Further sections report recent progress in metabolic labeling and fluorescent detection of DNA and RNA synthesis in vivo, click nucleic acid ligation, click chemistry in nanostructure assembly and click-SELEX as a novel method for the selection of aptamers.
Collapse
Affiliation(s)
- Stephanie Kath-Schorr
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Bonn, Germany.
| |
Collapse
|
62
|
Muttach F, Rentmeister A. Eine biokatalytische Kaskade für die vielseitige Eintopf-Modifizierung von mRNA ausgehend von Methioninanaloga. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fabian Muttach
- Universität Münster; Fachbereich Chemie und Pharmazie, Institut für Biochemie; Wilhelm-Klemm-Straße 2 48149 Münster Deutschland
| | - Andrea Rentmeister
- Universität Münster; Fachbereich Chemie und Pharmazie, Institut für Biochemie; Wilhelm-Klemm-Straße 2 48149 Münster Deutschland
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM); Universität Münster; Deutschland
| |
Collapse
|
63
|
Muttach F, Rentmeister A. A Biocatalytic Cascade for Versatile One-Pot Modification of mRNA Starting from Methionine Analogues. Angew Chem Int Ed Engl 2015; 55:1917-20. [DOI: 10.1002/anie.201507577] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Fabian Muttach
- University of Münster; Department of Chemistry, Institute of Biochemistry; Wilhelm-Klemm-Strasse 2 48149 Münster Germany
| | - Andrea Rentmeister
- University of Münster; Department of Chemistry, Institute of Biochemistry; Wilhelm-Klemm-Strasse 2 48149 Münster Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM); University of Münster; Germany
| |
Collapse
|
64
|
Holstein JM, Rentmeister A. Current covalent modification methods for detecting RNA in fixed and living cells. Methods 2015; 98:18-25. [PMID: 26615954 DOI: 10.1016/j.ymeth.2015.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/20/2015] [Accepted: 11/22/2015] [Indexed: 12/13/2022] Open
Abstract
Labeling RNAs is of particular interest for elucidating localization, transport, and regulation of specific transcripts, ideally in living cells. Numerous methods have been developed ranging from hybridizing probes to genetically encoded reporters and chemo-enzymatic approaches. This review focuses on covalent labeling approaches that rely on the introduction of a small reactive group into the nascent or completed transcript followed by bioorthogonal click chemistry. State of the approaches for labeling RNA in fixed and living cells will be presented and emerging strategies with great potential for application in the complex cellular environment will be discussed.
Collapse
Affiliation(s)
- Josephin M Holstein
- Westfälische Wilhelms-Universität Münster, Institute of Biochemistry, 48149 Muenster, Germany
| | - Andrea Rentmeister
- Westfälische Wilhelms-Universität Münster, Institute of Biochemistry, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, 48149 Muenster, Germany.
| |
Collapse
|
65
|
Kim J, Xiao H, Koh J, Wang Y, Bonanno JB, Thomas K, Babbitt PC, Brown S, Lee YS, Almo SC. Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification. Nucleic Acids Res 2015; 43:4602-13. [PMID: 25855808 PMCID: PMC4482062 DOI: 10.1093/nar/gkv206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/27/2015] [Indexed: 12/31/2022] Open
Abstract
Enzyme-mediated modifications at the wobble position of tRNAs are essential for the translation of the genetic code. We report the genetic, biochemical and structural characterization of CmoB, the enzyme that recognizes the unique metabolite carboxy-S-adenosine-L-methionine (Cx-SAM) and catalyzes a carboxymethyl transfer reaction resulting in formation of 5-oxyacetyluridine at the wobble position of tRNAs. CmoB is distinctive in that it is the only known member of the SAM-dependent methyltransferase (SDMT) superfamily that utilizes a naturally occurring SAM analog as the alkyl donor to fulfill a biologically meaningful function. Biochemical and genetic studies define the in vitro and in vivo selectivity for Cx-SAM as alkyl donor over the vastly more abundant SAM. Complementary high-resolution structures of the apo- and Cx-SAM bound CmoB reveal the determinants responsible for this remarkable discrimination. Together, these studies provide mechanistic insight into the enzymatic and non-enzymatic feature of this alkyl transfer reaction which affords the broadened specificity required for tRNAs to recognize multiple synonymous codons.
Collapse
Affiliation(s)
- Jungwook Kim
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hui Xiao
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Junseock Koh
- Laboratory of Cell Biology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Yikai Wang
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keisha Thomas
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Shoshana Brown
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Young-Sam Lee
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
66
|
Holstein JM, Stummer D, Rentmeister A. Engineering Giardia lamblia trimethylguanosine synthase (GlaTgs2) to transfer non-natural modifications to the RNA 5'-cap. Protein Eng Des Sel 2015; 28:179-86. [DOI: 10.1093/protein/gzv011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/03/2015] [Indexed: 11/14/2022] Open
|
67
|
Stummer D, Herrmann C, Rentmeister A. Quantum Chemical Calculations and Experimental Validation of the Photoclick Reaction for Fluorescent Labeling of the 5' cap of Eukaryotic mRNAs. ChemistryOpen 2015; 4:295-301. [PMID: 26246991 PMCID: PMC4522179 DOI: 10.1002/open.201402104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 01/31/2023] Open
Abstract
Bioorthogonal click reactions are powerful tools to specifically label biomolecules in living cells. Considerable progress has been made in site-specific labeling of proteins and glycans in complex biological systems, but equivalent methods for mRNAs are rare. We present a chemo-enzymatic approach to label the 5’ cap of eukaryotic mRNAs using a bioorthogonal photoclick reaction. Herein, the N7-methylated guanosine of the 5’ cap is enzymatically equipped with an allyl group using a variant of the trimethylguanosine synthase 2 from Giardia lamblia (GlaTgs2). To elucidate whether the resulting N2-modified 5’ cap is a suitable dipolarophile for photoclick reactions, we used Kohn–Sham density functional theory (KS-DFT) and calculated the HOMO and LUMO energies of this molecule and nitrile imines. Our in silico studies suggested that combining enzymatic allylation of the cap with subsequent labeling in a photoclick reaction was feasible. This could be experimentally validated. Our approach generates a turn-on fluorophore site-specifically at the 5’ cap and therefore presents an important step towards labeling of eukaryotic mRNAs in a bioorthogonal manner.
Collapse
Affiliation(s)
- Daniela Stummer
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 2, 48149, Münster, Germany ; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 2, 48149, Münster, Germany
| | - Carmen Herrmann
- Institute of Inorganic Chemistry, University of Hamburg Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 2, 48149, Münster, Germany ; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 2, 48149, Münster, Germany
| |
Collapse
|
68
|
Genetically encoded tools for RNA imaging in living cells. Curr Opin Biotechnol 2015; 31:42-9. [DOI: 10.1016/j.copbio.2014.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/30/2014] [Indexed: 12/11/2022]
|
69
|
Gillingham D, Shahid R. Catalysts for RNA and DNA modification. Curr Opin Chem Biol 2015; 25:110-4. [PMID: 25590584 DOI: 10.1016/j.cbpa.2014.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022]
Abstract
To study DNAs and RNAs it is often necessary to chemically modify them. Nature's strategy for nucleic acid modification is to use selective catalysts, and chemists have begun to emulate this conceptual approach. In this review we present a summary of catalytic approaches toward the construction of modified RNAs and DNAs and outline our opinions on where new research is needed.
Collapse
Affiliation(s)
| | - Ramla Shahid
- COMSATS Institute of Technology, Park Road, Islamabad, Pakistan
| |
Collapse
|
70
|
Holstein JM, Stummer D, Rentmeister A. Enzymatic modification of 5'-capped RNA with a 4-vinylbenzyl group provides a platform for photoclick and inverse electron-demand Diels-Alder reaction. Chem Sci 2014; 6:1362-1369. [PMID: 29560223 PMCID: PMC5811123 DOI: 10.1039/c4sc03182b] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/26/2014] [Indexed: 01/20/2023] Open
Abstract
Enzymatic transfer of 4-vinylbenzyl to the mRNA 5′-cap gives access to the fluorogenic photoclick and the inverse electron-demand Diels–Alder reaction.
Chemo-enzymatic strategies provide a highly selective means to label different classes of biomolecules in vitro, but also in vivo. In the field of RNA, efficient labeling of eukaryotic mRNA with small organic reporter molecules would provide a way to detect endogenous mRNA and is therefore highly attractive. Although more and more bioorthogonal reactions are being reported, they can only be applied to chemo-enzymatic strategies if a suitable (i.e., click compatible) modification can be introduced into the RNA of interest. We report enzymatic site-specific transfer of a 4-vinylbenzyl group to the 5′-cap typical of eukaryotic mRNAs. The 4-vinylbenzyl group gives access to mRNA labeling using the inverse electron-demand Diels–Alder reaction, which does not work with an enzymatically transferred allyl group. The 4-vinylbenzyl-modified 5′-cap can also be converted in a photoclick reaction generating a “turn-on” fluorophore. Both click reactions are bioorthogonal and the two step approach also works in eukaryotic cell lysate. Enzymatic transfer of the 4-vinylbenzyl group addresses the lack of flexibility often attributed to biotransformations and thus advances the potential of chemo-enzymatic approaches for labeling.
Collapse
Affiliation(s)
- Josephin Marie Holstein
- Westfälische Wilhelms-Universität Münster , Institute of Biochemistry , 48149 Muenster , Germany .
| | - Daniela Stummer
- Westfälische Wilhelms-Universität Münster , Institute of Biochemistry , 48149 Muenster , Germany . .,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM) , University of Muenster , 48149 Muenster , Germany
| | - Andrea Rentmeister
- Westfälische Wilhelms-Universität Münster , Institute of Biochemistry , 48149 Muenster , Germany . .,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM) , University of Muenster , 48149 Muenster , Germany
| |
Collapse
|
71
|
Hanz GM, Jung B, Giesbertz A, Juhasz M, Weinhold E. Sequence-specific labeling of nucleic acids and proteins with methyltransferases and cofactor analogues. J Vis Exp 2014:e52014. [PMID: 25490674 DOI: 10.3791/52014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5'-ATCGAT-3' sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.
Collapse
Affiliation(s)
- Gisela Maria Hanz
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University
| | - Britta Jung
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University
| | - Anna Giesbertz
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University
| | - Matyas Juhasz
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University
| | - Elmar Weinhold
- Institute of Organic Chemistry, Department of Chemistry, RWTH Aachen University;
| |
Collapse
|
72
|
Plotnikova A, Osipenko A, Masevičius V, Vilkaitis G, Klimašauskas S. Selective Covalent Labeling of miRNA and siRNA Duplexes Using HEN1 Methyltransferase. J Am Chem Soc 2014; 136:13550-3. [DOI: 10.1021/ja507390s] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Aleksandr Osipenko
- Institute
of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute
of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
- Faculty
of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania
| | - Giedrius Vilkaitis
- Institute
of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | | |
Collapse
|
73
|
Schulz D, Rentmeister A. Current approaches for RNA labeling in vitro and in cells based on click reactions. Chembiochem 2014; 15:2342-7. [PMID: 25224574 DOI: 10.1002/cbic.201402240] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Indexed: 12/19/2022]
Abstract
Over recent years, click reactions have become recognized as valuable and flexible tools to label biomacromolecules such as proteins, nucleic acids, and glycans. Some of the developed strategies can be performed not only in aqueous solution but also in the presence of cellular components, as well as on (or even in) living cells. These labeling strategies require the initial, specific modification of the target molecule with a small, reactive moiety. In the second step, a click reaction is used to covalently couple a reporter molecule to the biomolecule. Depending on the type of reporter, labeling by the click reaction can be used in many different applications, ranging from isolation to functional studies of biomacromolecules. In this minireview, we focus on labeling strategies for RNA that rely on the click reaction. We first highlight click reactions that have been used successfully to label modified RNA, and then describe different strategies to introduce the required reactive groups into target RNA. The benefits and potential limitations of the strategies are critically discussed with regard to possible future developments.
Collapse
Affiliation(s)
- Daniela Schulz
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany); Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany)
| | | |
Collapse
|
74
|
Büttner L, Javadi-Zarnaghi F, Höbartner C. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work. J Am Chem Soc 2014; 136:8131-7. [PMID: 24825547 DOI: 10.1021/ja503864v] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A general and efficient single-step method was established for site-specific post-transcriptional labeling of RNA. Using Tb(3+) as accelerating cofactor for deoxyribozymes, various labeled guanosines were site-specifically attached to 2'-OH groups of internal adenosines in in vitro transcribed RNA. The DNA-catalyzed 2',5'-phosphodiester bond formation proceeded efficiently with fluorescent, spin-labeled, biotinylated, or cross-linker-modified guanosine triphosphates. The sequence context of the labeling site was systematically analyzed by mutating the nucleotides flanking the targeted adenosine. Labeling of adenosines in a purine-rich environment showed the fastest reactions and highest yields. Overall, practically useful yields >70% were obtained for 13 out of 16 possible nucleotide (nt) combinations. Using this approach, we demonstrate preparative labeling under mild conditions for up to ~160-nt-long RNAs, including spliceosomal U6 small nuclear RNA and a cyclic-di-AMP binding riboswitch RNA.
Collapse
Affiliation(s)
- Lea Büttner
- Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
75
|
Vranken C, Deen J, Dirix L, Stakenborg T, Dehaen W, Leen V, Hofkens J, Neely RK. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry. Nucleic Acids Res 2014; 42:e50. [PMID: 24452797 PMCID: PMC3985630 DOI: 10.1093/nar/gkt1406] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes transalkylate DNA with the cofactor we tested (a readily prepared s-adenosyl-l-methionine analogue).
Collapse
Affiliation(s)
- Charlotte Vranken
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium, Life Science Technologies, Imec, Kapeldreef 75, 3001 Heverlee, Belgium and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Holstein JM, Schulz D, Rentmeister A. Bioorthogonal site-specific labeling of the 5′-cap structure in eukaryotic mRNAs. Chem Commun (Camb) 2014; 50:4478-81. [DOI: 10.1039/c4cc01549e] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A chemo-enzymatic approach for site-specific labeling of 5′-capped RNAs based on strain-promoted azide–alkyne cycloaddition (SPAAC) was developed.
Collapse
Affiliation(s)
| | - Daniela Schulz
- Institute of Biochemistry
- University of Muenster
- D-48149 Münster, Germany
| | | |
Collapse
|
77
|
Wang R, Luo M. A journey toward Bioorthogonal Profiling of Protein Methylation inside living cells. Curr Opin Chem Biol 2013; 17:729-37. [PMID: 24035694 DOI: 10.1016/j.cbpa.2013.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022]
Abstract
Human protein methyltransferases (PMTs) play essential roles through methylating histone and nonhistone targets. It is very challenging to profile global methylation (or methylome) in the context of relevant cellular settings. Unlike other posttranslational modifications such as lysine acetylation or Ser/Thr/Tyr/His phosphorylation, methylation of lysine or arginine does not significantly alter its physical properties (e.g. charge and size) and therefore may not be probed readily by conventional biological tools such antibodies. It is also not trivial to assign unambiguously dynamic methylation events to specific PMTs given their potential redundancy. This review focuses on the decade-long progress in developing complementary chemical tools to elucidate targets of designated PMTs. One of such efforts was to develop the Bioorthogonal Profiling of Protein Methylation (BPPM) technology in vitro and inside living cells.
Collapse
Affiliation(s)
- Rui Wang
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States; Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021, United States
| | | |
Collapse
|
78
|
Ein chemo-enzymatischer Ansatz zur regiospezifischen Modifizierung der RNA-Kappe. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302874] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
79
|
Schulz D, Holstein JM, Rentmeister A. A chemo-enzymatic approach for site-specific modification of the RNA cap. Angew Chem Int Ed Engl 2013; 52:7874-8. [PMID: 23794451 DOI: 10.1002/anie.201302874] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Indexed: 11/08/2022]
Abstract
Capped and gowned: A two-step approach can be used to site-specifically modify the 5'-cap of eukaryotic mRNAs. First, a trimethylguanosinesynthase variant recognizes the m(7)G cap structure and introduces bioorthogonal groups using S-adenosyl-L-methionine-based cosubstrates. Then, the enzymatically introduced reporter groups are further modified by thiol-ene or CuAAC click chemistry (see scheme).
Collapse
Affiliation(s)
- Daniela Schulz
- Universität Hamburg, Department Chemie, Institut für Biochemie und Molekularbiologie, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | | | | |
Collapse
|
80
|
Lukinavičius G, Tomkuvienė M, Masevičius V, Klimašauskas S. Enhanced chemical stability of adomet analogues for improved methyltransferase-directed labeling of DNA. ACS Chem Biol 2013; 8:1134-9. [PMID: 23557731 DOI: 10.1021/cb300669x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methyltransferases catalyze specific transfers of methyl groups from the ubiquitous cofactor S-adenosyl-l-methionine (AdoMet) to various nucleophilic positions in biopolymers like DNA, RNA, and proteins. We had previously described synthesis and application of AdoMet analogues carrying sulfonium-bound 4-substituted but-2-ynyl side chains for transfer by methyltransferases. Although useful in certain applications, these cofactor analogues exhibited short lifetimes in physiological buffers. Examination of the reaction kinetics and products showed that their fast inactivation followed a different pathway than observed for AdoMet and rather involved a pH-dependent addition of a water molecule to the side chain. This side reaction was eradicated by synthesis of a series of cofactor analogues in which the separation between an electronegative group and the triple bond was increased from one to three carbon units. The designed hex-2-ynyl moiety-based cofactor analogues with terminal amino, azide, or alkyne groups showed a markedly improved enzymatic transalkylation activity and proved well suitable for methyltransferase-directed sequence-specific labeling of DNA in vitro and in bacterial cell lysates.
Collapse
Affiliation(s)
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
- Faculty of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| | | |
Collapse
|
81
|
|
82
|
Dojahn CM, Hesse M, Arenz C. A chemo-enzymatic approach to specifically click-modified RNA. Chem Commun (Camb) 2013; 49:3128-30. [DOI: 10.1039/c3cc40594j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
83
|
Struck AW, Thompson ML, Wong LS, Micklefield J. S-Adenosyl-Methionine-Dependent Methyltransferases: Highly Versatile Enzymes in Biocatalysis, Biosynthesis and Other Biotechnological Applications. Chembiochem 2012. [DOI: 10.1002/cbic.201200556] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
84
|
Bothwell IR, Islam K, Chen Y, Zheng W, Blum G, Deng H, Luo M. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J Am Chem Soc 2012; 134:14905-12. [PMID: 22917021 PMCID: PMC3458307 DOI: 10.1021/ja304782r] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Posttranslational methylation by S-adenosyl-L-methionine(SAM)-dependent methyltransferases plays essential roles in modulating protein function in both normal and disease states. As such, there is a growing need to develop chemical reporters to examine the physiological and pathological roles of protein methyltransferases. Several sterically bulky SAM analogues have previously been used to label substrates of specific protein methyltransferases. However, broad application of these compounds has been limited by their general incompatibility with native enzymes. Here we report a SAM surrogate, ProSeAM (propargylic Se-adenosyl-l-selenomethionine), as a reporter of methyltransferases. ProSeAM can be processed by multiple protein methyltransferases for substrate labeling. In contrast, sulfur-based propargylic SAM undergoes rapid decomposition at physiological pH, likely via an allene intermediate. In conjunction with fluorescent/affinity-based azide probes, copper-catalyzed azide-alkyne cycloaddition chemistry, in-gel fluorescence visualization and proteomic analysis, we further demonstrated ProSeAM's utility to profile substrates of endogenous methyltransferases in diverse cellular contexts. These results thus feature ProSeAM as a convenient probe to study the activities of endogenous protein methyltransferases.
Collapse
Affiliation(s)
- Ian R. Bothwell
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kabirul Islam
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Weihong Zheng
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Gil Blum
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|