51
|
Yakhnin H, Yakhnin AV, Babitzke P. Ribosomal protein L10(L12)4 autoregulates expression of the Bacillus subtilis rplJL operon by a transcription attenuation mechanism. Nucleic Acids Res 2015; 43:7032-43. [PMID: 26101249 PMCID: PMC4538822 DOI: 10.1093/nar/gkv628] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/07/2015] [Indexed: 01/26/2023] Open
Abstract
Ribosomal protein genes are often controlled by autoregulatory mechanisms in which a protein encoded in the operon can either bind to newly synthesized rRNA during rapid growth or to a similar target in its mRNA during poor growth conditions. The rplJL operon encodes the ribosomal L10(L12)4 complex. In Escherichia coli L10(L12)4 represses its translation by binding to the rplJL leader transcript. We identified three RNA structures in the Bacillus subtilis rplJL leader transcript that function as an anti-antiterminator, antiterminator or intrinsic terminator. Expression studies with transcriptional and translational fusions indicated that L10(L12)4 represses rplJL expression at the transcriptional level. RNA binding studies demonstrated that L10(L12)4 stabilizes the anti-antiterminator structure, while in vitro transcription results indicated that L10(L12)4 promotes termination. Disruption of anti-antiterminator, antiterminator or terminator function by competitor oligonucleotides in vitro and by mutations in vivo demonstrated that each structure functions as predicted. Thus, rplJL expression is regulated by an autogenous transcription attenuation mechanism in which L10(L12)4 binding to the anti-antiterminator structure promotes termination. We also found that translation of a leader peptide increases rplJL expression, presumably by inhibiting Rho-dependent termination. Thus, the rplJL operon of B. subtilis is regulated by transcription attenuation and antitermination mechanisms.
Collapse
Affiliation(s)
- Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander V Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
52
|
Aseev LV, Bylinkina NS, Boni IV. Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria. RNA (NEW YORK, N.Y.) 2015; 21:851-61. [PMID: 25749694 PMCID: PMC4408793 DOI: 10.1261/rna.047381.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/22/2014] [Indexed: 05/09/2023]
Abstract
Ribosomal protein (r-protein) L25 is one of the three r-proteins (L25, L5, L18) that interact with 5S rRNA in eubacteria. Specific binding of L25 with a certain domain of 5S r-RNA, a so-called loop E, has been studied in detail, but information about regulation of L25 synthesis has remained totally lacking. In contrast to the rplE (L5) and rplR (L18) genes that belong to the polycistronic spc-operon and are regulated at the translation level by r-protein S8, the rplY (L25) gene forms an independent transcription unit. The main goal of this work was to study the regulation of the rplY expression in vivo. We show that the rplY promoter is down-regulated by ppGpp and its cofactor DksA in response to amino acid starvation. At the level of translation, the rplY expression is subjected to the negative feedback control. The 5'-untranslated region of the rplY mRNA comprises specific sequence/structure features, including an atypical SD-like sequence, which are highly conserved in a subset of gamma-proteobacterial families. Despite the lack of a canonical SD element, the rplY'-'lacZ single-copy reporter showed unusually high translation efficiency. Expression of the rplY gene in trans decreased the translation yield, indicating the mechanism of autogenous repression. Site-directed mutagenesis of the rplY 5' UTR revealed an important role of the conserved elements in the translation control. Thus, the rplY expression regulation represents one more example of regulatory pathways that control ribosome biogenesis in Escherichia coli and related bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Natalia S Bylinkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia Moscow Institute of Physics and Technology, 141700, Moscow Region, Dolgoprudny, Russia
| | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| |
Collapse
|
53
|
Genomic location of the major ribosomal protein gene locus determines Vibrio cholerae global growth and infectivity. PLoS Genet 2015; 11:e1005156. [PMID: 25875621 PMCID: PMC4395360 DOI: 10.1371/journal.pgen.1005156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 11/23/2022] Open
Abstract
The effects on cell physiology of gene order within the bacterial chromosome are poorly understood. In silico approaches have shown that genes involved in transcription and translation processes, in particular ribosomal protein (RP) genes, localize near the replication origin (oriC) in fast-growing bacteria suggesting that such a positional bias is an evolutionarily conserved growth-optimization strategy. Such genomic localization could either provide a higher dosage of these genes during fast growth or facilitate the assembly of ribosomes and transcription foci by keeping physically close the many components of these macromolecular machines. To explore this, we used novel recombineering tools to create a set of Vibrio cholerae strains in which S10-spec-α (S10), a locus bearing half of the ribosomal protein genes, was systematically relocated to alternative genomic positions. We show that the relative distance of S10 to the origin of replication tightly correlated with a reduction of S10 dosage, mRNA abundance and growth rate within these otherwise isogenic strains. Furthermore, this was accompanied by a significant reduction in the host-invasion capacity in Drosophila melanogaster. Both phenotypes were rescued in strains bearing two S10 copies highly distal to oriC, demonstrating that replication-dependent gene dosage reduction is the main mechanism behind these alterations. Hence, S10 positioning connects genome structure to cell physiology in Vibrio cholerae. Our results show experimentally for the first time that genomic positioning of genes involved in the flux of genetic information conditions global growth control and hence bacterial physiology and potentially its evolution. Increasing evidence indicates that nucleoid spatiotemporal organization is crucial for bacterial physiology since these microorganism lack compartmentalized nucleus. However, it is still unclear how gene order within the chromosome can influence cell physiology. Here, by systematically relocating ribosomal protein genes to different genomic positions in Vibrio cholerae, we revealed drastic differences in growth rate and infectivity of this isogenic strain set. We show that genomic positioning of ribosomal protein genes is crucial for physiology by providing replication-dependent higher dosage. Therefore it might play a key role in genome evolution of bacterial species. This work will contribute to discover genomic rules governing cell physiology which will be essential in the context of the creation of new artificial life forms.
Collapse
|
54
|
Duval M, Simonetti A, Caldelari I, Marzi S. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie 2015; 114:18-29. [PMID: 25792421 DOI: 10.1016/j.biochi.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022]
Abstract
To adapt their metabolism rapidly and constantly in response to environmental variations, bacteria often target the translation initiation process, during which the ribosome assembles on the mRNA. Here, we review different mechanisms of regulation mediated by cis-acting elements, sRNAs and proteins, showing, when possible, their intimate connection with the translational apparatus. Indeed the ribosome itself could play a direct role in several regulatory mechanisms. Different features of the regulatory signals (sequences, structures and their positions on the mRNA) are contributing to the large variety of regulatory mechanisms. Ribosome heterogeneity, variation of individual cells responses and the spatial and temporal organization of the translation process add more layers of complexity. This hampers to define manageable set of rules for bacterial translation initiation control.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Angelita Simonetti
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| |
Collapse
|
55
|
Studying the properties of domain I of the ribosomal protein l1: incorporation into ribosome and regulation of the l1 operon expression. Protein J 2015; 34:103-10. [PMID: 25681234 DOI: 10.1007/s10930-015-9602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
L1 is a conserved protein of the large ribosomal subunit. This protein binds strongly to the specific region of the high molecular weight rRNA of the large ribosomal subunit, thus forming a conserved flexible structural element--the L1 stalk. L1 protein also regulates translation of the operon that comprises its own gene. Crystallographic data suggest that L1 interacts with RNA mainly by means of its domain I. We show here for the first time that the isolated domain I of the bacterial protein L1 of Thermus thermophilus and Escherichia coli is able to incorporate in vivo into the E. coli ribosome. Furthermore, domain I of T. thermophilus L1 can regulate expression of the L1 gene operon of Archaea in the coupled transcription-translation system in vitro, as well as the intact protein. We have identified the structural elements of domain I of the L1 protein that may be responsible for its regulatory properties.
Collapse
|
56
|
Slinger BL, Deiorio-Haggar K, Anthony JS, Gilligan MM, Meyer MM. Discovery and validation of novel and distinct RNA regulators for ribosomal protein S15 in diverse bacterial phyla. BMC Genomics 2014; 15:657. [PMID: 25104606 PMCID: PMC4137082 DOI: 10.1186/1471-2164-15-657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022] Open
Abstract
Background Autogenous cis-regulators of ribosomal protein synthesis play a critical role in maintaining the stoichiometry of ribosome components. Structured portions within an mRNA transcript typically interact with specific ribosomal proteins to prevent expression of the entire operon, thus balancing levels of ribosomal proteins across transcriptional units. Three distinct RNA structures from different bacterial phyla have demonstrated interactions with S15 to regulate gene expression; however, these RNAs are distributed across a small fraction of bacterial diversity. Results We used comparative genomics in combination with analysis of existing transcriptomic data to identify three novel putative RNA structures associated with the S15 coding region in microbial genomes. These structures are completely distinct from those previously published and encompass potential regulatory regions including ribosome-binding sites. To validate the biological relevance of our findings, we demonstrate that an example of the Alphaproteobacterial RNA from Rhizobium radiobacter specifically interacts with S15 in vitro, and allows in vivo regulation of gene expression in an E. coli reporter system. In addition, structural probing and nuclease protection assays confirm the predicted secondary structure and indicate nucleotides required for protein interaction. Conclusions This work illustrates the importance of integrating comparative genomic and transcriptomic approaches during de novo ncRNA identification and reveals a diversity of distinct natural RNA regulators that support analogous biological functions. Furthermore, this work indicates that many additional uncharacterized RNA regulators likely exist within bacterial genomes and that the plasticity of RNA structure allows unique, and likely independently derived, solutions to the same biological problem. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-657) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Michelle M Meyer
- Biology Department, Boston College, Chestnut Hill, MA 02135, USA.
| |
Collapse
|
57
|
Nikolay R, Schloemer R, Schmidt S, Mueller S, Heubach A, Deuerling E. Validation of a fluorescence-based screening concept to identify ribosome assembly defects in Escherichia coli. Nucleic Acids Res 2014; 42:e100. [PMID: 24792169 PMCID: PMC4081057 DOI: 10.1093/nar/gku381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/27/2022] Open
Abstract
While the structure of mature ribosomes is analyzed in atomic detail considerably less is known about their assembly process in living cells. This is mainly due to technical and conceptual hurdles. To analyze ribosome assembly in vivo, we designed and engineered an Escherichiacoli strain--using chromosomal gene knock-in techniques--that harbors large and small ribosomal subunits labeled with the fluorescent proteins EGFP and mCherry, respectively. A thorough characterization of this reporter strain revealed that its growth properties and translation apparatus were wild-type like. Alterations in the ratio of EGFP over mCherry fluorescence are supposed to indicate ribosome assembly defects. To provide proof of principle, subunit specific assembly defects were provoked and could be identified by both manual and fully automated fluorometric in vivo assays. This is to our knowledge the first methodology that directly detects ribosome assembly defects in vivo in a high-throughput compatible format. Screening of knock-out collections and small molecule libraries will allow identification of new ribosome assembly factors and possible inhibitors.
Collapse
Affiliation(s)
- Rainer Nikolay
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany
| | - Renate Schloemer
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany
| | - Sabine Schmidt
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany
| | - Silke Mueller
- Screening Center Konstanz, University of Konstanz, Konstanz 78457, Germany
| | - Anja Heubach
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany
| | - Elke Deuerling
- Molecular Microbiology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
58
|
Ternan NG, Jain S, Graham RLJ, McMullan G. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation. PLoS One 2014; 9:e88960. [PMID: 24586458 PMCID: PMC3933415 DOI: 10.1371/journal.pone.0088960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 C. difficile proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.
Collapse
Affiliation(s)
- Nigel G. Ternan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
- * E-mail:
| | - Shailesh Jain
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Robert L. J. Graham
- School of Medicine, University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Geoff McMullan
- Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
59
|
Fu Y, Deiorio-Haggar K, Soo MW, Meyer MM. Bacterial RNA motif in the 5' UTR of rpsF interacts with an S6:S18 complex. RNA (NEW YORK, N.Y.) 2014; 20:168-76. [PMID: 24310371 PMCID: PMC3895269 DOI: 10.1261/rna.041285.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Approximately half the transcripts encoding ribosomal proteins in Escherichia coli include a structured RNA motif that interacts with a specific ribosomal protein to inhibit gene expression, thus allowing stoichiometric production of ribosome components. However, many of these RNA structures are not widely distributed across bacterial phyla. It is increasingly common for RNA motifs associated with ribosomal protein genes to be identified using comparative genomic methods, yet these are rarely experimentally validated. In this work, we characterize one such motif that precedes operons containing rpsF and rpsR, which encode ribosomal proteins S6 and S18. This RNA structure is widely distributed across many phyla of bacteria despite differences within the downstream operon, and examples are present in both E. coli and Bacillus subtilis. We demonstrate a direct interaction between an example of the RNA from B. subtilis and an S6:S18 complex using in vitro binding assays, verify our predicted secondary structure, and identify a putative protein-binding site. The proposed binding site bears a strong resemblance to the S18 binding site within the 16S rRNA, suggesting molecular mimicry. This interaction is a valuable addition to the canon of ribosomal protein mRNA interactions. This work shows how experimental verification translates computational results into concrete knowledge of biological systems.
Collapse
|
60
|
Wu YJ, Wu CH, Yeh AYC, Wen JD. Folding a stable RNA pseudoknot through rearrangement of two hairpin structures. Nucleic Acids Res 2014; 42:4505-15. [PMID: 24459133 PMCID: PMC3985624 DOI: 10.1093/nar/gkt1396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Folding messenger RNA into specific structures is a common regulatory mechanism involved in translation. In Escherichia coli, the operator of the rpsO gene transcript folds into a pseudoknot or double-hairpin conformation. S15, the gene product, binds only to the pseudoknot, thereby repressing its own synthesis when it is present in excess in the cell. The two RNA conformations have been proposed to exist in equilibrium. However, it remained unclear how structural changes can be achieved between these two topologically distinct conformations. We used optical tweezers to study the structural dynamics and rearrangements of the rpsO operator RNA at the single-molecule level. We discovered that the two RNA structures can be interchanged spontaneously and the pseudoknot can exist in conformations that exhibit various levels of stability. Conversion from the double hairpin to a pseudoknot through potential hairpin–hairpin interactions favoured the high-stability conformation. By contrast, mutations that blocked the formation of a hairpin typically resulted in alternative low-stability pseudoknots. These results demonstrate that specific tertiary interactions of RNA can be established and modulated based on the interactions and rearrangements between secondary structural components. Our findings provide new insight into the RNA folding pathway that leads to a regulatory conformation for target protein binding.
Collapse
Affiliation(s)
- Yi-Ju Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan, Department of Life Science, National Taiwan University, Taipei 10617, Taiwan and Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
61
|
Matelska D, Purta E, Panek S, Boniecki MJ, Bujnicki JM, Dunin-Horkawicz S. S6:S18 ribosomal protein complex interacts with a structural motif present in its own mRNA. RNA (NEW YORK, N.Y.) 2013; 19:1341-8. [PMID: 23980204 PMCID: PMC3854524 DOI: 10.1261/rna.038794.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/05/2013] [Indexed: 05/24/2023]
Abstract
Prokaryotic ribosomal protein genes are typically grouped within highly conserved operons. In many cases, one or more of the encoded proteins not only bind to a specific site in the ribosomal RNA, but also to a motif localized within their own mRNA, and thereby regulate expression of the operon. In this study, we computationally predicted an RNA motif present in many bacterial phyla within the 5' untranslated region of operons encoding ribosomal proteins S6 and S18. We demonstrated that the S6:S18 complex binds to this motif, which we hereafter refer to as the S6:S18 complex-binding motif (S6S18CBM). This motif is a conserved CCG sequence presented in a bulge flanked by a stem and a hairpin structure. A similar structure containing a CCG trinucleotide forms the S6:S18 complex binding site in 16S ribosomal RNA. We have constructed a 3D structural model of a S6:S18 complex with S6S18CBM, which suggests that the CCG trinucleotide in a specific structural context may be specifically recognized by the S18 protein. This prediction was supported by site-directed mutagenesis of both RNA and protein components. These results provide a molecular basis for understanding protein-RNA recognition and suggest that the S6S18CBM is involved in an auto-regulatory mechanism.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Pairing
- Base Sequence
- Binding Sites
- Electrophoretic Mobility Shift Assay
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Operon/genetics
- Protein Binding
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomal Protein S6/chemistry
- Ribosomal Protein S6/genetics
- Ribosomal Protein S6/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Homology, Nucleic Acid
- Thermus thermophilus/genetics
- Thermus thermophilus/metabolism
Collapse
Affiliation(s)
- Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Elzbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Sylwia Panek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Michal J. Boniecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| |
Collapse
|
62
|
Sun EI, Leyn SA, Kazanov MD, Saier MH, Novichkov PS, Rodionov DA. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria. BMC Genomics 2013; 14:597. [PMID: 24060102 PMCID: PMC3766115 DOI: 10.1186/1471-2164-14-597] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/30/2013] [Indexed: 12/21/2022] Open
Abstract
Background In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels. An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. Results A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. Conclusions The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome-wide collection of reference RNA motif regulons is available in the RegPrecise database (http://regprecise.lbl.gov/).
Collapse
Affiliation(s)
- Eric I Sun
- Sanford-Burnham Medical Research Institute, 92037 La Jolla, CA, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Barquist L, Boinett CJ, Cain AK. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 2013; 10:1161-9. [PMID: 23635712 PMCID: PMC3849164 DOI: 10.4161/rna.24765] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this review, we discuss transposon-insertion sequencing, variously known in the literature as TraDIS, Tn-seq, INSeq, and HITS. By monitoring a large library of single transposon-insertion mutants with high-throughput sequencing, these methods can rapidly identify genomic regions that contribute to organismal fitness under any condition assayable in the laboratory with exquisite resolution. We discuss the various protocols that have been developed and methods for analysis. We provide an overview of studies that have examined the reproducibility and accuracy of these methods, as well as studies showing the advantages offered by the high resolution and dynamic range of high-throughput sequencing over previous methods. We review a number of applications in the literature, from predicting genes essential for in vitro growth to directly assaying requirements for survival under infective conditions in vivo. We also highlight recent progress in assaying non-coding regions of the genome in addition to known coding sequences, including the combining of RNA-seq with high-throughput transposon mutagenesis.
Collapse
Affiliation(s)
- Lars Barquist
- Wellcome Trust Sanger Institute; Hinxton, Cambridge, UK; EMBL-European Bioinformatics Institute; Hinxton, Cambridge, UK
| | | | | |
Collapse
|
64
|
Deiorio-Haggar K, Anthony J, Meyer MM. RNA structures regulating ribosomal protein biosynthesis in bacilli. RNA Biol 2013; 10:1180-4. [PMID: 23611891 PMCID: PMC3849166 DOI: 10.4161/rna.24151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Bacilli, there are three experimentally validated ribosomal-protein autogenous regulatory RNAs that are not shared with E. coli. Each of these RNAs forms a unique secondary structure that interacts with a ribosomal protein encoded by a downstream gene, namely S4, S15, and L20. Only one of these RNAs that interacts with L20 is currently found in the RNA Families Database. We created, or modified, existing structural alignments for these three RNAs and used them to perform homology searches. We have determined that each structure exhibits a narrow phylogenetic distribution, mostly relegated to the Firmicute class Bacilli. This work, in conjunction with other similar work, demonstrates that there are most likely many non-homologous RNA regulatory elements regulating ribosomal protein biosynthesis that still await discovery and characterization in other bacterial species.
Collapse
|